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1 INTRODUCTION 
Numerical models for brittle materials such as con-
crete were for the first time introduced already in the 
70’s by landmark works of Ngo & Scordelis (1967), 
Rashid (1968) and Cervenka V. & Gerstle (1971). 
Many material models for concrete and reinforced 
concrete were developed in 70’s, 80’s and 90’s such 
as for instance the models by Suidan & Schnobrich 
(1973), Lin & Scordelis (1975), De Borst (1986), 
Rots (1989), Pramono & Willam (1989), Etse (1992) 
or Lee & Fenves (1998). These models were based 
on the finite element method. A concrete material 
model was formulated as a special constitutive 
model that is used at each integration point for the 
evaluation of internal forces. It was soon realized 
that material models with strain softening, if not 
formulated properly, exhibit severe mesh depend-
ency (De Borst & Rots 1989), and tend to zero en-
ergy dissipation if the element size is reduced 
(Bažant 1976).  

This was attributed to the local nature of the con-
stitutive material description, which results in the 
loss of hyperbolicity of the governing differential 
equation in the softening region (Belytschko et al 
1986). This deficiency means that mathematically a 
solution can be found, but its uniqueness cannot be 
guaranteed. In numerical analysis this results in 
mesh sensitivity and/or numerical instabilities such 
as convergence problems. 

The crack band approach was proposed by Bažant 
and Oh (1983) to remedy the convergence towards 
zero energy dissipation. It was shown by Červenka 
V. (1995) that proper formulation of the crack band 
size can severely reduce also the mesh bias of these 
smeared crack approaches.  

A more rigorous solution of the ill-posed nature of 
the strain softening problem is the introduction of  
higher-order continuum models: such as non-local 
damage model by Bažant & Pijaudier-Cabot (1987), 
gradient plasticity model by de Borst & Muhlhaus 
(1992) or gradient damage model by de Borst et. al. 
(1996). The non-local models introduce additional 
material parameters related to an internal material 
length scale, which is however difficult to derive 
from existing material tests. Currently these models 
are mathematically rigorous, but appear to be too 
fundamental for practical applications.  

Another solution for the strain softening problem 
is the discrete crack model, where the discontinuities 
arising from strain localization are directly included 
into the numerical model. This model was first in-
troduced with automatic remeshing and crack propa-
gation by Saouma & Ingraffea (1981). In the classi-
cal form of the discrete crack approach a crack is 
simulated as a cohesive interface, which is inserted 
into the finite element model whenever a certain cri-
terion for crack initiation or propagation is satisfied. 
This means that whenever a crack is initiated or an 
existing crack propagates remeshing is necessary.  

In recent years, a whole new class of methods has 
emerged based on enhanced finite element formula-
tions or various mesh free methods. A comprehen-
sive treatise on these approaches is for instance pro-
vided in de Borst et al. (2003) or Jirásek (2003). The 
mesh free method was proposed by Belytschko et al. 
(1994). This method has a strong potential for solv-
ing crack propagation problems, but it contains still 
many open issues such as large computational de-
mand, difficulties in 3D implementation and the 
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need to use a background mesh for the numerical in-
tegration.   

The enhanced finite element formulations such as 
EED (elements with embedded discontinuities) or X-
FEM (extended finite elements) are nicely classified 
by Jirásek (2003). These models attempt to bridge 
the gap between the discrete and smeared models by 
enhancing the finite element formulation to better 
capture the discontinuity arising from the strain lo-
calization. Their basic idea is however very close to 
the classical discrete approach, where the “tradi-
tional” remeshing is replaced by enhancing the finite 
element formulation in the elements where cracking 
occurs. Similarly to the classical discrete crack ap-
proach it is often necessary to trace the crack propa-
gation through the model, guarantee its continuity 
across element boundaries, solve crack branching, 
crack intersection etc. 

