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This chapter presents the general governing continuum equations for nonlinear analysis. In 

general, there exist many variants of nonlinear analysis depending on how many nonlinear 

effects are accounted for. Hence, this chapter first introduces some basic terms and entities 

commonly used for nonlinear structural analyses, and then it concentrates on formulations that 

are implemented in ATENA.  

It is important to realize that the whole structure does not have to be analyzed using a full 

nonlinear formulation. However, a simplified (or even linear) formulation can be used in many 

cases. It is a matter of engineering knowledge and practice to assess, whether the inaccuracies 

due to a simplified formulation are acceptable or not.  

The simplest formulation, i.e., linear formulation, is characterized by the following assumptions: 

The constitutive equation is linear, i.e., the generalized form of Hook's law is used. 

The geometric equation is linear; that is, the quadratic terms are neglected. It means that during 

analysis, we neglect the change of shape and position of the structure. 

Both loading and boundary conditions are conservative, i.e., they are constant throughout the 

whole analysis irrespective of the structural deformation, time etc. 

Generally, linear constitutive equations can be employed for a material, which is far from its 

failure point, usually up to 50% of its maximum strength. Of course, this depends on the type of 

material, e.g., rubber needs to be considered as a nonlinear material earlier. But for usual civil 

engineering materials, the previous assumption is satisfactory. 

Geometric equations can be considered linear if the deflections of a structure are much smaller 

than its dimensions. This must be satisfied not only for the whole structure but also for its parts. 

Then the geometric equations for the loaded structure can then be written using the original 

(unloaded) geometry. 

It is also important to realize that a linear solution is permissible only in the case of small strains. 

This is closely related to the material property because if strains are high, the stresses are usually, 

although not necessarily, high as well.  

Despite the fact that for the vast majority of structures linear simplifications are quite acceptable, 

there are structures when it is necessary to take into account some nonlinear behavior. The 

resulting governing equations are then much more complicated, and normally they do not have a 

closed-form solution. Consequently, some nonlinear iterative solution schemes must be used (see 

Chapter Solution of Nonlinear Equations further in this document).  

Nonlinear analysis can be classified according to a type of nonlinear behavior: 

Nonlinear material behavior only needs to be accounted for.  This is the most common case for 

ordinary reinforced concrete structures. Because of serviceability limitations, deformations 

are relatively small. However, the very low tensile strength of concrete needs to be accounted 

for. 

Deformations (either displacements only or both displacements and rotations) are large enough 

such that the equilibrium equations must use the deformed shape of the structure. However, 

the relative deformations (strains) are still small. The complete form of the geometric 



equations, including quadratic terms, has to be employed, but constitutive equations are 

linear.  This group of nonlinear analyses includes most stability problems. 

The last group uses nonlinear both material and geometric equations. In addition, it is usually not 

possible to suddenly apply the total value of load, but it is necessary to integrate in time 

increments (or loading increments). This is the most accurate and general approach but 

unfortunately, is also the most complicated.  

There are two basic possibilities for formulating the general structural behavior based on its 

deformed shape: 

Lagrange formulation: 

In this case, we are interested in the behavior of infinitesimal particles of volume dV . Their 

volume will vary dependent on the loading level applied and, consequently, on the extent of 

current deformations. This method is usually used to calculate civil engineering structures. 

 Euler formulation: 

The essential idea of Euler's formulation is to study the "flow" of the structural material through 

infinitesimal and fixed volumes of the structure. This is the favorite formulation for fluid 

analysis, analysis of gas flow, tribulation etc., where large material flows exist. 

For structural analysis, however, the Lagrangian formulation is better, and therefore the attention 

will be restricted to this. Two forms of the Lagrangian formulation are possible. The governing 

equations can either be written with respect to the original undeformed configuration at time t = 

0 or with respect to the most recent deformed configuration at time t. The former case is called 

Total Lagrangian formulation (TL), while the latter one is called the Updated Lagrangian 

formulation (UL).    

It is difficult to say which formulation is better because both have their advantages and 

drawbacks. Usually, it depends on a particular structure being analyzed and which one to use is a 

matter of engineering judgment. Generally, provided the constitutive equations are adequate, the 

results for both methods are identical.  

ATENA currently uses the Updated Lagrangian formulation (which is described later in this 

chapter) and supports the highest, i.e., 3rd level of nonlinear behavior. Soon, it should also 

support Total Lagrangian formulation. 

 

A general analysis of a structure usually consists of the application of many small load 

increments. At each of those increments, an iterative solution procedure has to be executed to 

obtain a structural response at the end of the increment. Hence, denoting the start and end of the 

load increment by t  and t t+  , at each step, we know the structural state at the time t  (from the 

previous steps) and solve for the state at the time t t+  . This procedure is repeated as many 

times as necessary to reach the final (total) level of loading. 

This process is depicted in Fig. 1-1. At the time 0t =  the volume of the structure is 0V , the 

surface area is 0S , and any arbitrary point M has coordinates 0 0 0

1 2 3, , X X X . Similarly, at the 

time t  the same structure has a volume tV , surface area tS , and coordinates of the point M  are 

1 2 3, , t t tX X X . A similar definition applies for the time t t+   by replacing index t  by t t+  . 
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For the derivations of nonlinear equations, it is important to use clear and simple notations. The 

same system of notation will be used throughout this document: 

Displacements u  are defined in a similar manner to that adopted for coordinates, hence t

iu is the 

i -th element of the displacement vector at the time t , 

t t t

i i iu X X+= −  is i -th element of the vector of displacement increments at the time t , 

The left superscript denotes the time corresponding to the value of the entity, the left subscript 

denotes the configuration with respect to which the value is measured, and subscripts on the 

right identify the relationships to the coordinate axis. Thus, for example 0

t t

ij+
 denotes 

element i , j  of stress tensor  at the time t t+   with respect to the original (undeformed) 

configuration. 

For derivatives, the abbreviated notation will be used, i.e., all right subscripts that appear after a 

comma declare derivatives. For example: 

 0 ,

t t t t

i j i

j

u u
X

+ +
=


 (1.2) 

The general governing equations can be derived in the form of a set of partial differential 

equations (for example, using the displacement method), or an energy approach can be used. The 

final results are the same.  

One of the most general methods of establishing the governing equations is to apply the principle 

of virtual work.  There are three basic variants of this: 

The principle of virtual displacements, 

The principle of virtual forces, 

The Clapeyron divergent theorem. 

Using the virtual work theorems, it is possible to derive several different variation principles 

(Lagrange principle, Clapeyron principle, Hellinger-Reissner principle, Hu-Washizu principle 

etc.). There are popular especially in linear analysis. They can be used to establish equilibrium 

equations, to study possible deformation modes in finite element discretization etc. 

Unfortunately, in the nonlinear analysis, they do not always work. 



In this document, all the following derivations will be presented in their displacement forms, and 

consequently, the principle of virtual displacements will be used throughout. 

The following section deals with the definition of the stress and strain tensors, which are usually 

used in nonlinear analysis. All of them are symmetric. 

 

 

This tensor is well known from linear mechanics. It expresses the forces that act on 

infinitesimally small areas of the deformed body at time t. Sometimes, these are also called an 

"engineering" stress. The Cauchy stress tensor is the main entity for checking ultimate stress 

values in materials. In the following text, it will be denoted by  . It is energetically conjugated 

with an Engineering strain tensor described later. 

 

The 2nd Piola-Kirchhoff tensor is a fictitious entity, having no physical representation of it as in 

the case of the Cauchy tensor. It expresses the forces, which act on infinitesimal areas of the 

body in the undeformed configuration. Hence it relates forces to the shape of the structure, which 

no longer exists. 

The mathematical definition is given by: 

 
0

0 0

0 , ,

t t

ij t i m mn t j nt
S X X





=  (1.3) 

where 
0

t




 is the ratio of density of the material at time 0  and t , 

 t

mn  is the Cauchy stress tensor at time t , 

 
0

,t i mX is the derivative of coordinates, ref. (1.5).  

Using inverse transformation, we can express Cauchy stress tensor in terms of the 2nd Piola-

Kirchhoff stress tensor, i.e.: 

 0 , 0 0 ,0

t
t t t t

mn m i mn n jX S X





=  (1.4) 

The elements 
0

,t i mX are usually collected in the so-called Deformation gradient matrix: 

 ( )0 0

T
t t TX X=   (1.5) 

where: 

 

0 0 0 0

1 2 3

, ,

T

T

X X X

   
 =  

   
 

1 2 3, ,t T t t tX X X X =    



The ratio 
0

t




 can be computed using: 

 0

0det( )t t X =  (1.6) 

Expression (1.6) is based on the assumption that the weight of an infinitesimal particle is 

constant during the loading process.  

Some important properties can be deduced from the definition of 2nd Piola-Kirchhoff tensor (1.3)

: 

at time 0, i.e., the undeformed configuration, there is no distinction between 2nd Piola-Kirchhoff 

and Cauchy stress tensors because 0

0 X E= , i.e., unity matrix and the density ratio 
0

t




 = 1., 

2nd Piola-Kirchhoff tensor is an objective entity in the sense that it is independent of any 

movement of the body provided the loading conditions are frozen. This is a very important 

property. The Cauchy stress tensor does not satisfy this because it is sensitive to the rotation 

of the body. It is energetically conjugated with the Green-Lagrange tensor described later. 

They're some other stress tensor commonly used for nonlinear structural analysis, e.g., Jaumann 

stress rate tensor (describes stress rate rather than its final values) etc.; however, they are not 

used in ATENA and therefore not described in this document.  

 

 

It is the most commonly used strain tensor, comprising strains that are called Engineering strains. 

Its main importance is that it is used in linear mechanics as a counterpart to the Cauchy stress 

tensor. 

 
1

2

m n
t mn t t

n m

u u
e

X X

  
= + 

  
 (1.7) 

 

This is the energy conjugate of the 2nd Piola-Kirchhoff tensor and its properties are similar (i.e., 

objective etc.). It is defined as: 

 ( )0 0 , 0 , 0 , 0 ,

1

2

t t t t t

ij i j j i k i k ju u u u = + +  (1.8) 

If we calculate the length of an infinitesimal fibber prior to and after deformation in the original 

coordinates, we get exactly the terms of the Green-Lagrange tensor. 

The following equation gives a relation between variation of Green-Lagrange and Engineering 

strain tensors: 

 ( ) ( )0 0 0

t t
t m n

ij t mn

i j

X X
e

X X


 
 = 

 
 (1.9) 



These are the strain tensors used in ATENA. From the other strain tensors commonly used in the 

nonlinear analysis we can mention Almansi strain tensor, co-rotated logarithmic strain, strain 

rate tensor etc. 

 

Although the whole chapter later in this document is dedicated to the problem of constitutive 

equations and to material failure criteria, assume for the moment that  stress-strain relation can 

be written in the following form: 

 0 0 0

t t t

ij ijrs rsS C =  (1.10) 

where 0

t

ijrsC is the constitutive tensor. 

This form is applicable for linear materials, or in its incremental form, it can also be used for 

nonlinear materials. The following important relations apply for transformation from coordinates 

to time 0  to coordinates at the time t : 

 0 , 0 , 0 0 , 0 ,0

t
t t t t t t

t mnpq m i n j ijrs p r q sC x x C x x



=  (1.11) 

or in the other direction 

 
0

0 0 0 0

0 , , , ,

t t

ijrs t i m t j n t mnpq t r p t s qt
C x x C x x




=  (1.12) 

Using constitutive tensor (1.11) and Almansi strains t

t  , we can write for Cauchy stresses (with 

respect to coordinates at time t ): 

 
t t t

ij t ijrs t rsC =  (1.13) 

Almansi strains are defined (related to Green-Lagrange strains 
0

t

ij by 

 
0 0

, , 0

t t

t mn t i m t j n ijx x =  (1.14) 

or can be calculated directly: 

 ( ), , , ,

1

2

t t t t t

t ij t i j t j i t k i t k ju u u u = + −  (1.15) 

The equation (1.13) is equivalent to the equation  (1.10) that was written for the original 

configuration of the structure. It is very important to know, with respect to which coordinate 

system the stress, strain, and constitutive tensors are defined, as the actual value can significantly 

differ. ATENA currently assumes that all these tensors are defined at coordinates at time t . 

