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ABSTRACT: Numerical modeling oshear failure of reinforced concrete beams withvibhout shear rin-
forcement still remains a challenging task eveeradeveral decades of active research. The papeeco
trates on the shear failure analysis of large beaitteout and with shear reinforcement. As an examnitl
uses the experiments performed by Collins and Yas(2006). The paper discusses the main issuegiaffe
the reliability of shear strength predictions anidl evaluate the effectiveness of the discrete anwared
crack approaches in resolving the numerical problenshear failure modeling of strain softening enats.

1 INTRODUCTION A more rigorous solution of the ill-posed nature of
Numerical models for brittle materials such as conthe strain softening problem is the introduction of
crete were for the first time introduced alreadyhiea  higher-order continuum models: such as non-local
70’s by landmark works of Ngo & Scordelis (1967),damage model by Bazant & Pijaudier-Cabot (1987),
Rashid (1968) and Cervenka V. & Gerstle (1971)gradient plasticity model by de Borst & Muhlhaus
Many material models for concrete and reinforced1992) or gradient damage model by de Borst et. al.
concrete were developed in 70’s, 80’s and 90’s sucfl996). The non-local models introduce additional
as for instance the models by Suidan & Schnobricimaterial parameters related to an internal material
(1973), Lin & Scordelis (1975), De Borst (1986), length scale, which is however difficult to derive
Rots (1989), Pramono & Willam (1989), Etse (1992)from existing material tests. Currently these mesdel
or Lee & Fenves (1998). These models were basemte mathematically rigorous, but appear to be too
on the finite element method. A concrete materiafundamental for practical applications.
model was formulated as a special constitutive Another solution for the strain softening problem
model that is used at each integration point fer this the discrete crack model, where the disconiigsiit
evaluation of internal forces. It was soon realizedarising from strain localization are directly inded
that material models with strain softening, if notinto the numerical model. This model was first in-
formulated properly, exhibit severe mesh dependtroduced with automatic remeshing and crack propa-
ency (De Borst & Rots 1989), and tend to zero engation by Saouma & Ingraffea (1981). In the classi-
ergy dissipation if the element size is reducedtal form of the discrete crack approach a crack is
(Bazant 1976). simulated as a cohesive interface, which is inderte

This was attributed to the local nature of the coninto the finite element model whenever a certain cr
stitutive material description, which results ineth terion for crack initiation or propagation is sad.
loss of hyperbolicity of the governing differential This means that whenever a crack is initiated or an
equation in the softening region (Belytschko et akxisting crack propagates remeshing is necessary.
1986). This deficiency means that mathematically a In recent years, a whole new class of methods has
solution can be found, but its uniqueness cannot bemerged based on enhanced finite element formula-
guaranteed. In numerical analysis this results itions or various mesh free methods. A comprehen-
mesh sensitivity and/or numerical instabilities I'suc sive treatise on these approaches is for instareze p
as convergence problems. vided in de Borst et al. (2003) or Jirasek (2003

The crack band approach was proposed by Bazantesh free method was proposed by Belytschko et al.
and Oh (1983) to remedy the convergence towardd994). This method has a strong potential for solv
zero energy dissipation. It was shown Ggrvenka ing crack propagation problems, but it containi sti
V. (1995) that proper formulation of the crack bandmany open issues such as large computational de-
size can severely reduce also the mesh bias of thesiand, difficulties in 3D implementation and the
smeared crack approaches.
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need to use a background mesh for the numerical in- C
tegration. Fracture modek; =2 [, m; =—— 3)
The enhanced finite element formulations such as i

FEM (extended finite elements) are nicely clasdifie he plastic potential function. Following the ugifi
by Jirasek (2003). These models attempt to bridgg,eory of elastic degradation of Carol et al. (10994
the gap between the discrete and smeared models 9y hossible to define analogous quantities for the
enhancing the finite element formulation to betterfracturing model, i.e’ is the inelastic fracturing

capture the discontinuity arising from the stran | tiplier respectively andy' is the potential defin-
calization. Their basic idea is however very cli®e g the direction of inelastic fracturing straimsthe
the classical discrete approach, where the “tradiyaciyring model. The consistency conditions can be

tional” remeshing is replaced by enhancing thetdini 1,5 ysed to evaluate the change of the plastic and
element formulation in the elements where CraCk'ngracturing multipliers.