 The paper discusses the main issues affecting the 
reliability of shear strength predictions. Second ob-
jective is to evaluate the effectiveness of the discrete 
approach in resolving the ill-posed nature of the un-
derlying mathematical problem; since it is often be-
lieved that introduction of discontinuities into the 
numerical formulation can resolve this issue.  

The reliable prediction of shear strength in real 
structures requires a rather complex material formu-
lation, which should capture at least the most impor-
tant features of concrete behavior, such as: compres-
sive crushing, compressive softening, shear response 
of cracked concrete and reinforcement yielding. The 
paper evaluates the importance of these factors on 
the reliability of shear strength predictions.  

2 FRACTURE-PLASTIC MATERIAL MODEL 
The smeared crack analyses presented in this paper 
were performed with program ATENA (Červenka et 
al. 2009) using the combined fracture-plastic model 
of Červenka & Pappanikolaou (2008).  

The material model formulation assumes small 
strains, and is based on the strain decomposition into 
elastic ( e

ijε ), plastic ( p
ijε ) and fracture (f

ijε ) compo-
nents. The stress development can be then described 
by the following rate equations describing the pro-
gressive degradation (concrete cracking) and plastic 
yielding (concrete crushing): 

p f
ij ijkl kl kl klσ D (ε ε ε )= ⋅ − −& & &&  (1) 

The constitutive equations of the both models can 
be summarized as follows:  

Flow rule governs the evolution of plastic and 
fracturing strains: 
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Where pλ&  is the plastic multiplier rate and pg  is 
the plastic potential function. Following the unified 
theory of elastic degradation of Carol et al. (1994) it 
is possible to define analogous quantities for the 
fracturing model, i.e. fλ&  is the inelastic fracturing 
multiplier respectively and fg is the potential defin-
ing the direction of inelastic fracturing strains in the 
fracturing model. The consistency conditions can be 
than used to evaluate the change of the plastic and 
fracturing multipliers. 
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pH and fH is hardening modulus for plastic 
model and fracturing model respectively. This repre-
sents a system of two equations for the two unknown 
multiplier rates pλ&  and fλ& , and is analogous to the 
problem of multi-surface plasticity (Simo et al. 
1988). The details of the model implementation can 
be found in Červenka et al. 1998 and Červenka & 
Pappanikolaou (2008). The model is using Rankine 
criterion for tensile fracture with exponential soften-
ing of Hordijk (1991) (see Figure 1). 

The compressive behavior is modeled by the plas-
ticity model, which is using the three parameter sur-
face of Menentrey & Willam (1995) (see Figure 2) 
and hardening softening is defined according to the 
laws described in Figure 3 where εeq

p is the equiva-
lent plastic strain. The softening in tension and com-
pression is adjusted using a crack band approach of 
Bažant & Oh (1983). The crack band Lt as well as 
crush band size Lc are adjusted with regard to the 
crack orientation approach proposed by Červenka V. 
et al. (1995). This method is described in Figure 4 
and in (6). 

 

t tL Lγ′ =   and  c cL Lγ′ =  

max1 ( 1)
45

θγ γ= + − ,  0;45θ ∈  (6) 

The basic idea is to adjust the crack band size de-
pending on the crack orientation with respect to the 
element edges. This reflects the fact that a crack 
cannot localize into a single element if the crack di-
rection is not aligned with the element edges.  
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Figure 1. Tensile softening (Hordijk 1991) 

Figure 2. Three paramater criterion for concrete (Menetrey 
& Willam 1995) 
 

Figure 3. Hardening and softening in compression 

Figure 4. Crack band size adjustment based on crack direc-
tion orientation 

 

2.1 Special features of reinforced concrete 

When it comes to nonlinear analysis of reinforced 
concrete, i.e. when reinforcement is to be consid-
ered, it becomes important to consider additional 
special issues related to the reinforcement and the 
composite reinforced concrete material. The most 
important phenomena are: 

 
a. shear strength and stiffness of cracked con-

crete, i.e. aggregate interlock 
b. compressive strength reduction due to crack 

opening in perpendicular direction  
c. reinforcement yielding 
d. tension stiffening 
e. dowel action and bending stiffness of the rein-

forcement 
f. bond failure between concrete and reinforce-

ment 
In the used constitutive model, the items (a) and 

(b) are considered according to the modified com-
pression field theory of Collins (Bentz et al. 2006).  