 

 This section presents how the principle of virtual displacement can be applied to the analysis of 

a structure. For completeness, both the Lagrangian Total and Updated formulations will be 

discussed. In all derivations, it is assumed that the response of the structure up to time t is 

known. Now, at the time t t+  we apply load increment and using the principle of virtual 

displacement will solve for the state of the structure at t t+  .  

Virtual work of the structure yields the following. For Total formulation: 



 ( )( )
0

0 0 0

t dt t dt t dt

ij ij

V

S dV R + + +=  (1.16) 

for Updated formulation: 

 ( )( )
t

t dt t dt t dt

t ij t ij t

V

S dV R + + +=  (1.17) 

where 0V , tV denotes the structure volume corresponding to time 0  and t t dt R+ is the total 

virtual work of the external forces. The symbol  denotes variation of the entity.   Since energy 

must be invariant with respect to the reference coordinate system (1.16) and (1.17) must lead to 

identical results.  

Substituting expressions for strain and stress tensors, the final governing equation for structure 

can be derived. They are summarized in  (1.18) through (1.29). Note that the relationships are 

expressed with respect to configurations at an arbitrary time t  and an iteration ( )i . Typically, the 

time t may by 0 , in which case we have Total Lagrangian formulation or ( 1)t t i+  − , in which 

case, we have Updated Lagrangian formulation, where some terms can be omitted. ATENA also 

supports "semi" Updated Lagrangian formulation when t  conforms to time at the beginning of 

time increment, i.e., the beginning of load step. The following table compares the above-

mentioned formulations: 

 

Lagrangian 

formulation 

Transform each 

iteration 

Transform each load 

increment 

Transform 

stress and 

strain for 

output 

Calculate 

( 1)

,

t t i

t i ju+ − for t ije  

IP state 

variables 

Material 

properties 

IP state 

variables 

Material 

properties 

Total No No No No Yes Yes 

Updated Yes Yes Yes Yes No No 

"Semi"-

Updated 

No No Yes Yes No Yes 

Governing equations: 

 ( )( ) ( )

t

t t i t t i t t t

t ij t ij

V

S dV R+ + + =  (1.18) 

where 2nd Piola-Kirchhoff stress and Green Lagrange strain tensor are: 

 ( ) ( ) ( ) ( )

, ,

t
t t i t i t t i t i

t ij t t i m t mn t t j nt t
S x x






+ +

+ ++
=  (1.19) 

 ( )( ) ( ) ( ) ( ) ( )

, , , ,

1

2

t t i t t i t t i t t i t t i

t ij t i j t i j t k i t k ju u u u  + + + + += + +  (1.20) 

The stress and strain increments:  

 ( ) ( 1) ( )t t i t t i i

t ij t ij t ijS S S+ + −= +  (1.21) 



 

( ) ( 1) ( )

( ) ( ) ( )

t t i t t i i

t ij t ij t ij

i i i

t ij t ij t ije

  

 

+ + −= +

= +

 (1.22) 

where linear part of the strain increment is calculated by: 

 ( )( ) ( ) ( ) ( 1) ( ) ( 1) ( )

, , , , , ,

1

2

i i i t t i i t t i i

t ij t i j t i j t k i t k j t k j t k ie u u u u u u+ − + −= + + +  (1.23) 

and nonlinear part by: 

 ( )( ) ( ) ( )

, ,

1

2

i i i

t ij t k i t k ju u =  (1.24) 

Using constitutive equations in form: 

 
( ) ( )t t i i

t ij t ijrs t rsS C + =  (1.25) 

where
( )i

t ijrsC  is tangent material tensors and noting that ( ) ( )( ) ( )t t i i

t ij t ij   + = , an incremental form of 

(1.18) can be derived: 

 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

t t

t t
i i i i t t i i i t t

t ijrs t ij t ij t ij t ij t ij t ij t ijt
V V

C e e dV S e dV R    + ++ + + + =   (1.26) 

After linearisation, i.e., neglecting 2nd order terms in (1.26): 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

t t

t t
i i i i i i

t ijrs t ij t ij t ij t ij t ijrs t t ij t ijt
V V

C e e dV C e e dV   + +    (1.27) 

we arrive to the final form of the governing equations: 

 

( ) ( )

( )

( ) ( ) ( 1) ( )

( 1) ( )

t t

t

t t
i i t t i i

t ijrs t rs t ij t ij t ij

V V

t
t t t t i i

t ij t ij

V

C e e dV S dV

R S e dV

  



+ −

+ + −

+ =

−

 


 (1.28) 

Note that the term ( ) ( )( )i

t ij t ije e =  is constant, i.e., independent of ( )i

t iu , hence it is on RHS of 

(1.28). 

 

So far only the incremental virtual internal work has been considered. This work has to be 

balanced by the work done by the external forces. It is calculated as follows: 

 ( ) ( )
2 ( 1)

2
t t t

t t i
t t t t i t t i t t i

i t i t

V S V

u
R fb u dV fs u dS dV

t
  

+ −
+ + + 

= + +
    (1.29) 

where ifb  and ifs  are body and surface forces, t S  and  tV denotes integration with respect to the 

surface with the prescribed boundary forces and volume of the structure (at the time and t ). 

The 1st integral in (1.29) accounts for external work on a surface (e.g., external forces), the 

second one for work done by body forces (e.g., weight), and the last one accounts for work done 

by inertia forces, which are applicable only for dynamic analysis problems). 



At this point, all the relationships for incremental analysis have been presented. In order to 

proceed further, the problem must be discretized and solved by iterations (described in Chapter 

Solution of Nonlinear Equations).  

 

Spatial discretization consists of discretizing the primary variable, (i.e., deformation in case of 

ATENA) over the domain of the structure. It is done in ATENA by the Finite Element Method. 

The domain is decomposed into many finite elements, and at each of these elements, the 

deformation field is approximated by  

 t t j

i j iu h u=  (1.30) 

where  

j is the index for  finite element node, 1...j n= ,  

n is the number of element nodes,  

jh  are interpolation function usually grouped in matrix  1 2( , , ), ( , , )..... ( , , )j nH h r s t h r s t h r s t= ,  

, ,r s t  are the local element coordinates. 

The interpolation functions jh  are usually created in the way that 1jh =  at the node j  and 

0jh =  at any other element nodes. 

Combining  (1.30) and  equation for strain  definition (1.8)  it can be derived: 

 ( )( ) ( 1) ( 1) ( )

0 1

t t i t t i t t i t t i

t t L t L t NL U+ + − + − += + +B B B  (1.31) 

where 
( )t t i

t 
+ is the vector of Green-Lagrange strains, 

( )t t iU+  is the vector of displacements, 
( 1) ( 1)

0 1, ,t t i t t i

t L t L t NL

+ − + −
B B B are linear strain-displacements transformation matrices (the 1st two of 

them) and nonlinear strain-displacements transformation matrix (the last one). 

A similar equation can also be written for stress tensor.  

 ( ) ( ) ( )t t i t t i t t i

t t tS + + += C  (1.32) 

where: 
( )t t i

t S
+  is vector of 2nd Piola-Kirchhoff stress tensor and 

( )t t i

t

+
C is incremental stress-strain material properties matrix. 

Applying the above discretization for each finite element of the structure and assembling the 

results, the continuum based governing equations in (1.28) can be re-written in the following 

form: 

 ( ) ( 1) ( ) ( 1)

2
( )t t t i t t i t t i t t t t i

t L t NLU U R F
t

+ + − + + + −
+ +  = −


M K K  (1.33) 

where  

t LK is the linear strain incremental stiffness matrix, 

( 1)t t i

t NL

+ −
K is the nonlinear strain incremental stiffness matrix, 

t
M is the structural mass matrix, 



( )t t iU+  is the vector of nodal point displacements increments at the time t t+  , iteration i ;  

( )( )

2

t t iU
t

 +



t+ t is the vector of nodal accelerations, 

t t R+ , ( 1)t t iF+ − is the vector of applied external forces and internal forces, 

( ) ( 1), i i− superscripts indicate iteration numbers.  

Note that (1.33) also contains inertial term needed only for dynamic analysis. Finite element 

matrices in (1.33) and corresponding analytical expressions are summarized: 

 

( )

( )

( ) ( ) ( ) ( )

( 1) ( ) ( 1) ( 1) ( 1) ( ) ( 1) ( )

( 1) ( 1)

t t

t t

t

t
i T i i i

t L t L t t L t ijrs t rs t ij

V V

t
t t i i t t i T t t i t t i i t t i i

t NL t NL t ij t NL t ij t ij

V V

t t i t t i

t ij t

V

U C dV U C e e dV

U dV U S dV

F dV



 + − + − + − + − + −

+ − + −

 
 =    

 

 
 =    

 

= 

 

 



K B B

K B S B

S ( )( 1) ( )

( ) ( )
( ) ( )

2 2 2 2

t

t t

t t

t
t t i i

ij t ij

V

t t t t A t t B t t

t t

A V

t t i t t i
t t t i t t t i ti i

V V

S e dV

R f dV dA f dV R

u u
U dV U dV

t t t t



  

+ −

+ + + +

+ +
+ +
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All derivations and solution procedures in ATENA software are based on the deformational form 

of the finite element method. Any structure is solved using the weak (or integral) form of 

equilibrium equations. The whole structure is divided into many finite elements, and 

displacement u  at each particular element (at any location) is approximated by approximation 

functions ih  and element displacements iu  as follows: i

i

i

u h u=  , ( i  is index of an element 

node). It is important to note that in order not to lose any internal energy of the structure, the 

displacements over the whole structure must be continuous. The continuity within finite 

elements is trivial. The use of continuous approximation functions jh  ensures this requirement. 

A bit more complicated situation is on boundaries between adjacent elements; however, if the 

adjacent elements are of the same type, their displacements are also continuous. Note that there 

exist are some techniques that alleviate the continuity requirement, but in ATENA they are not 

used. 

Unlike displacements, stress and strain fields are typically discontinuous. Moreover, a structure 

is investigated within so-called material (or integral) points, which are points located somewhere 

within each element. Their position is derived from the requirement to minimize the 

approximation error. In other words, the standard finite element method provides stress and 

strain values only at those material points, and these values must be later somehow extrapolated 



into element nodal points. Often, some sort of smoothing is required in order to remove the 

mentioned stress and strain discontinuity. This section describes how this goal is done in 

ATENA.  

There are two steps in the process of stress and strain smoothing: 1/ extrapolation of stress and 

strain from material points to element nodes and 2/ averaging of stress in global node. The whole 

technique is described briefly. All details and derivations can be found e.g. (ZIENKIEWICZ, 

TAYLOR 1989) and ČERVENKA et. al. 1993. 

 

The extrapolation is done as follows (for each component of structural stress   and strain  ). 

Let us define a  vector of stresses xx   at element nodes i such as  ,1 ,2 ,, ,....
T

xx xx xx xx n   = , 

where the 2nd index indicates element node number. Let us also define a vector 

 ,1 ,2 ,, ,....
T

xx xx xx xx nP P P P= , whose component are calculated 

 
,

e
xx i i xx eP h d


=   (1.35) 

The nodal value xx  (with values of  xx  at nodes i =1..n ) is then calculated as follows: 

  
inv

xx xxM P =  (1.36) 

where:  

 
e

ij i j eM h h d


=   (1.37) 

In the above xx  is an extrapolated field of the stress xx  calculated by FEM. It is typically 

discontinuous.  n is the number of element nods, e  is the volume of the investigated finite 

element. The same strategy is also used for the remaining stress and strain components.  