occurs. Similarly to the classical discrete crapk a

roach it is often necessary to trace the crachagro ; : ofP
gation through the model,yguarantee its coaﬁ}nuit " :niﬁ’ L6 +H"[ =0, ni? :aT" (4)
across element boundaries, solve crack branching, !
crack intersection etc. .
The paper discusses the main issues affecting the _ .\ & + 1 0f =0 nf =9 (5)
reliability of shear strength predictions. Secord o e L o8

jective is to evaluate the effectiveness of thereie '

approach in resolving the ill-posed nature of the u ~ HPand H'is hardening modulus for plastic
derlying mathematical problem; since it is often be model and fracturing model respectively. This repre-
lieved that introduction of discontinuities intoeth sents a system of two equations for the two unknown
numerical formulation can resolve this issue. multiplier rates?” and X', and is analogous to the
The reliable prediction of shear strength in reaproblem of multi-surface plasticity (Simo et al.
structures requires a rather complex material formul988). The details of the model implementation can
lation, which should capture at least the most impo be found inCervenka et al. 1998 andervenka &
tant features of concrete behavior, such as: casnprePappanikolaou (2008). The model is using Rankine
sive crushing, compressive softening, shear responsriterion for tensile fracture with exponential tswf-
of cracked concrete and reinforcement yielding. Théng of Hordijk (1991) (see Figure 1).
paper evaluates the importance of these factors on The compressive behavior is modeled by the plas-
the reliability of shear strength predictions. ticity model, which is using the three parametar su
face of Menentrey & Willam (1995) (see Figure 2)
and hardening softening is defined according to the
. laws described in Figure 3 whegg” is the equiva-
H&ht plastic strain. The softening in tension anohco
al. 2009) using the combined fracture-plastic mod ression 1s adjusted using a crack band approach of
of Cervenka & Pappanikolaou (2008). azant & Oh _(1983). The_ crack pandas well as
The material model formulation assumes smalffush band size [Lare adjusted with regard to the
strains, and is based on the strain decomposition i Crack orientation approach proposedgrvenka V.
elastic €;), plastic €]) and fracture g(lf]) compo- et al. (1995). This method is described in Figure 4
nents. The stress development can be then describadd in (6).
by the following rate equations describing the pro-
gressive degradation (concrete cracking) and plasti

yielding (concrete crushing): (=yL, and Lo =yl
6; = Dyy W&, — &) _é%f ) 1)
b y=1+ (o -2, 60(0;45) (6)
The constitutive equations of the both models can 45
be summarized as follows: _ _ The basic idea is to adjust the crack band size de-
Flow rule governs the evolution of plastic andpending on the crack orientation with respect ® th
fracturing strains: element edges. This reflects the fact that a crack
g’ cannot localize into a single element if the crdck

Plastic modek} = AP Oy, mp = (2) rection is not aligned with the element edges.

6(5ij
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2.1 Special features of reinforced concrete

When it comes to nonlinear analysis of reinforced
concrete, i.e. when reinforcement is to be consid-
ered, it becomes important to consider additional
special issues related to the reinforcement and the
composite reinforced concrete material. The most
important phenomena are:

a. shear strength and stiffness of cracked con-
crete, i.e. aggregate interlock
b. compressive strength reduction due to crack
opening in perpendicular direction
reinforcement yielding
tension stiffening
e. dowel action and bending stiffness of the rein-
forcement
f. bond failure between concrete and reinforce-
ment
In the used constitutive model, the items (a) and
(b) are considered according to the modified com-
pression field theory of Collins (Bentz et al. 2D06
In this theory, the compressive strength is reduced
using the formula

Qo

Uc = rc fc (7)

1 lim
r

r=————, 1™ <r <1.0
0.8+ 170,

Where ¢is the tensile strain in the crack. In
ATENA the largest maximal fracturing strain is used
for & and the compressive strength reduction is lim-
ited byrc™. In this workr,™ = 0.