In this theory, the compressive strength is reduced 
using the formula 

c c cr fσ ′=   (7) 
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Where 1ε is the tensile strain in the crack. In 
ATENA the largest maximal fracturing strain is used 
for 1ε and the compressive strength reduction is lim-
ited by rc

lim. In this work rc
lim = 0.  

The shear strength of crack concrete is also 
assumed according to the modified compression 
field theory MCFT (Bentz et al. 2006) as: 
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Figure 5. Mohr-Coulomb criterion for discrete crack ele-
ments 

Figure 6. Geometry of the modified Iosipescu’s beam 
(Schlangen 1993), the dimensions are in mm. 

Where f’ c is the compressive strength in MPa, ag is the maximum aggregate size in mm and w  is the 
maximum crack width in mm at the given location. 
The modified compression field theory does not give 
any formula for the shear stiffness, but it is an im-
portant parameter, which significantly affects the re-
inforced concrete response. In the present formula-
tion the crack shear stiffness Kt

cr is calculated 
directly from crack normal stiffness using a scaling 
factor sF. 

cr cr
t F nK s K=  (10) 

Where Kn
cr comes directly from the tensile soften-

ing law in Figure 1 as: 

( )cr t t
n

t

f wK w=  (11) 

This appears to be a very natural assumption as 
this makes the shear stiffness dependent on the crack 
opening displacement. 

Reinforcement is modeled using the embedded 
approach with truss elements, and a multi-linear 
stress-strain law is used to capture reinforcement 
yielding. 

Tension stiffening can be activated in the present 
model, but was not used. It was shown by Červenka 
& Margoldová (1995) that if sufficiently fine mesh is 
used the tension stiffening effect can be very well 
captured by an appropriate cracking model. 

The dowel action and reinforcement bending 
stiffness is not considered in the present model. The 
analyzed beams are only slightly reinforced; there-
fore these effects cannot play a major role.  

Reinforcement bond failure can play an important 
role in the analyzed problems. A bond modeling was 
discussed by authors in a separate paper Jendele & 
Červenka (2006). It was shown that a bond model 
can strongly improve the results if large finite ele-
ments are used in heavily reinforced structures. The 
problems presented in this paper are only lightly re-
inforced and the largest element size is 200 mm. It 
was therefore decided not to use the bond model to 
limit the number of investigated parameters.      

3 DISCRETE CRACK MODEL 
The analyses calculated with the discrete crack 
model in this paper are using a simple approach, 
where a crack is modeled as a zero thickness inter-
face with Mohr-Coulomb type of criterion with ten-
sion cut-off (see Figure 5). 

cτ σ φ≤ − ; tfσ ≤  (12) 

Where c is cohesion and φ is frictional coeffi-
cient. The Hordijk’s (1991) law is used for tensile 
softening. The cohesion softening is also modeled by 
the same law but the displacement values in the sof-
tening diagram for cohesion are 10 times increased. 

 This approximately corresponds to the assumption 
that the shear response should be more ductile then 
the tensile one, and that the mode II fracture energy 
GF

II is about 10 times larger then the fracture energy 
for mode I. 

 

10II I
F FG G≅  (13) 

4 SHEAR FAILURE IN PLAIN CONCRETE 
In the first example, the discrete and smeared crack 
models are compared on a typical shear problem 
without reinforcement (see Figure 6). This is the 
well known Iosipescu’s shear beam. The geometry 
corresponds to the SEN beams tested by Schlangen 
(1993). The tested beams have dimensions 
440x100x100 mm. They were cast from concrete 
with modulus of elasticity E =35 GPa, Poisson’s ra-
tio 0.15ν = , tensile strength ft=2.8 MPa and the 
specific fracture energy GF = 70 N/m. 