This smoothing technique is called variational as it is base on averaging energy over the element.  

In addition, ATENA also supports another way of extrapolating vales from integration points to 

element nodes. In this case, (1.37) is assumed to be a "lumped" diagonal matrix in order to 

eliminate the need for solving a system of linear equations. The process of lumping is 

characterized as follows: 

 
1,e

ij i k ij e

k n

M h h d


=

=   (1.38) 

As most element space approximations satisfy 
1,

1k

k n

h
=

=  , the above equation is simplified to: 

 
e

ij i ijM h d


=   (1.39) 

where ij  is Kronecker delta. This "lumped" formulation ATENA uses by default. 

 

The above values are output as nodal element stress/strain values. It follows to calculate 

averaged stress/stain value  , ,.....i xx yy xz i
   =  in a global node i  that is participated by all 

elements k with an incidence at the global node i .  
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where is the vector of stresses  , ,.....i xx yy xz i
   = at a node i  ,

ke is the volume of the 

element k  that has the incidence of global node i . It should be noted that in ATENA, the same 

extrapolation techniques are used for other integration point quantities as well such as: fracturing 

strains, plastic strains and others. 

 

Simple support and complex support boundary conditions represent boundary conditions of  

Dirichlet types, i.e., boundary conditions that prescribe displacements. On the other hand, Simple 

load boundary conditions are an example of von Neumann type boundary conditions when 

forces are prescribed. 

Let K is structural stiffness matrix, u  is the vector of nodal displacements, and R  is a vector of 

nodal forces. Further, let u  is subdivided into the vector of free degrees of freedom Nu  (with 

von Neumann boundary conditions) and constrained degrees of freedom Du  (with Dirichlet 

boundary conditions): 

 
N

D

u
u

u

 
=  

 
 (1.41) 

The problem governing equations can then be written: 
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 (1.42) 

ATENA software supports that any constrained degree of freedom can be a linear combination 

of other degrees of freedom plus some constant term: 

 ,0i i k

D D k N

k

u u u= +   (1.43) 

where ,0i

Du  is the constant term and k  are coefficients of the linear combination. Of course, the 

equation (1.43) can also include the term l

l D

l

u ; however, it is transformed into the constant 

term.  

The free degrees of freedom are then solved by   

 ( ) ( )
1

N NN N ND Du R R
−

= −K K  (1.44) 

and the dependent DR  is solved by 

 D DN N DD DR u u= +K K  (1.45) 



The ATENA simple support boundary conditions mean that the boundary conditions use only 

constant terms are ,0i

Du , (i.e. 0k =  ). The complex support boundary conditions use the full 

form of (1.43). 

The boundary conditions as described above allow to specify for one degree of freedom either 

Dirichlet, or von Neumann boundary condition, but not both of them at the same time. It comes 

from the nature of the finite element method. However, ATENA can also deal with this case of 

more complex boundary conditions by introducing Lagrange multipliers. The derivation of the 

theory behind this kind of boundary conditions is beyond the scope of this manual. Details can 

be found elsewhere, e.g., in (Bathe 1982). To apply this type of boundary conditions in ATENA, 

specify for those degrees of freedom both simple load and complex support boundary condition, 

the latter one with the keyword "RELAX" keyword in its definition. 

A useful feature of ATENA is that at any time, it stores in RAM only NNK  and all the 

elimination with the remaining blocks of K is done at element level at the process of assembling 

the structural stiffness matrix. 

A special type of complex boundary conditions of the Dirichlet type are so-called master-slave 

boundary conditions. Such a boundary condition specifies that all (available) degrees of one 

finite node (i.e., slave node) are equal to degrees of freedom of another node (i.e., master node). 

If more master nodes are specified, then these master nodes are assumed to form a finite element 

and degrees of freedom of the slave node are assumed to be a node within that element. Its 

(slave) degrees of freedom are approximated by element nodal (i.e., master) degrees of freedom 

in the same way as displacements approximation within a finite element. The coefficients k  in 

(1.43) are thus calculated automatically. This type of boundary condition is used for example, for 

fixing discrete reinforcement bars to the surrounding solid element.  
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The formulation of constitutive relations is considered in the plane stress state. A smeared 

approach is used to model the material properties, such as cracks or distributed reinforcement. 

This means that material properties defined for a material point are valid within a certain 

material volume, which is in this case associated with the entire finite element. The constitutive 

model is based on the stiffness and is described by the equation of equilibrium in a material 

point:  

    , , , , , ,
T T

x y xy x y xy     = = =s De s e  (2.1) 

where s, D and e are a stress vector, a material stiffness matrix and a strain vector, respectively. 

The stress and strain vectors are composed of the stress components of the plane stress state 

, ,x y xy   , Fig. 2-1, and the strain components , ,x y xy   , Fig. 2-2, where xy is the engineering 

shear strain. The strains are common for all materials. The stress vector s and the material matrix 

D can be decomposed into the material components due to concrete and reinforcement as: 

 ,c s c s= + = +s s s D D D  (2.2) 

The stress vector s and both component stress vectors ,c ss s  are related to the total cross section 

area. The concrete stress cs is acting on the material area of concrete cA , which is approximately 

set equal to the cross section of the composite material c A A  (the area of concrete occupied by 

reinforcement is not subtracted). 

The matrix D has a form of the Hooke's law for either isotropic or orthotropic material, as will be 

shown in Section 2.1.11. 

 



 

 

The reinforcement stress vector ss is the sum of stresses of all the smeared reinforcement 

components: 

 
1

n

s si

i=

= s s  (2.3)  

where n is the number of the smeared reinforcement components. For the ith reinforcement, the 

global component reinforcement stress ssi is related to the local reinforcement stress ,

si  by the 

transformation: 

 ,

si i sip =s T  (2.4) 

where pi is the reinforcing ratio si
i

c

A
p

A
= , Asi is the reinforcement cross section area. The local 

reinforcement stress ,

si  is acting on the reinforcement area Asi 

The stress and strain vectors are transformed according to the equations bellow in the plane 

stress state. New axes u, v are rotated from the global x, y axes by the angle  The angle  is 

positive in the counterclockwise direction, as shown in Fig. 2-3. 

 

 

The transformation of the stresses: 

 ( ) ( )u x=s T s  (2.5) 
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   ( ) ( ), , , , ,
TT

u u v uv x x y xy     = =s s   

The transformation of the strains: 

 ( ) ( )u x=e T e  (2.7) 
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   ( ) ( ), , , , ,
TT

u u v uv x x y xy     = =e e . 

The angles of principal axes of the stresses and strains, Fig. 2-1, Fig. 2-2, are found from the 

equations: 

 
2

tan(2 ) , tan(2 )
xy xy

x y x y

 

 
 

   
= =

− −
 (2.9) 

where   is the angle of the first principal stress axis and   is the angle of the first principal 

strain axis. 

In case of isotropic material (un-cracked concrete) the principal directions of the stress and 

strains are identical; in case of anisotropic material (cracked concrete) they can be different. The 

sign convention for the normal stresses, employed within this program, uses the positive values 

for the tensile stress (strain) and negative values for the compressive stress (strain). The shear 

stress (strain) is positive if acting upwards on the right face of a unit element.  

 

The material model SBETA includes the following effects of concrete behavior: 

 non-linear behavior in compression including hardening and softening, 

 fracture of concrete in tension based on the nonlinear fracture mechanics, 

 biaxial strength failure criterion, 

 reduction of compressive strength after cracking, 

 tension stiffening effect, 

 reduction of the shear stiffness after cracking (variable shear retention), 

 two crack models: fixed crack direction and rotated crack direction. 

Perfect bond between concrete and reinforcement is assumed within the smeared concept. No 

bond slip can be directly modeled except for the one included inherently in the tension stiffening. 

However, on a macro-level a relative slip displacement of reinforcement with respect to concrete 

over a certain distance can arise if concrete is cracked or crushed. This corresponds to a real 

mechanism of bond failure in case of the bars with ribs. 

The reinforcement in both forms, smeared and discrete, is in the uniaxial stress state and its 

constitutive law is a multi-linear stress-strain diagram. 



The material matrix is derived using the nonlinear elastic approach. In this approach the elastic 

constants are derived from a stress-strain function called here the equivalent uniaxial law. This 

approach is like the nonlinear hypo-elastic constitutive model, except that different laws are used 

here for loading and unloading, causing the dissipation of energy exhausted for the damage of 

material. The detailed treatment of the theoretical background of this subject can be found, for 

example, in the book CHEN (1982). This approach can be also regarded as an isotropic damage 

model, with the unloading modulus (see next section) representing the damage modulus. 

The name SBETA comes from the former program, in which this material model was first used. 

It means the abbreviation for the analysis of reinforced concrete in German language - 

StahlBETonAnalyse. 

 

 

The nonlinear behavior of concrete in the biaxial stress state is described by means of the so-

called effective stress
ef

c , and the equivalent uniaxial strain eq . The effective stress is in most 

cases a principal stress.  

The equivalent uniaxial strain is introduced to eliminate the Poisson’s effect in the plane stress 

state. 

 eq ci

ciE


 =  (2.10)  

The equivalent uniaxial strain can be considered as the strain, that would be produced by the 

stress ci in a uniaxial test with modulus ciE  associated with the direction i. Within this 

assumption, the nonlinearity representing a damage is caused only by the governing stress ci . 

The details can be found in CHEN (1982).  

The complete equivalent uniaxial stress-strain diagram for concrete is shown in Fig. 2-4. 

The numbers of the diagram parts in Fig. 2-4 (material state numbers) are used in the results of 

the analysis to indicate the state of damage of concrete. 



Unloading is a linear function to the origin. An example of the unloading point U is shown in 

Fig. 2-4. Thus, the relation between stress 
ef

c and strain eq  is not unique and depends on a load 

history. A change from loading to unloading occurs when the increment of the effective strain 

changes the sign. If subsequent reloading occurs the linear unloading path is followed until the 

last loading point U is reached again. Then, the loading function is resumed. 

The peak values of stress in compression f’c
ef and in tension f’t

ef are calculated according to the 

biaxial stress state as will be shown in Sec.2.1.5. Thus, the equivalent uniaxial stress-strain law 

reflects the biaxial stress state.  

The above defined stress-strain relation is used to calculate the elastic modulus for the material 

stiffness matrices, Sect. 2.1.11. The secant modulus is calculated as 

 
s c

c eq
E




=  (2.11) 

It is used in the constitutive equation to calculate stresses for the given strain state, Sect. 2.1.12. 

The tangent modulus Ec
t is used in the material matrix Dc for construction of an element stiffness 

matrix for the iterative solution. The tangent modulus is the slope of the stress-strain curve at a 

given strain. It is always positive. In cases when the slope of the curve is less then the minimum 

value Emin
t the value of the tangent modulus is set Ec

t = Emin
t. This occurs in the softening ranges 

and near the compressive peak. 

Detail description of the stress-strain law is given in the following subsections. 

 

The behavior of concrete in tension without cracks is assumed linear elastic. cE  is the initial 

elastic modulus of concrete, 'ef

tf is the effective tensile strength derived from the biaxial failure 

function, Section 2.1.5.2. 

 ', 0ef eq ef

c c c tE f  =    (2.12) 

 

Two types of formulations are used for the crack opening:  

 A fictitious crack model based on a crack-opening law and fracture energy. This formulation 

is suitable for modeling of crack propagation in concrete. It is used in combination with the 

crack band, see Sect.2.1.3.   

 A stress-strain relation in a material point. This formulation is not suitable for normal cases of 

crack propagation in concrete and should be used only in some special cases.  

In following subsections are described five softening models included in SBETA material 

model.  