The shear strength of crack concrete is also
assumed according to the modified compression
field theory MCFT (Bentz et al. 2006) as:

o; < 0.18/f. . i # ] 9)
031 %AW
ag+16
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Wheref'; is the compressive strength in MRg,
is the maximum aggregate size in mm amds the
maximum crack width in mm at the given location.
The modified compression field theory does not give
any formula for the shear stiffness, but it is an i
portant parameter, which significantly affects tae
inforced concrete response. In the present formula- - _
tion the crack shear stiffnesk is calculated T
directly from crack normal stiffness using a saglin ~ Final stress_

Trial stress

Initial surface

factor s. \\\\ Residual surface
K =5, Ke (10) P ©
t
_ Wher_eKnC'r comes directly from the tensile soften- rigure 5. Mohr-Coulomb criterion for discrete cragle-
ing law in Figure 1 as: ments
K = fi (Wy (11) This approximately corresponds to the assumption
Wi that the shear response should be more ductile then

This appears to be a very natural assumption %Fﬁ 'gensile one, and that the mode Il fracture ggner
this makes the shear stiffness dependent on tik cra®F IS about 10 times larger then the fracture energy
opening displacement. for mode I.

Reinforcement is modeled using the embedded

approach with truss elements, and a multi-ineag!" 010G, (13)
stress-strain law is used to capture reinforcement "
yielding.

Tension stiffening can be activated in the present
model, but was not used. It was shownClgyvenka 4 SHEAR FAILURE IN PLAIN CONCRETE
& Margoldova (1995) that if sufficiently fine mesh  In the first example, the discrete and smearedkcrac
used the tension stiffening effect can be very welmodels are compared on a typical shear problem
captured by an appropriate cracking model. without reinforcement (see Figure 6). This is the
The dowel action and reinforcement bendingwell known losipescu’s shear beam. The geometry
stiffness is not considered in the present mode¢ T corresponds to the SEN beams tested by Schlangen
analyzed beams are only slightly reinforced; there¢1993). The tested beams have dimensions
fore these effects cannot play a major role. 440x100x100 mm. They were cast from concrete
Reinforcement bond failure can play an importantwith modulus of elasticitye =35 GPa, Poisson'’s ra-
role in the analyzed problems. A bond modeling wasio v =0.15, tensile strength#2.8 MPa and the
discussed by authors in a separate paper Jendelesfecific fracture energyfG 70 N/m.
Cervenka (2006). It was shown that a bond model This test setup was originally proposed by losipe-
can strongly improve the results if large finite-el scu (1967) for shear tests of metals. This test was
ments are used in heavily reinforced structureg Thlater used by Bazant & Pfeifer (1986) for sheat-tes
problems presented in this paper are only lighely r ing of concrete. It was discovered by Ingraffea &
inforced and the largest element size is 200 mm. Panthaki (1985) that the crack propagation in this
was therefore decided not to use the bond model to
limit the number of investigated parameters.

v v

=
(o]

3 DISCRETE CRACK MODEL

The analyses calculated with the discrete crack

model in this paper are using a simple approach, “# T

100

where a crack is modeled as a zero thickness inter-
face with Mohr-Coulomb type of criterion with ten- /11 F
sion cut-off (see Figure 5).