This test setup was originally proposed by Iosipe-
scu (1967) for shear tests of metals. This test was 
later used by Bažant & Pfeifer (1986) for shear test-
ing of concrete. It was discovered by Ingraffea & 
Panthaki (1985) that the crack propagation in this 
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Figure 9. Crack pattern by smeared analysis. (a) coarse 
mesh 10 mm, (b) fine mesh 2 mm, (c) experiment 
(Schlangen 1993) 

Figure 8. Crack pattern by discrete analysis. 

Figure 7. Comparison of load-displacement diagrams for 
the Iosipescu’s beam. 

kind of test is mainly dominated by mode I, i.e. ten-
sile cracking. Since then it has become a typical test 
problem for crack propagation analysis, because it is 
a common believe that smeared crack models cannot 
predict the behavior correctly and some kind of en-
hanced formulation is necessary. 

The load displacement diagrams are compared in 
Figure 7. The figure shows a single discrete crack 
analysis and several smeared crack results. The dis-
crete crack analysis has been performed previously 
by Červenka J. (1994). The peak load in the discrete 
crack analysis is captured very well as well as the 
overall shape of the response. In post-peak the re-
sponse is slightly lower. This could be probably im-
proved by increasing the shear properties of the co-
hesive interface model. The crack path was 
determined (see Figure 8) by the direction of maxi-
mal principal stresses at the crack tip. The discrete 
crack model can nicely capture the curved shape of 
the crack path. On the contrary, the crack path curva-
ture is even slightly overestimated. This is caused by 
extending the crack by a certain non-infinitesimal 
length ∆a at each propagation. Because of that the 
crack extension is overestimated, and the crack 
needs to curve strongly to return to the correct path.   

Figure 1 shows also the results from several 
smeared crack analyses. All smeared crack analyses 
showed the crack path depicted in Figure 9, i.e. a 
more or less straight crack path towards the right 
side of the bottom loading plate. So the curved crack 
path is not obtained, but the crack ends at the right 
side of the loading plate. For instance the smeared 
crack results reported by Schlangen (1993) are 
strongly affected by the mesh bias, and an incorrect 
vertical crack is reported, which ends to left of the 
bottom plate. This improved behavior of the current 
model can be attributed to the crack band size for-
mulation (6). 

The smeared crack analyses labeled with “Std” 
indicate analyses using the model described in Sec-
tion 2, but the special features for reinforced con-
crete are not activated. The shear factor sF is set to 
the low value of 20, which means that the shear 
stiffness on the crack surface is almost identical to 
the normal one. The main findings from this study 
can be summarized as follows: 

  
a. The results confirm that the crack propa-

gation is mainly in mode one.  
b. The shear properties of the crack do not 

influence the results significantly.  
c. The cracked area is quite localized so no 

numerical problems occur in the smeared 
crack analysis 

d. The peak load is predicted correctly by all 
models. 

e. The coarse finite element models show 
lower peak values, which is quite common 
situation in the crack band model. 

f. The discrete model predicts more accu-
rately the curved shape of the crack path. 

g. The crack path predicted by the smeared 
model is acceptable for practical applica-
tions.   

5 SHEAR FAILURE IN LARGE RC BEAMS 
In the next example large beams tested at the Uni-
versity of Toronto by Collins and Yoshida (2000) 
were investigated numerically. Two beams from the 
experimental program of Yoshida are considered:  
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Figure 10. Beam YB2000/0 dimensions and reinforce-
ment. 

Figure 11. Beam YB2000/4 dimensions and reinforce-
ment. 

Beam YB2000/0 with bending reinforcement and 
no shear reinforcement and beam YB2000/4 with 
vertical reinforcement by 8 T-headed bars. The 
beams are schematically depicted in Figure 10 and 
11. 

