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Abstract:  

Artificial Intelligence (AI), particularly using Artificial Neural Networks (ANNs), is increasingly 

integrated into various domains of human activity and industrial applications. A significant area 

of application is the development of real-time, fast-response surrogate models within the digital 

twin framework for structural health monitoring. Within the presented framework, ANNs serve 

two primary functions. First, during the calibration phase, ANNs ensure that the virtual twin 

accurately reflects the behavior of the physical structure. Once calibrated, the virtual twin 

facilitates the training of the ANN through physically informed deep learning, utilizing data 

derived from sensitivity analyses conducted via nonlinear finite element analysis using ATENA 

software. The second function involves deploying the trained ANN as a fast-response surrogate 

model, providing critical safety information for the ongoing structural health monitoring of bridges. 

This paper outlines the development of an efficient and accurate ANN-based surrogate model, 

emphasizing the advancements in physically informed deep learning methodologies for structural 

analysis and life cycle assessment of infrastructures.  

 

Keywords: artificial intelligence, deep machine learning, digital twin, reinforced concrete bridges, 

reinforced concrete modelling, nonlinear simulation. 

1 Introduction  

A well-functioning transport infrastructure is a crucial element of a productive modern economy 

in both developed and developing nations. Within the European Union, the road and rail networks 

are essential for the movement of goods and people. Much of this infrastructure was constructed 

during the post-World War II economic expansion, meaning that many structures are now over 50 

years old. As a result, the ageing transport system places a considerable financial strain on public 
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authorities. Data from 22 selected OECD countries [1] indicates that between 1997 and 2016, the 

annual cost of infrastructure maintenance rose by 1.78 billion euros. 

The concept of a digital twin has recently been introduced across various engineering disciplines, 

including structural design [2].  

        

Fig.  1 Digital Twin consists of a real structure equipped with monitoring sensors and a 

virtual replica with data exchange about structural health and reliability.  

 

This approach involves calibrating a computational model based on data collected from the 

physical structure, ensuring that the digital representation accurately reflects all critical aspects of 

the real-world counterpart. In structural engineering, this includes simulating the response to both 

dead and live loads as well as evaluating durability performance. Once properly calibrated, the 

digital twin enables the assessment of the structure's current condition and facilitates predictions 

about its future behavior. When combined with regular inspections, it serves as a valuable tool for 

managing the ageing process of structures. 

Artificial Intelligence (AI), particularly through the use of Artificial Neural Networks (ANNs), is 

increasingly transforming various industries and human activities. One prominent application lies 

in the development of real-time, fast-response surrogate models within digital twin frameworks 

for structural health monitoring. The digital twin concept revolves around creating a dynamic 

digital replica of a physical structure or product (see Fig.  1). This virtual counterpart, often 

represented by a sophisticated numerical model, engages in continuous data exchange with its real-

world counterpart. In the field of reinforced concrete structures, digital twins play a critical role in 

assessing safety, durability, and reliability. The objective of this approach is to address one of the 

most critical issues in the current monitoring systems, when the infrastructure owner is often 

overloaded with large amounts of data that he is not able to process and draw meaningful 

engineering or maintenance decisions. 

Within this framework, ANNs serve two primary purposes: 

1. Calibration of the Virtual Twin: During the calibration phase, ANNs ensure that the digital 

twin accurately replicates the behavior of the real-world structure. This involves physically 

informed deep learning, where the ANN is trained using sensitivity analyses conducted on 

the virtual model. The underlying numerical simulations leverage nonlinear finite element 

analysis powered by the ATENA software [1] (www.cervenka.cz/products/atena). 

2. Real-Time Structural Health Monitoring: Once trained, the ANN functions as a fast-

response surrogate model, delivering critical safety insights for continuous structural health 

monitoring particularly for bridges. By providing rapid assessments, this AI-driven 

approach enhances decision-making in maintenance and risk management. 