10/11 F

r<sc-o@, o< f, (12) 2d 180 EQ(HZO! 180 | 120

Where c is cohesion ang is frictional coeffi- 0
cient. The Hordijk’'s (1991) law is used for tensile '« >
softening. The cohesion softening is also modeled b Figure 6. Geometry of the modified losipescu’s beam
the same law but the displacement values in the sof (Schlangen 1993), the dimensions are in mm.
tening diagram for cohesion are 10 times increased.
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kind of test is mainly dominated by mode |, i.en-te
sile cracking. Since then it has become a typest t
problem for crack propagation analysis, becauge it e ST Mol
a common believe that smeared crack models cannot 5 RN o BB
predict the behavior correctly and some kind of en- = ——f 2\ \ e er S E 2 <
hanced formulation is necessary. N\ e

The load displacement diagrams are compared in \ \\ e Dhaste (Fevalka 199
Figure 7. The figure shows a single discrete crack \ X
analysis and several smeared crack results. The dis +$\\ o
crete crack analysis has been performed previously '%m?m% N |
by Cervenka J. (1994). The peak load in the discrete T\\\A‘\-
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= Experiment (Schlangen 1993)
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sy

crack analysis is captured very well as well as the 0
overall shape of the response. In post-peak the re- ot sk o]

sponse is slightly lower. This could be probably im Figure 7. Comparison of load-displacement diagrémns
proved by increasing the shear properties of the COthe losipescu’s beam.

hesive interface model. The crack path was

determined (see Figure 8) by the direction of maxi- s e o o
mal principal stresses at the crack tip. The discre : ":"‘“‘ RRREIN

crack model can nicely capture the curved shape of
the crack path. On the contrary, the crack pathiazur
ture is even slightly overestimated. This is caused
extending the crack by a certain non-infinitesimal
length Aa at each propagation. Because of that the
crack extension is overestimated, and the crackFigure 8. Crack pattern by discrete analysis.
needs to curve strongly to return to the corretit.pa

Figure 1 shows also the results from several - .
smeared crack analyses. All smeared crack analyses!
showed the crack path depicted in Figure 9, i.e. a
more or less straight crack path towards the right [ BEEEEE .
side of the bottom loading plate. So the curvedlcra B T !
path is not obtained, but the crack ends at thetrig = =
side of the loading plate. For instance the smeared
crack results reported by Schlangen (1993) ar
strongly affected by the mesh bias, and an incorre
vertical crack is reported, which ends to left loé t
bottom plate. This improved behavior of the current |
model can be attributed to the crack band size for-
mulation (6).

The smeared crack analyses labeled with “Std” —LE\

3

=

= =)

indicate analyses using the model described in SecH
tion 2, but the special features for reinforced-con
crete are not activated. The shear factoissset to
the low value of 20, which means that the shear
stiffness on the crack surface is almost identioal Figure 9. Crack pattern by smeared analysis. (ajseo
the normal one. The main findings from this study mesh 10 mm, (b) fine mesh 2 mm, (c) experiment
can be summarized as follows: (Schlangen 1993)

f. The discrete model predicts more accu-

rately the curved shape of the crack path.

g. The crack path predicted by the smeared

model is acceptable for practical applica-
tions.

a. The results confirm that the crack propa-
gation is mainly in mode one.

b. The shear properties of the crack do not
influence the results significantly.

c. The cracked area is quite localized so no
numerical problems occur in the smeared

crack analysis
d. The peak load is predicted correctly by all®> SHEAR FAILURE IN LARGE RC BEAMS

models. In the next example large beams tested at the Uni-
The coarse finite element models showVersity of Toronto by Collins and Yoshida (2000)
lower peak values, which is quite commonWere investigated numerically. Two beams from the
situation in the crack band model. experimental program of Yoshida are considered:
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tion. Quadrilateral 4-node isoparametric elements,
sizes 50-200 mm, were used for concrete and em-
bedded truss elements for bars. The total load
P =2V acting in the top centre of the beam is con-
sidered as the global resistance. Like in experimen
self weight is considered in the analysis but met i
cluded in the monitored lodel