The longitudinal reinforcement in both beams is 
identical. The reinforcing ratio of bottom reinforce-
ment of 6xM30 bars is 0.0074. The ratio of vertical 
reinforcement of T-headed bars T#4, spacing 0.59m 
is 0.00071. The beams are only lightly reinforced. 
The shear span ratio a/d=2.86 indicates a shear criti-
cal geometry.  

The experimental study Yoshida (2000) offered 
for concrete property only a compressive strength at 
the date of testing, which was obtained from cylinder 
tests. In the tests, slightly different properties were 
found in two specimens. However, in this study it 
was decided to use identical concrete properties in 
both specimens in order to keep the effect of differ-
ent shear reinforcing not influenced by other parame-
ters. The assumed set of parameters for concrete and 
reinforcement is shown in Table 1 and 2. The pa-
rameters reported in this table are referred to a 
„Standard” or “Std”. In some analysis certain pa-
rameters are modified to evaluate their influence on 
the results. 

The finite element analysis was done for a sym-
metrical half of the beam in plane stress representa-

tion. Quadrilateral 4-node isoparametric elements, 
sizes 50-200 mm, were used for concrete and em-
bedded truss elements for bars. The total load 

2P V=  acting in the top centre of the beam is con-
sidered as the global resistance. Like in experiment, 
self weight is considered in the analysis but not in-
cluded in the monitored load P. 
 
Table 1. Concrete material properties of RC beams, this mate-
rial set is denoted as “Std!, i.e. “Standard”. 

Concrete property Value 
Elastic modulus Ec   [MPa] 34 000 
Compressive strength  fc    [MPa] 37 
Tensile strength  ft      [MPa] 2.8 
Specific fracture energy Gf    [N/m] 80 
Poisson ratio  µ    [-] 0.2 
Plastic strain at fc (peak)  εcp    [-] 0.001 
Plastic end displacement   wd    [mm]  0.5 
Shear factor sF 20 
MCFT fc reduction none 
MCFT aggregate interlock none 

 
Table 2. Reinforcement properties of RC beams 

Steel property Value 
Elastic modulus Es   MPa 200 000 
Yield stress fy    MPa 470 
Max. stress fs,,max    MPa 680 
Limit strain εlim 0.11 

 

5.1 Discussion on best-fit results 

The material properties denoted as “Std” and listed 
in Table 1 correspond to a standard material setup. It 
is approximately identical with the standard EC2 
concrete class C30/37. The used set of material pa-
rameters can be recognized as mean properties of 
this concrete class. 

8 30 8 38 37 MPactm ckf f= + = + = �  (13) 

This was the initial set used for the analyses. This 
set of parameters is very similar to the one used in 
Section 4. This set of parameters does not include 
any of the special provisions for reinforced concrete 
analysis from Section 2.1. It provided very good re-
sults for the Iosipescu’s beam (see Figure 7) and also 
for the case of beam YB2000/0 (see Figure 10). The 
load-displacement diagrams for this beam are com-
pared in Figure 12. However for the beam with stir-
rups (Figure 11), the peak load was greatly underes-
timated. These results are reported in Figure 22 
under the label “FP-Std”.  The peak load is underes-
timated by almost 50%. The input parameters had to 
be modified in order to obtain a good agreement. 
This best-fit response is shown in Figure 13, and the 
adjusted parameters are listed in Table 3. 
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Figure 14. Beam YB2000/0 crack pattern comparison.  
Figure 12. Beam YB200/0 L-D diagram comparison. 
Analysis is based on „Std“ properties and mesh 200 mm. 

Figure 15. Beam YB2000/4 crack pattern comparison.  

Figure 16. Beam YB2000/4 concrete crushing and 
yielding of stirrups in numerical analysis.  