(1) Exponential Crack Opening Law 

 

This function of crack opening was derived experimentally by HORDIJK (1991). 
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where w is the crack opening, wc is the crack opening at the complete release of stress,   is the 

normal stress in the crack (crack cohesion). Values of the constants are, 
1c =3, 

2c =6.93. Gf is the 

fracture energy needed to create a unit area of stress-free crack, 'ef

tf is the effective tensile 

strength derived from a failure function, Eq.(2.22). The crack opening displacement w is derived 

from strains according to the crack band theory in Eq.(2.18). 

(2) Linear Crack Opening Law 

 

 

 ( )
'

' '

2
,

ef
fc t

c cef

t c t

Gf
w w w

f w f


= − =  (2.14) 

 



(3) Linear Softening Based on Local Strain 

 

The descending branch of the stress-strain diagram is defined by the strain c3 corresponding to 

zero stress (complete release of stress). 

(4) SFRC Based on Fracture Energy 

 

Parameters:             1 2
1 2' '

1 2

2
, ,

f

cef ef

t t

Gf f
c c w

f f f f
= = =

+
 

(5) SFRC Based on Strain 

 

Fig. 2-9 Steel fiber reinforced concrete based on strain. 



Parameters:   1 2
1 2' '

,
ef ef

t t

f f
c c

f f
= =        

Parameters c1 and c2  are relative positions of stress levels, and c3 is the end strain. 

 

The formula recommended by CEB-FIP Model Code 90 has been adopted for the ascending 

branch of the concrete stress-strain law in compression, Fig. 2-10. This formula enables wide 

range of curve forms, from linear to curved, and is appropriate for normal as well as high 

strength concrete.  
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ef ef o
c c

c c

Ekx x
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Meaning of the symbols in the above formula in: 

c
ef -  concrete compressive stress, 
'ef

cf  - concrete effective compressive strength (See Section 2.1.5.1) 

x  -   normalized strain, 

  -  strain, 

c  -  strain at the peak stress f’c
ef , 

k  -  shape parameter, 

Eo  -  initial elastic modulus, 

Ec  -  secant elastic modulus at the peak stress, 
'ef

c
c

c

f
E


= . 

Parameter k may have any positive value greater than or equal 1. Examples: k=1.  linear, k=2. - 

parabola.  

As a consequence of the above assumption, distributed damage is considered before the peak 

stress is reached. Contrary to the localized damage, which is considered after the peak. 



 

The softening law in compression is linearly descending. There are two models of strain 

softening in compression, one based on dissipated energy, and other based on local strain 

softening. 

 

The fictitious compression plane model assumes, that compression failure is localized in a plane 

normal to the direction of compressive principal stress. All post-peak compressive displacements 

and energy dissipation are localized in this plane. It is assumed that this displacement is 

independent on the size of the structure. This hypothesis is supported by experiments conducted 

by Van MIER (1986). 

This assumption is analogous to the Fictitious Crack Theory for tension, where the shape of the 

crack-opening law and the fracture energy are defined and are considered as material properties. 

 

In case of compression, the end point of the softening curve is defined by means of the plastic 

displacement wd. In this way, the energy needed for generation of a unit area of the failure plane 

is indirectly defined. From the experiments of Van MIER (1986), the value of wd =0.5mm for 

normal concrete. This value is used as default for the definition of the softening in compression.  

The softening law is transformed from a fictitious failure plane, Fig. 2-11, to the stress-strain 

relation valid for the corresponding volume of continuous material, Fig. 2-10. The slope of the 

softening part of the stress-strain diagram is defined by two points: a peak of the diagram at the 

maximal stress and a limit compressive strain d at the zero stress. This strain is calculated from 

a plastic displacement wd and a band size '

dL  (see Section 2.1.3) according to the following 

expression: 

 
'

d
d c

d

w

L
 = +  (2.16) 

The advantage of this formulation is reduced dependency on finite element mesh. 

 

A slope of the softening law is defined by means of the softening modulus Ed . This formulation 

is dependent on the size of the finite element mesh. 



 

So-called localization limiter controls localization of deformations in the failure state. It is a 

region (band) of material, which represents a discrete failure plane in the finite element analysis. 

In tension it is a crack, in compression it is a plane of crushing. These failure regions have some 

dimension. However, since according to the experiments, the dimensions of the failure regions 

are independent on the structural size, they are assumed as fictitious planes. In case of tensile 

cracks, this approach is known as rack the “crack band theory“, BAZANT, OH (1983). Here is 

the same concept used also for the compression failure. The purpose of the failure band is to 

eliminate two deficiencies, which occur in connection with the application of the finite element 

model: element size effect and element orientation effect. 
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The direction of the failure planes is assumed to be normal to the principal stresses in tension 

and compression, respectively. The failure bands (for tension Lt and for compression Ld) are 

defined as projections of the finite element dimensions on the failure planes as shown in Fig. 

2-12.  

 

The element orientation effect is reduced, by further increasing of the failure band for skew 

meshes, by the following formula (proposed by CERVENKA et al. 1995). 

' '
,t t d dL L L L = =  

 max1 ( 1)
45


 = + − ,      0;45     (2.17) 



An angle   is the minimal angle ( ( )1 2min ,  ) between the direction of the normal to the failure 

plane and element sides. In case of a general quadrilateral element the element sides directions 

are calculated as average side directions for the two opposite edges. The above formula is a 

linear interpolation between the factor =1.0 for the direction parallel with element sides, and 

= max , for the direction inclined at 45o. The recommended (and default) value of max =1.5. 

 

The process of crack formation can be divided into three stages, Fig. 2-13. The uncracked stage 

is before a tensile strength is reached. The crack formation takes place in the process zone of a 

potential crack with decreasing tensile stress on a crack face due to a bridging effect. Finally, 

after a complete release of the stress, the crack opening continues without the stress. 

The crack width w is calculated as a total crack opening displacement within the crack band. 

 '

cr tw L=  (2.18) 

where cr is the crack opening strain, which is equal to the strain normal to the crack direction in 

the cracked state after the complete stress release. 

 

It has been shown that the smeared model based on the refined crack band theory can 

successfully describe the discrete crack propagation in plain, as well as reinforced concrete 

(CERVENKA et al. 1991, 1992, and 1995). 

It is also possible, that the second stress, parallel to the crack direction, exceeds the tensile 

strength. Then the second crack, in the direction orthogonal to the first one, is formed using the 

same softening model as the first crack. (Note: The second crack may not be shown in a 

graphical post-processing. It can be identified by the concrete state number in the second 

direction at the numerical output.) 

 

 

A biaxial stress failure criterion according to KUPFER et al. (1969) is used as shown in Fig. 

2-14. In the compression-compression stress state the failure function is 
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where 1c , 2c  are the principal stresses in concrete and f’c is the uniaxial cylinder strength. In 

the biaxial stress state, the strength of concrete is predicted under the assumption of a 

proportional stress path. 

In the tension-compression state, the failure function continues linearly from the point 

1 0c = , '

2c cf =  into the tension-compression region with the linearly decreasing strength: 

 ' ' 1

'
, (1 5.3278 ), 1.0 0.9ef c

c c ec ec ec

c

f f r r r
f


= = +    (2.20) 

where rec is the reduction factor of the compressive strength in the principal direction 2 due to 

the tensile stress in the principal direction 1. 

 

In the tension-tension state, the tensile strength is constant and equal to the uniaxial tensile 

strength f’t. In the tension-compression state, the tensile strength is reduced by the relation: 

 ' 'ef

t t etf f r=  (2.21) 

where ret is the reduction factor of the tensile strength in the direction 1 due to the compressive 

stress in the direction 2. The reduction function has one of the following forms, Fig. 2-15.  
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The relation in Eq.(2.22) is the linear decrease of the tensile strength and (2.23) is the hyperbolic 

decrease. 



Two predefined shapes of the hyperbola are given by the position of an intermediate point r, x. 

Constants K and A define the shape of the hyperbola. The values of the constants for the two 

positions of the intermediate point are given in the following table. 

 

type point parameters 

 r x A K 

a 0.5 0.4 0.75 1.125 

b 0.5 0.2 1.0625 6.0208 

 

 

The smeared crack approach for modeling of the cracks is adopted in the model SBETA. Within 

the smeared concept two options are available for crack models: the fixed crack model and the 

rotated crack model. In both models the crack is formed when the principal stress exceeds the 

tensile strength. It is assumed that the cracks are uniformly distributed within the material 

volume. This is reflected in the constitutive model by an introduction of orthotropy.  

 

In the fixed crack model (CERVENKA 1985, DARWIN 1974) the crack direction is given by 

the principal stress direction at the moment of the crack initiation. During further loading this 

direction is fixed and represents the material axis of the orthotropy. 



 

The principal stress and strain directions coincide in the uncracked concrete, because of the 

assumption of isotropy in the concrete component. After cracking the orthotropy is introduced. 

The weak material axis m1 is normal to the crack direction, the strong axis m2 is parallel with the 

cracks. 

In a general case the principal strain axes   and   rotate and need not to coincide with the axes 

of the orthotropy m1  and m2. This produces a shear stress on the crack face as shown in Fig. 

2-16. The stress components c1  and  c2 denote, respectively, the stresses normal and parallel to 

the crack plane and, due to shear stress, they are not the principal stresses. The shear stress and 

stiffness in the cracked concrete is described in Section 2.1.7. 

 

In the rotated crack model (VECCHIO 1986, CRISFIELD 1989), the direction of the principal 

stress coincides with the direction of the principal strain. Thus, no shear strain occurs on the 

crack plane and only two normal stress components must be defined, as shown in Fig. 2-17. 

 

If the principal strain axes rotate during the loading the direction of the cracks rotate, too. In 

order to ensure the co-axiality of the principal strain axes with the material axes the tangent shear 

modulus Gt is calculated according to CRISFIELD 1989 as 
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In case of the fixed crack model, the shear modulus is reduced according to the law derived by 

KOLMAR (1986) after cracking. The shear modulus is reduced with growing strain normal to 

the crack, Fig. 2-18 and this represents a reduction of the shear stiffness due to the crack 

opening. 
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where gr  is the shear retention factor, G is the reduced shear modulus and Gc is the initial 

concrete shear modulus:  
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where Ec is the initial elastic modulus and  is the Poisson's ratio. The strain   is normal to the 

crack direction (the crack opening strain), c1  and c2 are parameters depending on the reinforcing 

crossing the crack direction,  p is the transformed reinforcing ratio (all reinforcement is 

transformed on the crack plane) and c3 is the user’s scaling factor. By default, c3=1. In ATENA 

the effect of reinforcement ratio is not considered, and p is assumed to be 0.0.  

There is an additional constraint imposed on the shear modulus. The shear stress on the crack 

plane uv G =  is limited by the tensile strength f’t. The secant and tangent shear moduli of 

cracked concrete are equal. 

 

A reduction of the compressive strength after cracking in the direction parallel to the cracks is 

done by a similar way as found from experiments of VECCHIO and COLLINS 1982 and 

formulated in the Compression Field Theory. However, a different function is used for the 

reduction of concrete strength here, to allow for user's adjustment of this effect. This function 

has the form of the Gauss's function, Fig. 2-19. The parameters of the function were derived 

from the experimental data published by KOLLEGER et al. 1988, which also included data of 

Collins and Vecchio (VECCHIO at al.1982)  
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For the zero normal strain,   there is no strength reduction, and for the large strains, the 

strength is asymptotically approaching to the minimum value ' 'ef

c cf cf= . 

 

The constant c represents the maximal strength reduction under the large transverse strain. From 

the experiments by KOLLEGGER et all. 1988, the value c = 0.45 was derived for the concrete 

reinforced with the fine mesh. The other researchers (DYNGELAND 1989) found the reductions 

not less than c=0.8. The value of c can be adjusted by input data according to the actual type of 

reinforcing. 

However, the reduction of compressive strength of the cracked concrete does not have to be 

affected only by the reinforcing. In the plain concrete, when the strain localizes in one main 

crack, the compressive concrete struts can cross this crack, causing so-called "bridging effect". 