o000

YB2000,/0

3xM20

6xM30

5”U{n'9”n" 7 - Table 1. Concrete material properties of RC bedhis,mate-
7 rial set is denoted as “Std!, i.e. “Standard”.
Concrete property Value
Figure 10. Beam YB2000/0 dimensions and reinforce- | Elastic modulu€. [MPa] 34 000
ment. Compressive strength  [MPa] 37
Tensile strengthf;  [MPa] 2.8
11 & Specific fracture energ®: [N/m] 80
1044 x5 826 Poisson ratioy  [-] 0.2
| YB2000/4 1 Plastic strain aft; (peak) ecp  [-] 0.001
= Plastic end displacementyy [mm] 0.5
B N =< Shear factores 20
= MCFT f; reduction none
MCFT aggregate interlock none
' C-HE W . :
500, 5400 ‘ 280 2 Table 2. Reinforcement properties of RC beams
i 12000 170 Steel property Value
Elastic modulu€s MPa 200 00(
Figure 11. Beam YB2000/4 dimensions and reinforce- Yield stresd,  MPa 470
ment. Max. stressds max MPa 680
Limit strain &m 0.11

Beam YB2000/0 with bending reinforcement and
no shear reinforcement and beam YB2000/4 with
vertical reinforcement by 8 T-headed bars. Theé.1l Discussion on best-fit results

liiams are schematically depicted in Figure 10 an?Ihe material properties denoted as “Std” and listed
The lonaitudinal reinforcement in both beams iSin Table 1 correspond to a standard material sdtup.
gitu is approximately identical with the standard EC2

identical. The reinforcing ratio of bottom reinferc :
- . - __concrete class C30/37. The used set of material pa-
ment of 6xM30 bars is 0.0074. The ratio of vertlcalrameters can be recognized as mean properties of

reinforcement of T-headed bars T#4, spacing 0.59m..
is 0.00071. The beams are only lightly reinforced. 's concrete class.
The shear span ratio a/d=2.86 indicates a shear cri f, = f_ +8=30+ 8= 38) 37 MP: (13)
cal geometry. _ o .
The experimental study Yoshida (2000) offered This was the initial set used for the analysessThi
for concrete property only a compressive strength @€t of parameters is very similar to the one used i
the date of testing, which was obtained from cydind Section 4. This set of parameters does not include
tests. In the tests, slightly different propertiesre ~ any of the special provisions for reinforced cotere
found in two specimens. However, in this study itanalysis from Section 2.1. It provided very good re
was decided to use identical concrete properties ifults for the losipescu’s beam (see Figure 7) 5wl a
both specimens in order to keep the effect of diffe for the case of beam YB2000/0 (see Figure 10). The
ent shear reinforcing not influenced by other param 0ad-displacement diagrams for this beam are com-
ters. The assumed set of parameters for concrete aRared in Figure 12. However for the beam with stir-
reinforcement is shown in Table 1 and 2. The patups (Figure 11), the peak load was greatly underes
rameters reported in this table are referred to Hmated. These results are reported in Figure 22
,Standard” or “Std”. In some analysis certain pa_qnder the label “FP-Std”. The peak load is underes

rameters are modified to evaluate their influenge otimated by almost 50%. The input parameters had to
the results. be modified in order to obtain a good agreement.

The finite element analysis was done for a symT his best-fit response is shown in Figure 13, dred t
metrical half of the beam in plane stress representadjusted parameters are listed in Table 3.
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Figure 13. Beam YB2000/4 L-D diagram comparison. i

Analysis is based on modified ,Std" properties=300, Figure 15. Beam YB2000/4 crack pattern comparison.
£p=0.002,Wwz=50 mm

Table 3. Adjusted parameters for best fit forrheé82000/4

Concrete property Value
Plastic strain at. (peak): &cp [-] 0.002
Plastic end displacement:wy [mm] 50
Shear factor: ES 300

From the adjusted parameters it is clear that the . .
deficiencies of the initial parameter set were: Figure 16. Beam YB2000/4 concrete crushing and
yielding of stirrups in numerical analysis.
- brittle response in compression

i i ielding. Also the bottom bending reinforcement is
- low shear stiffness of the cracked material y 9 9

yielding at this point. However, to obtain a duetil
response as in the experiment, it is necessam-to i

The beam YB2000/0 is failing due to a diagonaloyease the ductility of the concrete in compression

cracking. The diagonal cracks can fully open anthheryise the concrete near the top loading plate
therefore no significant shear stress can be trangsis by a brittle compression failure.

ferred across the cracks. This failure patterridelp In both examples, it is rather difficult to obtain
documented in Figure 14, which also shows a goodiape solution in the post-peak. This can belnttri
agreement between the calculated and observqéed to the following facts:

crack patterns.