Figure 13. Beam YB2000/4 L-D diagram comparison. 
Analysis is based on modified „Std“ properties, sF=300, 
εcp=0.002, wd=50 mm 

  Table 3. Adjusted parameters for best fit for beam YB2000/4  
Concrete property Value 
Plastic strain at fc (peak):  εcp  [-] 0.002 
Plastic end displacement:    wd  [mm] 50 
Shear factor:         sF    300 

 
From the adjusted parameters it is clear that the 

deficiencies of the initial parameter set were: 
 

- brittle response in compression 
 - low shear stiffness of the cracked material 
 
The beam YB2000/0 is failing due to a diagonal 

cracking. The diagonal cracks can fully open and 
therefore no significant shear stress can be trans-
ferred across the cracks. This failure pattern is nicely 
documented in Figure 14, which also shows a good 
agreement between the calculated and observed 
crack patterns. 

This should be contrasted by the behavior of 
beam YB2000/4. This is a beam with shear rein-
forcement. The reinforcement limits the crack open-
ing so the crack cannot open so much, and signifi-
cant shear is transferred across each crack. If the 
shear stiffness is underestimated, a premature failure 
is calculated. Figure 16 shows the calculated failure 
mode for this beam. The final failure is due to con-
crete crushing near the top loading plate and stirrups 

yielding. Also the bottom bending reinforcement is 
yielding at this point. However, to obtain a ductile 
response as in the experiment, it is necessary to in-
crease the ductility of the concrete in compression; 
otherwise the concrete near the top loading plate 
fails by a brittle compression failure. 

In both examples, it is rather difficult to obtain a 
stable solution in the post-peak. This can be attrib-
uted to the following facts: 

 
- It is a large beam with lot of elastic energy, 
which needs to be released. 
 
- Large areas of the model are cracked, and 
there exist multiple similar solutions, which of 
these cracks should close and which to open. 

 
The second point exactly corresponds to the defi-

ciency of the smeared crack models reported in the 
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Figure  19. Discrete models for beam YB2000/0 with 
1 and 11 discrete cracks 

Figure 20. Discrete model for beam YB2000/4 with 22 
discrete cracks 

Figure 18. Beam YB2000/4 results including dis-
crete analyses. 

Figure  17. Beam YB2000/0 results including discrete 
analyses. 

introduction to this paper. The mathematical prob-
lem of the strain-softening material becomes ill-
posed and the uniqueness of the solution is not guar-
anteed. 

5.2 Discrete crack analyses 

Now, it will be interesting to explore if an applica-
tion of discrete crack model can help to resolve this 
issue of non-uniqueness and numerical stability. 

Both beams are analyzed using a discrete crack 
model with cohesive zero thickness elements as de-
scribed in Section 3. These elements are placed 
along the expected crack paths. It should be noted 
that in this study no automatic remeshing and crack 
propagation is used. It is not necessary since the ob-
jective is to verify if the addition of discrete discon-
tinuities into the model can help to resolve the local-
ization problem of the strain softening material. 
During the localization process some of the initially 
created cracks need to close while some should 
open.  

The results from the discrete crack analyses are 
summarized in Figure 17 for the beam YB2000/0, 
i.e. the beam with no shear reinforcement. In this 
figure several discrete analysis are shown with dif-
ferent number of inserted cohesive cracks. The num-
ber of assumed cracks ranges from 1 to 11. The first 

crack, which quite naturally comes to our mind, is 
the diagonal shear crack (Figure 19 top), which cor-
responds to the final failure mode of this beam as it 
was shown in the previous Section 5.1 in Figure 14. 
The diagonal crack is not the first crack that appears 
in reality. The previous analyses showed that the 
cracking is first initiated in the middle of the beam 
as bending cracks that later on spread through the 
whole bottom part of the beam. When these bending 
cracks are not included in the discrete model an ex-
tremely stiff response is obtained as shown in Figure 
17. 

In order to correct the pre-peak stiffness, new 
models were created with multiple bending cracks in 
the middle of the beam. One such model is shown in 
Figure 19 (bottom) with altogether 11 discrete 
cracks. It is interesting to note that as the number of 
discrete cracks in the model is increasing the stiff-
ness of the pre-peak is improving as well. Figure 17 
also shows that once the number of discrete cracks 
increases to 11 it becomes very difficult to obtain a 
stable post-peak solution. 