The integration of AI and digital twin technologies marks a significant leap in structural health 

monitoring, enabling efficient, data-driven decision-making and improving the long-term 

sustainability of infrastructure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  2 ANN surrogate model is applied in two ways: ANN on the right is used for model 

calibration, i.e., parameter identification, and ANN on the left provides real-time data for 

engineering interpretation of the obtained monitoring data. 
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2 ANN Model for Parameter Identification 

Ensuring the accuracy of a Digital Twin is crucial. In the presented work, this means developing 

a numerical model of a real-world bridge, which was developed in the finite element simulation 

system ATENA [3]. The software can simulate the nonlinear behavior of reinforced concrete 

bridges, including cracking, crushing, reinforcement yielding, prestressing, and concrete-

reinforcement bonding. 

The fracture-plastic concrete material model was detailed in earlier studies [4][5], and its 

applicability for simulating typical failure modes was validated in [6]. There, the model uncertainty 

partial safety factor was calibrated, yielding a general value of 1.16, with a bias of μθ=0.979 and a 

coefficient of variation Vθ=0.081, defining the required accuracy for parameter identification. 

The parameter identification process using ANN was verified using a shear beam example (Fig. 

3), based on beams tested by Leonhardt [7]. The goal is not to match experimental data but to 

assess whether an ANN can accurately identify input parameters—compressive strength (fc), 

tensile strength (ft), elastic modulus (E), and fracture energy (GF)—from a given load-

displacement diagram (Fig.  4). The training dataset contained up to 1000 precomputed samples 

with varying material parameters. Fig.  4c illustrates the scatter of the calculated load-displacement 

diagrams. The neural network is then trained to predict the most suitable set of material parameters 

for predicting the experimentally obtained structural response indicated in Fig.  5. In each data set 

64% samples are used for training, 16% for validation and 20% for testing. Fig.  6 demonstrates 

the accuracy of the predicted values for the selected material parameters from the testing series. 

 

Fig.  3  The geometry of shear beam test example [7] used for the evaluation of ANN 

accuracy for the model parameter identification and surrogate modelling. 



                                                                    

Fig.  4  Typical failure model for the shear beam test example [7] and load-displacement 

diagrams in the dataset of 1000 training and testing samples. 

 

Fig.  5  Shear beam test experimental result with selected analyses with the closest match. 

3 Surrogate Engineering Model 

In standard applications of bridge monitoring systems, a substantial volume of data is typically 

gathered from an array of sensors installed throughout the structure. These sensors continuously 

collect real-time measurements of various physical quantities such as strain, displacement, 

temperature, and acceleration. In many cases, certain threshold values of these sensor readings are 

predefined to trigger warnings or alarms, thereby alerting bridge operators to potential issues. 

While this method provides a basic level of safety monitoring, it presents a fundamental limitation: 

there is often no explicit or easily interpretable correlation between the raw sensor data and high-

level engineering metrics that are directly meaningful for decision-making. 

Such engineering metrics may include, for example, the structural reliability index, the probability 

of structural failure or collapse, or the utilization ratio of specific elements under loading. These 

indicators are more informative for engineers and operators because they relate to the actual 

performance and safety of the bridge, rather than to isolated sensor readings. 



This gap between sensor data and engineering insight can be effectively bridged by employing a 

surrogate model. A surrogate model acts as a computationally efficient proxy that translates raw 

sensor inputs into comprehensible, actionable engineering quantities. It provides rapid, near real-

time estimations based on complex relationships embedded in the underlying data, enabling better-

informed operational decisions. 

To validate this concept, the same shear beam example discussed earlier is utilized. Dense Neural 

Network (Dense NN) model is applied. This model architecture consists of four hidden layers. The 

role of the surrogate model here is to replicate the output of a more computationally intensive 

nonlinear simulation. Specifically, the surrogate model represents a functional mapping, denoted 

as Φp, which estimates the load 𝐹̅𝑖  given the input parameters. These inputs include deflection 

values Di and material properties such as the modulus of elasticity E, compressive strength fc, 

tensile strength ft, and fracture energy GF. This surrogate function enables rapid load estimation, 

significantly enhancing the utility and responsiveness of the bridge monitoring system. 