This should be contrasted by the behavior of
beam YB2000/4. This is a beam with shear rein-
forcement. The reinforcement limits the crack open-
ing so the crack cannot open so much, and signifi-
cant shear is transferred across each crack. If the
shear stiffness is underestimated, a prematuneréail
is calculated. Figure 16 shows the calculated failu
mode for this beam. The final failure is due to-con
crete crushing near the top loading plate andugtsr

- It is a large beam with lot of elastic energy,
which needs to be released.

- Large areas of the model are cracked, and
there exist multiple similar solutions, which of
these cracks should close and which to open.

The second point exactly corresponds to the defi-
ciency of the smeared crack models reported in the
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Figure 17. Beam YB2000/0 results including diseret Figure 19. Discrete models for beam YB2000/0 with
analyses. 1 and 11 discrete cracks

1600

1400 =

1200 7 —

/ 4 \
1000 s S * 4
N B //

600 1 [‘
Experiment 9

400 1 —O— Discrete Std
——Discrete ¢ 5.4 phi 0.4
200 —=— Discrete ¢ 4.2 phi 0.35

Load [kN]

= = =Smeared best
. ; |

0

0 10 20 30 40 50 60 70 80 920 100

Displacement [mm]

Figure 18. Beam YB2000/4 results including dis-

crete analyses. Figure 20. Discrete model for beam YB2000/4 with 22
introduction to this paper. The mathematical prob- discrete cracks
lem of the strain-softening material becomes ill-
posed and the uniqueness of the solution is nat guacrack, which quite naturally comes to our mind, is
anteed. the diagonal shear crack (Figure 19 top), which cor
responds to the final failure mode of this beanit as
was shown in the previous Section 5.1 in Figure 14.
The diagonal crack is not the first crack that @ppe
Now, it will be interesting to explore if an apic in reality. The previous analyses showed that the
tion of discrete crack model can help to resolis th cracking is first initiated in the middle of thedre
issue of non-uniqueness and numerical stability. ~ as bending cracks that later on spread through the

Both beams are analyzed using a discrete cradkhole bottom part of the beam. When these bending
model with cohesive zero thickness elements as défacks are not included in the discrete model an ex
scribed in Section 3. These elements are placd@emely stiff response is obtained as shown in féigu
along the expected crack paths. It should be noted’-
that in this study no automatic remeshing and crack In order to correct the pre-peak stiffness, new
propagation is used. It is not necessary sincelhe models were created with multiple bending cracks in
jective is to verify if the addition of discretesdbn- the middle of the beam. One such model is shown in
tinuities into the model can help to resolve thealo  Figure 19 (bottom) with altogether 11 discrete
ization problem of the strain softening material.cracks. It is interesting to note that as the nunalbe
During the localization process some of the idial discrete cracks in the model is increasing thd-stif
created cracks need to close while some shouldess of the pre-peak is improving as well. Figufe 1
open. also shows that once the number of discrete cracks

The results from the discrete crack analyses ar@creases to 11 it becomes very difficult to obtain
summarized in Figure 17 for the beam YB2000/0stable post-peak solution.
i.e. the beam with no shear reinforcement. In this Analogical results were obtained for the beam
figure several discrete analysis are shown with dif YB2000/4. In this case, a model with cca 22 digcret
ferent number of inserted cohesive cracks. The nungracks was used (Figure 20). The load displacement
ber of assumed cracks ranges from 1 to 11. Thee firgliagram is shown in Figure 18. It is clear thatreve

5.2 Discrete crack analyses
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Figure 21. Beam YB200/0 effect MCFT and ductility.