The compressive strength reduction of these bridges is also captured by the above model. 

 

The tension stiffening effect can be described as a contribution of cracked concrete to the tensile 

stiffness of reinforcing bars. This stiffness is provided by the uncracked concrete or not fully 

opened cracks and is generated by the strain localization process. It was verified by simulation 

experiments of HARTL, G., 1977 and published in the paper (MARGOLDOVA et.al. 1998). 

Including an explicit tension stiffening factor would result in an overestimation of this effect. 

Therefore, in the ATENA versions up to1.2.0 no explicit tension stiffening factor is possible in 

the input. 

 

In the case of uncracked concrete, the stress symbols have the following meaning: 

 1c   -  maximal principal stress 

2c   -  minimal principal stress 

            (tension positive, compression negative) 

In the case of cracked concrete, Fig. 2-16 stresses are defined on the crack plane: 

  1c   - normal stress normal to the cracks 

 2c   - normal stress parallel to the cracks 



 c    - shear stress on the crack plane  

 

 

The material stiffness matrix for the uncracked concrete has the form of an elastic matrix of the 

isotropic material. It is written in the global coordinate system x and y. 
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In the above E is the concrete elastic modulus derived from the equivalent uniaxial law. The 

Poisson's ratio  is constant. 

 

For the cracked concrete, the matrix has the form of the elastic matrix for the orthotropic 

material. The matrix is formulated in a coordinate system m1, m2, Fig. 2-16 and Fig. 2-17, which 

is coincident with the crack direction. This local coordinate system is referred to the superscript 

L later. The direction 1 is normal to the crack and the direction 2 is parallel with the crack. The 

definition of the elastic constants for the orthotropic material in the plane stress state follows 

from the flexibility relation: 
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First, we eliminate the orthotropic Poisson’s ratios for the cracked concrete, because they are 

commonly not known. For this we use the symmetry relation
12 2 21 1E E = . Therefore, in   (2.29) 

there are only three independent elastic constants 1 2 21, ,E E  . Assuming that 21 =  is the 

Poisson's ratio of the uncracked concrete and using the symmetry relation, we obtain 
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The stiffness matrix 
L

cD is found as the inverse of the flexibility matrix in (2.30): 
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In the above relation E2 must be nonzero. If E2 is zero and E1 is nonzero, then an alternative 

formulation is used with the inverse parameter 2

1

1 E

E
= . In case that both elastic modules are 

zero, the matrix 
L

cD  is set equal to the null matrix. 

The matrix 
L

cD  is transformed into the global coordinate system using the transformation matrix 

T from (2.8). 

  TDTD
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c

T

c =  (2.32) 

The angle  is between the global axis x and the 1st material axis m1, which is normal to the 

crack, Fig. 2-16. 

 

The material stiffness matrix of the ith smeared reinforcement is 
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The angle  is between the global axis x and the ith reinforcement direction, and Esi is the elastic 

modulus of reinforcement. The reinforcing ratio pi =As/Ac. 

 

The total material stiffness of the reinforced concrete is the sum of material stiffness of concrete 

and smeared reinforcement: 
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The summation is over n smeared reinforcing components. In ATENA the smeared 

reinforcement is not added on the constitutive level, but it is modeled by separate layers of 

elements whose nodes are connected to those of the concrete elements. This corresponds to the 

assumption of perfect bond between the smeared reinforcement and concrete. 

 

The material stiffness matrices in the above Subsections 2.1.11.1, 2.1.11.2, 2.1.11.3, 2.1.11.4 are 

either secant or tangent, depending on the type of elastic modulus used.  

The secant material stiffness matrix is used to calculate the stresses for the given strains, as 

shown in Section 2.1.12.  

The tangent material stiffness matrix is used to construct the element stiffness matrix. 

 

The stresses in concrete are obtained using the actual secant component material stiffness matrix 

 
s

c c=s D e  (2.35) 



where 
s

cD  is the secant material stiffness matrix from Section 2.1.11 for the uncracked or 

cracked concrete depending on the material state. The stress components are calculated in the 

global as well as in the local material coordinates (the principal stresses in the uncracked 

concrete and the stresses on the crack planes). 

The stress in reinforcement and the associated tension stiffening stress is calculated directly from 

the strain in the reinforcement direction. 

 

Default formulas of material parameters: 

 

Parameter: Formula: 

Cylinder strength ' '0.85c cuf f=  

Tensile strength 2

' ' 30.24t cuf f=  

Initial elastic modulus ' '(6000 15.5 )c cu cuE f f= −  

Poisson's ratio 0.2 =  

Softening compression 0.0005dw m= −  

Type of tension softening 1 – exponential, based on GF 

Compressive strength in cracked concrete c = 0.8 

Tension stiffening stress 0.st =  

Shear retention factor variable (Sect.2.1.7) 

Tension-compression function type linear 

Fracture energy Gf  according to VOS 1983 '0.000025 ef

F tG f=  [MN/m] 

Orientation factor for strain localization 
max 1.5 =    (Sect.2.1.3) 

 

The SBETA constitutive model of concrete includes 20 material parameters. These parameters 

are specified for the problem under consideration by user. In case of the parameters are not 

known automatic generation can be done using the default formulas given in the table above. In 

such a case, only the cube strength of concrete f’cu (nominal strength) is specified and the 

remaining parameters are calculated as functions of the cube strength. The formulas for these 

functions are taken from the CEB-FIP Model Code 90 and other research sources.  

Used units are MPa.  

The parameters not listed in the table have zero default value. 

The values of the material parameters can be also influenced by safety considerations. This is 

particularly important in cases of a design, where a proper safety margin should be met. For that 

reason, the choice of material properties depends on the purpose of analysis and the filed of an 

application. The typical examples of the application are the design, the simulation of failure and 

the research. 



In case of the design application, according to most current standards, the material properties for 

calculation of structural resistance (failure load) are considered by minimal values with applied 

partial safety factors. The resulting maximum load can be directly compared with the design 

loads. 

According to some researchers, more appropriate approach would be to consider the average 

material properties in nonlinear analysis and to apply a safety factor on the resulting integral 

response variable (force, moment). However, this safety format is not yet fully established. 

In cases of the simulation of real behavior, the parameters should be chosen as close as possible 

to the properties of real materials. The best way is to determine these properties from mechanical 

tests on material sample specimens. 

 

 

Fracture-plastic model combines constitutive models for tensile (fracturing) and compressive 

(plastic) behavior. The fracture model is based on the classical orthotropic smeared crack 

formulation and crack band model. It employs Rankine failure criterion, exponential softening, 

and it can be used as rotated or fixed crack model. The hardening/softening plasticity model is 

based on Menétrey-Willam failure surface. The model uses return mapping algorithm for the 

integration of constitutive equations. Special attention is given to the development of an 

algorithm for the combination of the two models. The combined algorithm is based on a 

recursive substitution, and it allows for the two models to be developed and formulated 

separately. The algorithm can handle cases when failure surfaces of both models are active, but 

also when physical changes such as crack closure occur. The model can be used to simulate 

concrete cracking, crushing under high confinement, and crack closure due to crushing in other 

material directions. 

Although many papers have been published on plasticity models for concrete (for instance, 

PRAMONO, WILLAM 1989, MENETREY et al 1997, FEENSTRA 1993, 1998 ETSE 1992) or 

smeared crack models (RASHID 1968, CERVENKA and GERSTLE 1971, BAZANT and OH 

1983, DE BORST 1986, ROTS 1989), there are not many descriptions of their successful 

combination in the literature. OWEN et al. (1983) presented a combination of cracking and 

visco-plasticity. Comprehensive treatise of the problem was provided also by de BORST (1986), 

and recently several works have been published on the combination of damage and plasticity 

(SIMO and JU 1987, MESCHKE et al. (1998). The presented model differs from the above 

formulations by ability to handle also physical changes like for instance crack closure, and it is 

not restricted to any shape of hardening/softening laws. Also, within the proposed approach it is 

possible to formulate the two models (i.e. plastic and fracture) entirely separately, and their 

combination can be provided in a different algorithm or model. From programming point of 

view such approach is well suited for object-oriented programming.  



The method of strain decomposition, as introduced by DE BORST (1986), is used to combine 

fracture and plasticity models together. Both models are developed within the framework of 

return mapping algorithm by WILKINS (1964). This approach guarantees the solution for all 

magnitudes of strain increment. From an algorithmic point of view the problem is then 

transformed into finding an optimal return point on the failure surface.  

The combined algorithm must determine the separation of strains into plastic and fracturing 

components, while it must preserve the stress equivalence in both models. The proposed 

algorithm is based on a recursive iterative scheme. It can be shown that such a recursive 

algorithm cannot reach convergence in certain cases such as, for instance, softening and dilating 

materials. For this reason, the recursive algorithm is extended by a variation of the relaxation 

method to stabilize convergence. 

 

The material model formulation is based on the strain decomposition into elastic e

ij , plastic p

ij  

and fracturing f

ij components (DE BORST 1986). 
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The new stress state is then computed by the formula: 
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where the increments of plastic strain 
p

ij  and fracturing strain 
f

ij must be evaluated based on 

the used material models. 

 

Rankine criterion is used for concrete cracking 
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It is assumed that strains and stresses are converted into the material directions, which in case of 

rotated crack model correspond to the principal directions, and in case of fixed crack model, are 

given by the principal directions at the onset of cracking. Therefore, t

ii   identifies the trial 

stress and
itf  tensile strength in the material direction i . Prime symbol denotes quantities in the 

material directions. The trial stress state is computed by the elastic predictor. 
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If the trial stress does not satisfy (2.38), the increment of  fracturing strain in direction i can be 

computed using the assumption that the final stress state must satisfy (2.40). 
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This equation can be further simplified under the assumption that the increment of fracturing 

strain is normal to the failure surface, and that always only one failure surface is being checked. 

For failure surface k , the fracturing strain increment has the following form. 
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After substitution into (2.40) a formula for the increment of the fracturing multiplier   is 

recovered. 
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This equation must be solved by iterations since for softening materials the value of current 

tensile strength )( max

kt wf  is a function of the crack opening w , and is based on Hordijk’s formula 

(defined in SBETA model). 

The crack opening w  is computed from the total value of fracturing strain f

kk ˆ in direction k , 

plus the current increment of fracturing strain  , and this sum is multiplied by the 

characteristic length tL . The characteristic length as a crack band size was introduced by 

BAZANT and OH. Various methods were proposed for the crack band size calculation in the 

framework of finite element method. FEENSTRA (1993) suggested a method based on 

integration point volume, which is not well suited for distorted elements. A consistent and rather 

complex approach was proposed by OLIVIER. In the presented work the crack band size Lt is 

calculated as a size of the element projected into the crack direction, Fig. 2-20. CERVENKA V. 

et al. (1995) showed that this approach is satisfactory for low order linear elements, which are 

used throughout this study. They also proposed a modification, which accounts for cracks that 

are not aligned with element edges.  

 

Equation (2.42) can be solved by recursive substitutions. It is possible to show by expanding 

)( max

kt wf   into a Taylor series that this iteration scheme converges if: 
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Equation (2.43) is violated for softening materials only when snap back is observed in the stress-

strain relationship, which can occur if large finite elements are used. In the standard 

displacement based finite element method, the strain increment is given, therefore, a snap back 

on the constitutive level cannot be captured. This means that the critical region, with snap back 

on the softening curve, will be skipped in a real calculation, which physically means, that the 

energy dissipated by the system will be over estimated. This is of course undesirable, and finite 



elements smaller then 
w

fE
L tkkkk




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)0(
 should be used, where 

w

f t



 )0(
 denotes the initial slope 

of the crack softening curve.  