𝐹̅𝑖 = Φ𝑝(𝐷𝑖, 𝐸𝑐 , 𝑓𝑐, 𝑓𝑡, 𝐺𝐹)                                                                     (1) 

 

 

Fig.  6 The evaluation of the accuracy of ANN model parameter identification of the critical 

material parameters. 

 Fig.  7 presents the training of the surrogate model the pilot example of the shear beam (Fig.  3), 

specifically for two different cases referred to as Dataset A and Dataset B, containing 100 and 400 

samples, respectively. These datasets were generated through finite element (FE) simulations and 

captured the relationship between structural deflection and applied load under varying material 

properties. The objective was to use these datasets to train an artificial neural network (ANN) 

model to serve as a computationally efficient surrogate for the full numerical simulations. 



Fig.  7 illustrates the performance of the surrogate model by comparing its predictions with the 

original FE results for unseen test data. These test samples were intentionally excluded from the 

training process to objectively evaluate the generalization capability of the ANN model. In the 

load-displacement diagrams shown, the solid lines denote the results from the original finite 

element simulations, while the dotted lines correspond to the predictions made by the surrogate 

model. Even in the case of Dataset A, which comprises only 100 training samples, the ANN model 

demonstrates a reasonably good approximation of the FE results. Although slight deviations can 

be observed, the model successfully captures the overall trends and nonlinear behavior of the 

system. When trained with Dataset B, consisting of 400 samples, the predictive accuracy improves 

significantly. The higher quantity of training data enables the neural network to better learn the 

complex mapping between input parameters and structural response, thereby enhancing its 

reliability and precision. 

The broader motivation behind this modeling effort lies in its application within the framework of 

Digital Twin technology. In such a context, the ANN-based surrogate model can be deployed in 

real-time to continuously evaluate the structural health and operational safety of the bridge. One 

particularly valuable output is the utilization ratio, a quantitative measure of how close the 

structure is to reaching its failure threshold under current loading conditions. This predictive 

capability enables proactive maintenance, early warning systems, and optimization of load 

management, ultimately contributing to safer and more efficient infrastructure management. 

 

Fig.  7. Accuracy of ANN surrogate model in predicting the response of the testing shear 

beam structure, (lef) Dataset A – 100 samples, (right) Dataset B – 400 samples. 

4 Example of Application 

This section presents a pilot application of the proposed Digital Twin framework, incorporating ANN-based 

surrogate models, applied to a real-world engineering structure. The case study involves a small railway 

bridge located near the village of Kostomlaty in the Czech Republic. The bridge is a modest two-span 

concrete structure, consisting of four concrete slabs reinforced with embedded steel I-sections, as illustrated 

in Figure 9. Constructed in 1946, the bridge exhibits visible signs of aging and structural degradation. 

Notably, longitudinal cracks have developed along the underside of the concrete slabs, indicating potential 

issues with structural integrity (see Figure 9). While the bridge marginally meets the required Ultimate 

Limit State (ULS) load capacity, it significantly underperforms in Serviceability Limit State (SLS) 

assessments, particularly in terms of deflection and cracking criteria. Due to these concerns, the bridge was 

selected for continuous monitoring and designated as a pilot structure within the Digital Twin research 



project. Its structural condition and simplicity make it an ideal candidate for testing and validating the 

practical implementation of Digital Twin technologies in combination with AI-driven surrogate modeling. 

The ANN-based surrogate model from Section 2 is applied to evaluate the thermal response of the bridge. 

Trained on nonlinear FE simulations, the model estimates sensor readings resulting from ambient 

temperature variations. Typical hourly temperature profiles such as the June example in can be easily 

sourced from meteorological data. Bridge response is monitored using fiber-optic sensors placed 

longitudinally, as shown in Fig.  8 and Fig.  9. These sensors measure strain at four points along the bottom 

deck; this study focuses on mid-span results. Fig.  12 presents FE-predicted strains at sensor locations under 

the applied temperature history. This historical temperature data is used to train the ANN model, which 

functions as a surrogate to predict thermal-induced strain responses in real time. The ANN based surrogate 

model in this case represents a functional: 

𝑆𝑛̅,𝑖 = Φ𝑇[𝒇𝑻𝒊(𝑡𝑖−24, 𝑡𝑖), 𝑇𝐴𝑣𝑔(𝑡𝑖−72, 𝑡𝑖−24) ]                                              (2) 

The ANN model estimates the strain value at sensor Sn at time step i, using the ambient temperature 

history over the preceding 24 hours and the current time i. Additionally, it incorporates the average 

temperature from the earlier 48-hour period (i.e., between i−72 and i−24) to account for long-term 

thermal effects. 