22 discrete cracks are not enough to capture the rgomprtisstl\r/letductllltyé ?ndbshe%_r stllf]fness 0(‘; crdcdk_e
duction of stiffness due to the diffused crack grait Egzcc;?tﬁe b%aﬁﬁaveehav?or € critical Tor good predic
in the pre-peak regime. The results show that simi- :
larly to the smeared model in Figure 13, it is sece
sary to modify the shear properties of the crac

model to obtain at least a correct peak load. St@hd l% CO'\éC.:LUSDNS . ts of ical di
discrete parameters underestimated the peak load Egper flSﬁUSSGS varlo#s ]?Srl’e.c S0 dnumfenca dpre Ic
more then 50%. It was necessary to increase the chonS Of shear strength of plain and reinforced-con
hesion to 4.2 MPa and friction coefficient to 0185 C'ete structures. One of the objectives is to yerif

obtain good match of the peak load (Standard value¥Néther the introduction of strong displacement dis
were ¢ = 2.8 MPa ang= 0.3) continuities into the numerical solution can beduse

It was also very difficult to obtain a stable solu-2>2 remedy for the known problem of softening ma-

tion once the peak load was reached. Many of thi"1als, 1.e. the ill-posed nature of the matheozti
olution, which results in a non-unique solution.

discrete cracks are opened, many similar solution® : : .
exist. For the numerical solver it is difficult tbe- n p'laln concrete the discrete Cff’ic.k model defi-
termine which of them should close and WhiChnltely improves the crack path predlctlons'; however
should continue to open and localize the failure. & 900d smeared crack model can provide almost
identical results. This is especially true if then+
domness and heterogeneity of the concrete material
5.3 Effect of special reinforced concrete features is taken into account. In reality, the crack path w

Various special issues related to the constitutiv ways differ in all tests, so minor deviationsriro
e exact path should be tolerated.

modeling of reinforced concrete were introduced in . . .
In reinforced concrete, the discrete crack model is

Section 2.1. It will be interesting to examine thedt . ; . o
fect on the numerical solution. Some effects wére aapphcable only if large number of discontinuities

ready discussed in Section 5.1 and 5.2 and adéltion!"troduced into the model. This may be difficult to
resuits are shown in Figure 2'1 and 22‘ accomplish with the classical form of the modelhwit

: . hing, but can be handled by its modern vari-
Figure 21 clearly shows that these special featurd SMes ' o . ;
play only a minor role when no shear reinforcemen nts such as X-FEM. With increasing number of dis-

is present. This is also confirmed by the resufts ocCMNUILIES, 1.e. cracks, it is apparent that saene
the losipescu’s beam in Section 4. problem of solution non-uniqueness will appear.

Totally different situation is in the case of beamThls shows that the enhanced finite element method

YB2000/4, i.e. the one with shear reinforcement. Al ¢2nnot be “Seld asha rerlnedy to th'sl problem (I)c]; SbOf'
though the beam is only lightly reinforced, its tening materials. The only proper solution would be

strength is determined by reinforcement yielding aé non-local approach or a full dynamic analysigiwit

shown in Figure 16. The results also show that théater(]jepenc:cent fgrmulaﬂon. b h h h
shear properties of the crack concrete, i.e. blo¢h t The reinforced concrete beam shows that shear

shear strength as well as the shear stiffness dheul properties of the crack concrete are critical fooqy
considered properly. In this case the shear stffne pred|ct|ons, although the current level of knowledg

of the cracked concrete was a major factor. Th& quite limited in this area. The aggregate ikl

MCFT (Bentz et al. 2006) parameters such as th s well as the.freduction proposed by Modified

aggregate interlock and the reduction of compressiv om[?ressmr) Field theorly ?f Bre]ntz het al. 2006 hd'd
strength due to cracking did not play a major roleNOt Play an important role for the shear strength o

As already pointed out in Table 3 it was the cotgcre the analyzed beams.
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