It is important to distinguish between total fracturing strain f

ij ˆ , which corresponds to the 

maximal fracturing strain reached during the loading process, and current fracturing strain f

ij  , 

which can be smaller due to crack closure, and is computed using (2.44) derived by ROTS and 

BLAUWENDRAAD. 
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The fourth order crack tensor cr

ijklE represents the cracking stiffness in the local material directions. 

In the current formulation, it is assumed, that there is no interaction between normal and shear 

components. Thus, the crack tensor is given by the following formulas. 
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Mode I crack stiffness equals 
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and mode II and III crack stiffness is assumed as: 

( )´ ´min ,cr cr cr

ijij F iiii jjjjE s E E = ,  (no summation of indices) (2.47) 

where ji  , and Fs  is a shear factor coefficient that defines a relationship between the normal 

and shear crack stiffness. The default value of Fs
 
is 20.  

Shear strength of a cracked concrete is calculated using the Modified Compression Field Theory 

of VECHIO and COLLINS (1986). 
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Where cf   is the compressive strength in MPa, ga is the maximum aggregate size in mm and w  

is the maximum crack width in mm at the given location. This model is activated by specifying 

the maximum aggregate size ga
 
otherwise the default behavior is used where the shear stress on 

a crack surface cannot exceed the tensile strength. 

The secant constitutive matrix in the material direction was formulated by ROTS and 

BLAUWENDRAAD in the matrix format. 

 EE)EE(-EE 1-crs +=  (2.49) 

Strain vector transformation matrix 
T  (i.e. global to local strain transformation matrix) can be 

used to transform the local secant stiffness matrix to the global coordinate system. 

  TETE sTs =  (2.50) 

It is necessary to handle the special cases before the onset of cracking, when the crack stiffness 

approaches infinity. Large penalty numbers are used for crack stiffness in these cases. 



 

Crack closure stiffness is controlled by the unloading factor (material parameter) 0 ≤ fU < 1.  

The value of 0 corresponds to unloading to origin (default value for backward compatibility),  

fU =1 means unloading direction parallel to the initial elastic stiffness.  

 

New stress state in the plastic model is computed using the predictor-corrector formula. 
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The plastic corrector p

ij  is computed directly from the yield function by return mapping 

algorithm. 
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The crucial aspect is the definition of the return direction ijl , which can be defined as  
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where ( )ijG  is the plastic potential function, whose derivative is evaluated at the predictor stress 

state t

ij  to determine the return direction.  

 

The failure surface of MENETREY, WILLAM is used in the current version of the material 

model. 
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In the above equations ( , , )    are Heigh-Vestergaard coordinates, cf  and tf   is compressive 

strength and tensile strength respectively. Parameter e  0510. , . defines the roundness of the 

failure surface. The failure surface has sharp corners if e = 05. , and is fully circular around the 

hydrostatic axis if e = 10. .   

The position of failure surfaces is not fixed but it can move depending on the value of strain 

hardening/softening parameter. The strain hardening is based on the equivalent plastic strain, 

which is calculated according to the following formula. 

 )min( p

ij

p

eq  =  (2.55) 

For Menétrey-Willam surface the hardening/softening is controlled by the parameter 1,0c , 

which evolves during the yielding/crushing process by the following relationship: 



 

2

)(


















=

c

p

eqc

f

f
c


 (2.56) 

In the above two formulas the expression )( p

eqcf  indicates the hardening/softening law, which is 

based on the uniaxial compressive test. The law is shown in Fig. 2-21, where the softening curve 

is linear, and the elliptical ascending part is given by the following formula: 

 ( )
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c eq
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f f f
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 (2.57) 
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The law on the ascending branch is based on strains, while the descending branch is based on 

displacements to introduce mesh objectivity into the finite element solution, and its shape is 

based on the work of VAN MIER. The onset of nonlinear behavior '

0cf  is an input parameter as 

well as the value of plastic strain at compressive strength p

c . The Fig. 2-21 shows typical values 

of these parameters. In general case, however, p

c should be calculated from the total strain at the 

peak by subtracting the elastic part 
'

1

p c
c

f

E
 = − , where 1  is the compressive strain when the 

compressive strength '

cf  is reached. Especially the choice of the parameter '

0cf  should be 

selected with care, since it is important to ensure that the fracture and plastic surfaces intersect 

each other in all material stages. On the descending curve the equivalent plastic strain is 

transformed into displacements through the length scale parameter cL . This parameter is defined 

by analogy to the crack band parameter in the fracture model in Sec. 2.2.3, and it corresponds to 

the projection of element size into the direction of minimal principal stresses. The square in 

(2.56) is due to the quadratic nature of the Menétry-Willam surface. 

Return direction is given by the following plastic potential 

 21 2
3

1
)( JIG ij

p +=   (2.58) 

where   determines the return direction. If   0  material is being compacted during crushing, 

if  = 0  material volume is preserved, and if   0  material is dilating. In general, the plastic 

model is non-associated, since the plastic flow is not perpendicular to the failure surface 



The return mapping algorithm for the plastic model is based on predictor-corrector approach as 

is shown in Fig. 2-22. During the corrector phase of the algorithm the failure surface moves 

along the hydrostatic axis to simulate hardening and softening. The final failure surface has the 

apex located at the origin of the Haigh-Vestergaard coordinate system. Secant method-based 

Algorithm 1 is used to determine the stress on the surface, which satisfies the yield condition and 

also the hardening/softening law. 

 

 

 

 

 

 



Algorithm 1:  (Input is ( 1) ( 1) ( ), ,n n p n

ij ij ij  − −  ) 

Elastic predictor: ( 1) ( )t n n

ij ij ijkl klE  −= +   (2.59) 

Evaluate failure criterion: ( 1)( , )p p t n p

A ij ijf F  −= ,  0= A  (2.60) 

If failure criterion is violated i.e. 0p

Af  

Evaluate return direction: 
( )p t

ij

ij

ij

G
m






=


 (2.61) 

Return mapping: ( 1)( , ) 0p t n p

ij B ij ij BF E m   −−  =    (2.62) 

Evaluate failure criterion: ( 1)( , )p p t n p

B ij B ij ij B ijf F E m m   −= −  +   (2.63) 

Secant iterations )(i as long as A B e  −    (2.64) 

New plastic multiplier increment: 
p

A

p

B

ABp

AA
ff

f
−

−
−=


  (2.65) 

New return direction: 

( 1)

( )
( )p t i

ij iji

ij

ij

G E m
m

 



− − 
=


 (2.66) 

Evaluate failure criterion: 
( ) ( 1) ( )( , )p p t i n p i

ij ij ij ijf F E m m   −= − +   (2.67) 

New initial values for secant iterations:  

  == B

pp

B

p

B fff ,0  (2.68) 

  ==== B

pp

BBA

p

B

p

A

p

B fffff ,,,0  (2.69) 

End of secant iteration loop 

End of algorithm update stress and plastic strains. 

 ( ) ( 1) ( )n p n p i

ij ij B ijm  −= +  ,     
( ) ( )n t i

ij ij B ijE m  = −  (2.70) 

 

The objective is to combine the above models into a single model such that plasticity is used for 

concrete crushing and the Rankine fracture model for cracking. This problem can be generally 

stated as a simultaneous solution of the two following inequalities. 

 
( 1)( ( )) 0p n f p

ij ijkl kl kl klF E   − +  − −     solve for kl

p  (2.71) 

 
( 1)( ( )) 0f n p f

ij ijkl kl kl klF E   − +  −  −      solve for kl

f  (2.72) 

Each inequality depends on the output from the other one, therefore the following iterative 

scheme is developed. 

 

 

Algorithm 2: 



Step 1:   ( 1) ( 1) ( 1) ( )( ( )) 0p n i f i cor i p

ij ijkl kl kl kl klF E b    − − −+  −  +  −    solve for 
( )i p

kl   

Step 2:   ( 1) ( ) ( )( ( )) 0f n i p i f

ij ijkl kl kl klF E   − +  −  −    solve for 
( )i f

kl                   

Step 3:   ( ) ( ) ( )i cor i f i f

ij ij ij   =  −   (2.73) 

Iterative correction of the strain norm between two subsequent iterations can be expressed as 

 
( ) ( )(1 )i cor f p i cor

ij ijb    = −   (2.74) 
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and b is an iteration correction or relaxation factor, which is introduced to guarantee 

convergence. It is to be determined based on the run-time analysis of f and p , such that the 

convergence of the iterative scheme can be assured. The parameters f and p  characterize the 

mapping properties of each model (i.e. plastic and fracture). It is possible to consider each model 

as an operator, which maps strain increment on the input into a fracture or plastic strain 

increment on the output. The product of the two mappings must be contractive to obtain a 

convergence. The necessary condition for the convergence is: 

 
(1 ) 1f pb  −   (2.75) 

If b  equals 0 , an iterative algorithm based on recursive substitution is obtained. The 

convergence can be guaranteed only in two cases:  

One of the models is not activated (i.e. implies f or 0p = ), 

There is no softening in either of the two models and dilating material is not used in the plastic 

part, which for the plastic potential in this work means 0 , (2.58). This is a sufficient but 

not necessary condition to ensure that f and 1p . 

It can be shown that the values of f and p  are directly proportional to the softening rate in 

each model. Since the softening model remains usually constant for a material model and finite 

element, their values do not change significantly between iterations. It is possible to select the 

scalar b  such that the inequality (2.75) is satisfied always at the end of each iteration based on 

the current values of f and p . There are three possible scenarios, which must be handled, for 

the appropriate calculation of b : 

 pf ,  where  is related to the requested convergence rate. For linear rate it can be 

set to 2/1= . In this case the convergence is satisfactory and 0=b . 

1 pf  , then the convergence would be too slow. In this case b can be estimated 

as 


 pf

b −= 1 , in order to increase the convergence rate.  

pf 1 , then the algorithm is diverging. In this case b should be calculated as 

pf
b




−= 1  to stabilize the iterations. 



This approach guarantees convergence as long as the parameters fp  ,  do not change 

drastically between the iterations, which should be satisfied for smooth and correctly formulated 

models. The rate of convergence depends on material brittleness, dilating parameter   and finite 

element size. It is advantageous to further stabilize the algorithm by smoothing the parameter b  

during the iterative process: 

 ( ) ( 1)( ) / 2i ib b b−= +  (2.76) 

where the superscript i  denotes values from two subsequent iterations. This will eliminate 

problems due to the oscillation of the correction parameter b . Important condition for the 

convergence of the above Algorithm 2 is that the failure surfaces of the two models are 

intersecting each other in all possible positions even during the hardening or softening. 

Additional constraints are used in the iterative algorithm. If the stress state at the end of the first 

step violates the Rankine criterion, the order of the first two steps in Algorithm 2 is reversed. 

Also, concrete crushing in one direction influences the cracking in other directions. It is assumed 

that after the plasticity yield criterion is violated, the tensile strength in all material directions is 

set to zero. 

On the structural level secant matrix is used to achieve a robust convergence during the strain 

localization process. 

The proposed algorithm for the combination of plastic and fracture models is graphically shown 

in Fig. 2-23. When both surfaces are activated, the behavior is quite like the multi-surface 

plasticity (SIMO et al. 1988). Contrary to the multi-surface plasticity algorithm the proposed 

method is more general in the sense that it covers all loading regimes including physical changes 

such as for instance crack closure. Currently, it is developed only for two interacting models, and 

its extension to multiple models is not straightforward. 

There are additional interactions between the two models that need to be considered to properly 

describe the behavior of a concrete material: 

(a) After concrete crushing the tensile strength should decrease as well 

(b) According to the research work of Collins (VECHIO and COLLINS (1986)) and 

coworkers it was established the also compressive strength should decrease when 

cracking occurs in the perpendicular direction. This theory is called compression field 

theory and it is used to explain the shear failure of concrete beams and walls. 