 

  

 

Fig.  8. Pilot bridge application example, small railway bridge at Kostomlaty, Czech 

Republic with the sensor location S1, S2 and S3. 



 

Fig.  9. Pilot bridge application example, top view with the sensor locations.  

 

Fig.  10. Selected data from the fitting and identification process. 
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Fig.  11. Finite element model of the quarter section of the model, right figure shows the 

location of the internal I steel beams. 

The ANN model provides the estimate of the value at sensor 𝑆𝑛 at time i based on the temperature history 

in the interval i-24 hours and the current time i and based on the average temperature in the previous 2 days, 

i.e. time interval (i-72, i-24). The accuracy of the ANN surrogate model in predicting the correct sensor 

strain is shown in Fig.  13. The surrogate model can be used to predict other engineering quantities in the 

structure such as for instance the expected maximum crack width or the highest compressive stresses in the 

concrete slab (see Fig.  13). It should be noted that the response of the bridge is nonlinear due to the 

structural system of the steel beams embedded in plain concrete. Microcracks occur already during the self-

weight of the structure and during the thermal loading as is shown in Fig.  14. 

Any engineering quantity for the investigated bridge can be then evaluated by a suitable trained surrogate 

model based on ANN, which in general has the form:   

𝑅̅𝑛,𝑖 = Φ𝐸𝑛𝑔[𝒇𝑻𝒊(𝑡𝑖−24, 𝑡𝑖), 𝑇𝐴𝑣𝑔(𝑡𝑖−72, 𝑡𝑖−24), 𝑆𝑛,𝑖 ]                                              (3) 

 

 

Fig.  12. (Left) Typical ambient temperature profile at the bridge location in the selected 

period of the month June, (Right) predicted average sensor strains along optical fibers S1-

S3 due to temperature. 
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Fig.  13. Accuracy of ANN surrogate model in predicting engineering quantities based on 3 

days history of ambient temperature. 

 

 

Fig.  14. (Left) Bridge deflection due to thermal loads showing the evolution of strains at 

sensor 204, tensile stresses at the I-beam bottom flange and bridge deflections with cracks, 

(Right) prediction of bridge utilization by Digital Twin model during train overpass. 

 

The results obtained from the trained system are illustrated in the screenshots of the developed Digital Twin 

platform. Fig.  14 displays the bridge utilization ratio during a train overpass. Similarly, Fig.  15 depicts the 

highest stresses in the bottom steel flange and the anticipated crack widths, derived from sensor readings 

during a train overpass. 

 

 

Fig.  15: Prediction of bridge bottom flange stresses during train overpass. 

 

5 Conclusions 

This paper explores the use of Artificial Neural Networks (ANNs) within a Digital Twin framework for 

structural analysis and monitoring. ANNs are first applied to calibrate the virtual twin, i.e., the numerical 
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model representing the physical structure, and are later used to create fast, real-time surrogate models. 

These models translate raw monitoring data into meaningful engineering metrics, supporting infrastructure 

owners in bridge management and maintenance.  

The proposed approach tackles a key challenge in structural health monitoring when bridge operators often 

face an overwhelming volume of sensor data, with limited insight into how these readings reflect structural 

performance, safety, or reliability, making informed decision-making difficult and error-prone. 

This work is part of a research project supported by the Czech Technology Agency under the project 

TM04000012 “BRIHIS - A concrete bridge health interpretation system based on mutual boost of big data 

and physical mechanism” within the Delta 2 Programme. The financial support is greatly 

acknowledged. 
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