Analogical results were obtained for the beam 
YB2000/4. In this case, a model with cca 22 discrete 
cracks was used (Figure 20). The load displacement 
diagram is shown in Figure 18. It is clear that even 
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Figure 22. Beam YB2000/4 effect of MCFT and ductility. 
Figure 21. Beam YB200/0 effect MCFT and ductility. 

22 discrete cracks are not enough to capture the re-
duction of stiffness due to the diffused crack pattern 
in the pre-peak regime. The results show that simi-
larly to the smeared model in Figure 13, it is neces-
sary to modify the shear properties of the crack 
model to obtain at least a correct peak load. Standard 
discrete parameters underestimated the peak load by 
more then 50%. It was necessary to increase the co-
hesion to 4.2 MPa and friction coefficient to 0.35 to 
obtain good match of the peak load (Standard values 
were c = 2.8 MPa and φ = 0.3).  

It was also very difficult to obtain a stable solu-
tion once the peak load was reached. Many of the 
discrete cracks are opened, many similar solutions 
exist. For the numerical solver it is difficult to de-
termine which of them should close and which 
should continue to open and localize the failure. 

5.3 Effect of special reinforced concrete features 

Various special issues related to the constitutive 
modeling of reinforced concrete were introduced in 
Section 2.1. It will be interesting to examine their ef-
fect on the numerical solution. Some effects were al-
ready discussed in Section 5.1 and 5.2 and additional 
results are shown in Figure 21 and 22.  
 Figure 21 clearly shows that these special features 
play only a minor role when no shear reinforcement 
is present. This is also confirmed by the results of 
the Iosipescu’s beam in Section 4. 

Totally different situation is in the case of beam 
YB2000/4, i.e. the one with shear reinforcement. Al-
though the beam is only lightly reinforced, its 
strength is determined by reinforcement yielding as 
shown in Figure 16. The results also show that the 
shear properties of the crack concrete, i.e. both the 
shear strength as well as the shear stiffness should be 
considered properly. In this case the shear stiffness 
of the cracked concrete was a major factor. The 
MCFT (Bentz et al. 2006) parameters such as the 
aggregate interlock and the reduction of compressive 
strength due to cracking did not play a major role. 
As already pointed out in Table 3 it was the concrete 

compressive ductility and shear stiffness of cracked 
concrete that proved to be critical for good predic-
tion of the beam behavior. 

6 CONCLUSIONS 
Paper discusses various aspects of numerical predic-
tions of shear strength of plain and reinforced con-
crete structures. One of the objectives is to verify 
whether the introduction of strong displacement dis-
continuities into the numerical solution can be used 
as a remedy for the known problem of softening ma-
terials, i.e. the ill-posed nature of the mathematical 
solution, which results in a non-unique solution.  

In plain concrete the discrete crack model defi-
nitely improves the crack path predictions; however 
a good smeared crack model can provide almost 
identical results. This is especially true if the ran-
domness and heterogeneity of the concrete material 
is taken into account. In reality, the crack path will 
always differ in all tests, so minor deviations from 
the exact path should be tolerated.  

In reinforced concrete, the discrete crack model is 
applicable only if large number of discontinuities is 
introduced into the model. This may be difficult to 
accomplish with the classical form of the model with 
remeshing, but can be handled by its modern vari-
ants such as X-FEM. With increasing number of dis-
continuities, i.e. cracks, it is apparent that the same 
problem of solution non-uniqueness will appear. 
This shows that the enhanced finite element method 
cannot be used as a remedy to this problem of sof-
tening materials. The only proper solution would be 
a non-local approach or a full dynamic analysis with 
rate dependent formulation.  

The reinforced concrete beam shows that shear 
properties of the crack concrete are critical for good 
predictions, although the current level of knowledge 
is quite limited in this area. The aggregate interlock 
as well as the fc reduction proposed by Modified 
Compression Field theory of Bentz et al. 2006 did 
not play an important role for the shear strength of 
the analyzed beams. 
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