The interaction (a) is resolved by adding the equivalent plastic strain to the maximal fracturing 

strain in the fracture model to automatically increase the tensile damage based on the 

compressive damage such that the fracturing strains satisfies the following condition: 

ˆ f pt
kk eq

c

f

f
 


 


     (2.77) 

The compressive strength reduction (b) is based on the following formula based proposed by 

Collins: 

c c cr f =  

 lim

1

1
, 1.0

0.8 170
c c cr r r


=  

+
 (2.78) 



Where 
1 is the tensile strain in the crack. In ATENA the largest maximal fracturing strain is 

used for 
1 and the compressive strength reduction is limited by lim

cr . If lim

cr is not specified, then 

no compression reduction is considered. 

 

The several ATENA material models are based on the above theories:  

CC3DCementitious,  

CC3DNonLinCementitious, 

CC3DNonLinCementitious2, 

 CC3DNonLinCementitious2Variable,  

CC3DNonLinCementitious2Fatigue (described in section 2.2.10), 

 CC3DNonLinCementitious2User,  

CC3DNonLinCementitious2FRC (described in section 2.2.11), 

CC3DNONLINCEMENTITIOUS2SHCC,  

CC3DNONLINCEMENTITIOUS2HPFRC (described in section 2.2.12),  

and CC3DNonLinCementitious3 (described in section 2.2.13),  

with the following differences: CC3DCementitious assumes linear response up to the point when 

the failure envelope is reached both in tension and compression. This means that there is no 

hardening regime in Fig. 2-21. The material CC3DNonLinCementitious on the contrary assumes 

a hardening regime before the compressive strength is reached. The material 

CC3DNonLinCementitious2 is equivalent to CC3DNonLinCementitious but purely incremental 

formulation is used (in CC3DNonLinCementitious a total formulation is used for the fracturing 

part of the model), therefore this material can be used in creep calculations or when it is 

necessary to change material properties during the analysis. The material 

CC3DNonLinCementitious2Variable is based on the material CC3DNonLinCementitious2 and it 

allows to define history evolution laws for selected material parameters. The following material 

parameters can be defined using an arbitrary evolution laws: young modulus E , tensile strength 
'

tf , compressive strength '

cf  and '

0cf . It is the responsibility of the user to define the parameters 

in a meaningful way. It means that at any time (please note compressive strength parameters '

cf  

and '

0cf  are defined as negative values in ATENA): 

 ' '1
2 0t cf f  (2.79) 

 ' ' '

0 0 0, 0c c cf f f   (2.80) 

The material CC3DNonLinCementitious2User allows for user defined laws for selected material 

laws such as: diagrams for tensile and softening behavior (see Fig. 2-24 and Fig. 2-25), shear 

retention factor (Fig. 2-26) and the effect of lateral compression on tensile strength (Fig. 2-27). 
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In the user defined material mode II and III crack stiffness are evaluated with the help of the 

shear retention factor gr  
as: 

~ 

~ 

~ 



 
1

gcr

ijij

g

r G
E

r
 =

−
 (2.81) 

where ji  , min( , )i j

g g gr r r=  is the minimum of shear retention factors on cracks in directions 

i , j , and G  is the elastic shear modulus. Shear retention factor on a crack in direction i is 

evaluated from the user specified diagram as shown in Fig. 2-26. 

In the above diagrams tL  and cL represents the crack band size and crush band size respectively 

as it is defined Section 2.1.3. t

chL  and c

chL represents a size for which the tensile and compression 

diagram respectively is valid. For instance, it represents the measuring base that was used in an 

experiment to determine the strain values in the diagrams above. loc  represents the strain value, 

after which strain localization can be expected. Usually, this is the strain after which the diagram 

is entering into the softening regime. For instance, the strain value that is used to determine the 

tensile strength is calculated based on the following assumptions: 

1

f f

locif     

1 1

f f =  

else   

1 1( )f f f f t
tloc loc
ch

L

L
   = + −   (2.82) 

The calculation of the strain value for graphs in Fig. 2-25 and Fig. 2-26 is analogical to Eq. 

(2.82) but the appropriate values of loc , L  and chL should be used. It should be noted that the 

strain 1

f is the strain that is calculated from the strain tensor at the finite element integration 

points, while the strain 1

f is used to determine the current tensile strength from the provided 

stress-strain diagram (see Fig. 2-24). The equation (2.82) then represents a scaling that considers 

the difference between the experimental size and the size of the integration point. This approach 

guarantees that the same amount of energy is dissipated when using large and small finite 

elements. 

It is also possible to define a material law for the shear strength of a cracked concrete and for the 

compressive strength reduction after cracking.  

Compressive strength of cracked concrete  1( )f

c c cr f  =   (2.83) 

Shear strength of cracked concrete    
1( )f

ij sh tf f     (2.84) 

It should be realized that the compressive strength of the cracked concrete i.e. (2.83) is a 

function of the maximal fracturing strain, i.e. maximal tensile damage at the given point. The 

shear strength should be a function of the crack opening. Because of that the shear strength is 

specified as a function of the fracturing strain 1

f  after the localization transformation (2.82). 

The shear strength law is specified as a value relative to tf
 . The compressive strength reduction 

is specified as a function relative to cf  . 
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In heavily reinforced concrete structures, the cracks cannot fully developed and concrete 

contributes to the steel stiffness. This effect is called tension stiffening and in 

CC3DNonLinCementitious2 material it can be simulated by specifying a tension stiffening 

factor tsc . This factor represents the relative limiting value of tensile strength in the tension 

softening diagram. The tensile stress cannot drop below the value given by the product of ts tc f  

(see Fig. 2-28). The recommended default value for tsc is 0.4 as recommended by CEB-FIP 

Model Code 1990. 
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In heavily reinforced concrete structures, or structures with large finite elements, when many 

reinforcement bars are crossing each finite element, the crack band approach described in 

Section 2.1.3 will provide too conservative results, and the calculated crack widths may be 



overestimated. This is the consequence of the fact that the crack band approach assumes that the 

crack spacing is larger than a finite element size. In heavily reinforced structures, or if large 

finite elements are used, it may occur that the crack spacing will be smaller than finite element 

size. This is especially true if shell/plate elements are used. In this case, typically large finite 

elements can be used, and they usually contain significant reinforcement. In these cases, it is 

useful to provide the crack spacing manually, since otherwise the program will overestimate the 

cracking and due to that also larger deflections may be calculated. The program ATENA allows 

the user to manually define the crack spacing. This user defined spacing is used as crack band 

size tL  in cases when the user defined crack spacing is smaller than the tL  that would be 

calculated by formulas presented in Section 2.1.3. 

 

Similarly, to the SBETA material, the Cementitious material family offers the choice of fixed 

and rotated crack models (see section 2.1.6). The fixed crack material parameter determines at 

which maximum residual tensile stress level the crack direction gets fixed. In other words, 0.0 

means fully rotated crack model (as 0 in SBETA), 1.0 means fixed crack model (as 1 in 

SBETA), values between 0.0 and 1.0 determine the crack direction locking level, e.g., 0.7 fixes 

the crack direction as soon it opens so far that the softening law drops to 0.7 times the [initial] 

tensile strength. 

 

For modelling fatigue behavior of concrete (CEB 1988 and SAE AE-4) under tensile load, a new 

material has been implemented in ATENA. The new material 

(CC3DNonLinCementitious2Fatigue) is based on the existing three-dimensional fracture plastic 

material (CC3DNonLinCementitious2) and uses a stress-based model (2.2.10.1). It has an 

additional parameter, fatigue , and additional data attributes for base , N , and fatigue , used in the 

damage calculation as described in section 2.2.10.2. For details and validation against tests 

conducted by KESSLER-KRAMER (2002) see ČERVENKA, PRYL (2007) or PRYL, 

CERVENKA, PUKL (2010). Modelling 3-point bending tests with this material is presented in 

PRYL, PUKL, CERVENKA (2013) and PRYL, D., MIKOLÁŠKOVÁ, J., PUKL, R. (2014).  

 

In this approach the fatigue is represented by the so-called S-N curves relating the applied stress, 

S, and the number of cycles, N, to failure. Such curves must be determined by tests, see Fig. 

2-29.  

For steel reinforcement bars the performance can be normally expressed as a simple power law 

by BASQUIN (1910). 

 m

r N C =  (2.85) 

where r  is the stress range, N  is the number of cycles to failure and m and C are constants. 

This means a linear relationship between  and N in a full logarithmic diagram. The equation 

(2.85) is generally valid for the high-cycle range. 

For plain concrete, the performance can normally be expressed as a straight line in a semi-

logarithmic diagram of the form: 

 ( )max 1 1 logR N
f


= − −  (2.86) 



where max is the maximum stress, f is static concrete strength, min

max

R



= , 

min  is minimum 

stress and   is a material constant. The equation (2.86) holds for both compressive and tensile 

stresses, however, the value of   is not necessarily the same for tensile and compressive 

behavior of a material. The value should be determined from experiments. For example, 

 =0.052 was used based on the experimental results for load levels 0.7 and 0.9 statF  when 

modelling the test on a probe sealed during curing with a notch from section 3.5.2.4 of 

KESSLER-KRAMER (2002) for validation.  

 

 

The S-N relations mentioned above are mainly obtained by constant amplitude tests. However, 

in real structures the stresses are varying. One method which can be of help in this context is the 

well-known Palmgren-Miner hypothesis PALMGREN (1924), MINER (1945). 

 
1

1
k

i

i i

n

N=

=  (2.87) 

where in  is the number of constant amplitude cycles at stress level i , iN  is the number of cycles 

to failure at stress level i , and k  is the number of stress levels. As a rough tool this hypothesis is 

useful, especially concerning steel. It can also be used for concrete although some investigations 

have suggested that a value lower than 1 should be used. 



 

In the implemented model, fatigue damage consists of a contribution based on cyclic stress 

(2.2.10.2.1), and an additional contribution from crack opening and closing in each cycle 

(2.2.10.2.3). The former is dominant before cracking occurs, the latter in already cracked 

regions.  

 

The number of cycles to failure N  is determined from a simple stress based model, so called S-

N or Wöhler curve as described in the previous section 2.2.10.1. 

( )1 1 log
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
= − − , i.e., 
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 
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 
 −
 
 = , where upper  stands for the maximum 

tensile or compressive stress and f  for the corresponding strength, tf  or cf , base

upper

R



= . 

Then, the damage due to fatigue after n  cycles is calculated as an increase of the maximum 

fracturing strain f

ij ˆ  (see section 2.2.3). The maximum fracturing strain in each principal 

direction is adjusted by adding  

fatigue

fatigue

w

ElemSize
 = , where fatigue fail

n
w w

N
=  and the failing displacement for the given stress 

_ _ ( )fail upperw invert soft law =  (see Fig. 2-30).  

 

 



In ATENA 4.0, a single value of fatigue  is used to calculate fatigue damage caused by both 

tensile and compressive stresses. So far, there is also no special provision implemented for loads 

crossing zero, i.e., changing from tension to compression and back in each cycle, which lead to 

faster damage according to experimental results presented in CEB 1988 and SAE AE-4. In that 

situation, the damage is calculated separately for cyclic loading from 0 to max. compression and 

from 0 to max. tension, and then the worse of both damage values is considered. It should be 

also noted that the damage is only introduced in form of maximum fracturing strain, which has 

no direct impact on compressive material properties, i.e., the fatigue damage effectively only has 

influence on tensile behaviour of the material.  

 

Hardcoded definition of damage evolution during the fatigue process, with the breakpoints  

wf1 = wfr_1 * wfail and wf2 = wfr_2 * wfail.  

fatiguew  = n * wf1 / N1 for n_tot < N1 

 wf1 + ((n_tot - N1) * (wf2 - wf1) / (N2 - N1)) - wf_curr for N1 <= n_tot < N2 

 wf2 + ((n_tot - N2) * (wfail - wf2) / (N - N2)) - wf_curr for N2 <= n_tot < N 

 wfail * n_tot / N - wf_curr for N <= n_tot 

where 

n_tot = n + N_beg, N_curr = N - N_beg,  

N_beg =  wf_curr * N1 / wf1  for wf_curr < wf1 

 N1 + (wf_curr - wf1) * (N2 - N1)/(wf2 - wf1) for wf1 <= wf_curr < wf2 

 N2 + (wf_curr - wf2) * (N - N2)/( wfail - wf2) for wf2 <= wf_curr 

0 < N_beg < N 

and  

wfr_1 = 0.1, Nr_1  = 0.1, wfr_2 = 0.5, Nr_2  = 0.9, N1 = Nr_1 * N, N2 = Nr_2 * N.  

 

The damage due to cracks that open and close during the cyclic loading is determined as 

fatigueCOD

fatigueCOD

w

ElemSize
 = , where /fatigueCOD fatigue COD fatigueCODloadw n R c COD=  2,

CODR  is the crack 

opening ratio (similar to the cycle asymmetry ratio R  used in the stress based contribution; with 

a bottom limit of 0.01), and COD  denotes the difference between the maximum and minimum 

crack opening during a cycle. The resulting fatigueCOD  is added to fatigue  before the fatigue 

damage is introduced into the material. 

 

1 Available since version 5.3.0 

2 In ATENA versions prior to 5.1.3 and 5.3.4: fatigueCOD fatigue fatigueCODloadw n c COD=   



 

It is recommended to introduce the fatigue induced damage into the unloaded structure (i.e., at 

the lower stress level). Several other approaches of introducing the damage into the model were 

also tested, i.e., introducing the damage at the upper load level or during reloading, but they 

usually bring more convergence problems, especially during unloading.  

 

The CC3DNonLinCementitious2FRC material model is based on CC3DNonLinCementitious2 

as described above in Sections 2.2.1 - 2.2.6. In case of FRC, the fibers added to the concrete 

mixture increase the residual strength and ductility of the material, which is reflected by the 

tension softening law. In the FRC material model, the added fractural energy approach proposed 

by Juhász (2013) is implemented in the stress-crack width diagram. The total fractural energy of 

the fiber reinforced concrete reads: 

 FFRC F FfG G G= +  ,  

where GFFRC and GF, are the fractural energies of the fiber reinforced concrete and the plain 

concrete matrix, respectively, and GFf is the additional fractural energy, which corresponds to the 

pull-out energy of the fibers.   

 

The fracture energy added by the fibers is assumed as: 

 Ff f tG w f=   , 

where wf is the maximum crack opening width of the FRC, which depends on the type and 

length of the fibers, and ft is the post-cracking residual tension strength. It should be noted that 

the value of ft defined as fFtu in the fib model code 2010 (Taerwe and Matthys, 2013).  

 

The CC3DNONLINCEMENTITIOUS2SHCC is suitable for fibre reinforced concrete, such as 

SHCC (Strain Hardening Cementitious Composites) and HPFRCC or UHPFRC (high and ultra-

high performance fiber reinforced concrete) materials. The theory of this material model is 

identical to those described in Sections 2.2.1 - 2.2.6. The tensile softening regime (Fig. 2-33) and 

the shear retention factor (Eq. (2.94)) are modified based on the model, proposed in KABELE, P. 

(2002). This model is based on a notion of a representative volume element (RVE), which 

contains distributed multiple cracks (hardening) as well as localized cracks (softening) – see Fig. 

2-32. 
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a) multiple cracking regime (hardening) 

• A set of parallel planar multiple cracks forms when maximum principal stress max = fc (first 

crack strength). 

• Crack planes are perpendicular to the direction of max (-axis). 

• The direction of a crack set is fixed. 

• Secondary crack set may form in direction perpendicular to primary set if the maximum 

normal stress in the corresponding direction (-axis) exceeds fc.  

• Cracks may slide if the direction of principal stress changes. 

• Crack opening and sliding are resisted by fiber bridging. 

• Crack opening and sliding displacements are averaged over the RVE as cracking strains 

ij

mc ,
, ij

mc ,
(notation: lower indices – components of tensor or vector, upper indices – 

multiple or localized crack mc, lc and association with primary or secondary crack direction , 

) 

b) localized cracking regime (softening) 

• A localized crack forms within a set of multiple cracks if the corresponding normal cracking 

strain exceeds the level of mc
mb (cracking strain capacity, a material constant). 

• Opening and sliding displacements of the i , i localized cracks are treated by the crack 

band model (i.e. they are transformed into cracking strains ij

lc,
, ij

lc,
by dividing them with 

corresponding band width w
c or w

c). 

The overall strain of the RVE is then obtained as a sum of strain of material between cracks 

(which may possibly contain nonlinear plastic strain due to compressive yielding), cracking 

strains due to multiple cracks, and cracking strains due to localized cracks:  

 ij ij

s

ij

mc ,

ij

mc ,

ij

lc,

ij

lc ,
 (2.88) 

where 
s

ij  represents the strain of the continuous material between cracks. 



 

The crack-normal stress components are related to cracking strains corresponding to opening of 

multiple and localized cracks by piecewise linear relations depicted in Fig. 2-33 [although linear 

hardening and softening are shown, a user should be allowed to input piecewise linear curves]. 

Note that for multiple cracks, it is assumed that they do not close unless exposed to crack-normal 

compression (plasticity-like unloading) while a localized crack is assumed to close so that 

normal stress decreases linearly to reach zero at zero COD [these assumptions may need to be 

revised in the future to some combination of plasticity and damage-like closure]. See also section 

2.2.3. 
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The model for crack sliding phenomena is implemented by means of a variable shear retention 

factor  The shear retention factor is defined as a ratio of the material post-cracking shear 

stiffness Gc to its elastic shear stiffness G, 

 
cG

G
 = . (2.89) 

Let us determine stiffness Gc, while considering the most general 2-D case of an element, which 

contains two perpendicular sets of multiple cracks and two perpendicular localized cracks. If the 

problem is defined in plane −, then the total engineering shear strain has only one non-zero 

component, which is obtained as: 

 2
s

2
mc ,

2
mc ,

2
lc ,

2
lc ,

, (2.90) 

which can be rewritten with use of the shear bridging model (Kabele, 2000) as: 
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M
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G
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Functions M and L are defined by 

 ( )
2

f fV k G
M 


=  (2.92) 
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  +      

, for  0    

 ( ) 0L  = , for 0    (2.93) 

Here Vf is the fiber volume fraction, Gf is the fiber shear modulus, Ef is the fiber Young’s 

modulus, df is the fiber diameter, and k is the fiber cross-section shape correction factor. The 

quantity  and  indicates the crack opening in direction  and  respectively. The parameter 

0 represents the limiting value of the crack opening displacement, when no tensile stress can be 

transferred across the crack, i.e. the point when the stress-displacement diagram in Fig. 2-33 

drops to zero. These parameters are to be supplied by the user except for the parameter 0 , 

which is automatically extracted from the provided stress-strain law for tension. The shear 

retention factor is then expressed as 

 

, ,

1

1 1 1 1
1

( ) ( ) ( ) ( )mc mc

c c

G
M M w L w L     
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

 

=
 
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   

 (2.94) 

Note that for an element containing only multiple cracks (before localization) 0  and 

1/L terms approach zero. For an uncracked element, 
mc , mc ,

0  and 1/M and 1/L 

approach zero, giving =1.  

 

The CC3DNonLinCementitious3 fracture-plastic constitutive model is an advanced version of 

the CC3DNonLinCementitious2 material that can handle the increased deformation capacity of 

concrete under triaxial compression. It is suitable for problems including confinement effects 

such as confined reinforced concrete members (columns, bridge piers), nuclear vessels and 

triaxial compression tests of plain concrete. A detailed description of the model formulation is 

presented in PAPANIKOLAOU and KAPPOS (2007). In this section, only the main differences 

between the CC3DNonLinCementitious3 and the CC3DNonLinCementitious2 model are 

described, which are mainly focused on the plasticity part of the model (section 2.2.4). 

 

The position of failure surface can expand and move along the hydrostatic axis (simulating the 

hardening and softening stages), based on the value of the hardening/softening parameter (κ). In 

the present model, this parameter identifies with the volumetric plastic strain (GRASSL et al., 

2002) : 

 p p p p

v 1 2 3dκ dε dε dε dε= = + +  (2.95) 

The instantaneous shape and location of the loading surface during hardening is defined by a 

hardening function (k), which depends on the hardening/softening parameter (κ). This function is 

directly incorporated in the Menétrey-Willam failure surface equations  (2.54), operating as a 



scaling factor on the compressive concrete strength (fc). It has the same elliptic form with 

CC3DNonLinCementitious2  (2.57), but herein in terms of the plastic volumetric strain: 

 ( )

2
p p

v,t vp

v o o p

v,t

ε ε
k(κ) k(ε ) k 1 k 1

ε

 −
= = + −  −   

 

 (2.96) 

where p

v,tε  is the plastic volumetric strain at uniaxial concrete strength (onset of softening) and ko 

is the value that defines the initial yield surface that bounds the initial elastic regime (onset of 

plasticity). At the end of the hardening process, the hardening function retains a constant value 

of unity and the material enters the softening regime, which is controlled by the softening 

function (c). This function simulates the material decohesion by shifting the loading surface 

along the negative hydrostatic axis. It is assumed that it follows the softening function originally 

proposed by VAN GYSEL and TAERWE (1996) for uniaxial compression: 

 

2

2p

v 1

2

1

c(κ) c(ε ) n 1
1

n 1

 
 
 

= =  − +   −  
 

 (2.97) 

where: 

 
p p

1 v v,tn ε / ε=  (2.98) 

 
p p

2 v,t v,tn (ε t) / ε= +  (2.99) 

Parameter t in equation (2.99) controls the slope of the softening function and the outmost square 

is necessary due to the quadratic nature of the loading surface. The softening function value 

starts from unity and complete material decohesion is attained at c = 0. The evolution of both 

hardening and softening functions with respect to the hardening/softening parameter is 

schematically shown in Fig. 2-34. 
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The present plasticity model incorporates a non-associated flow rule using a polynomial plastic 

potential function (g), with Lode angle (θ) dependency and adjustable order (n): 

 

n

c c c

ρ 1 ρ ξ
g A C (B C)(1 cos3θ) a

2k c f k c f k c f

   
=  + + − −  + −          

 (2.100) 

Parameters A, B and C define the shape of the plastic potential function in stress space and their 

calibration is based on the assumption that the inclination (ψ) of the incremental plastic strain 

vector identifies with the inclination of the total plastic strain vector at three distinct stress states, 

namely the uniaxial, biaxial and triaxial compressive concrete strength (Fig. 2-35). The attraction 

constant (a) is included for mathematical clarity and is not a user parameter, due to plastic 

potential function differentiation in the flow rule.  



 

 

A detailed calibration scheme for the plasticity model parameters, based on and extensive 

experimental database can be found in PAPANIKOLAOU and KAPPOS (2007) and suggested 

values (including the fracture model parameters) for various uniaxial compressive concrete 

strengths (fc) are shown in the following table (see Atena Input File Format document for the 

material definition details): 

fc (ΜPa) 20 30 40 50 60 70 

Εc (MPa) 24377 27530 30011 32089 33893 35497 

ν 0.2 0.2 0.2 0.2 0.2 0.2 

ft (MPa) 1.917 2.446 2.906 3.323 3.707 4.066 

λt 1.043 1.227 1.376 1.505 1.619 1.722 

e 0.5281 0.5232 0.5198 0.5172 0.5151 0.5133 

fco (MPa) -4.32 -9.16 -15.62 -23.63 -33.14 -44.11 

p

v,tε  4.92∙10-4 6.54∙10-4 8.00∙10-4 9.35∙10-4 1.06∙10-3 1.18∙10-3 

t 1.33∙10-3 2.00∙10-3 2.67∙10-3 3.33∙10-3 4.00∙10-3 4.67∙10-3 

A 7.342177 5.436344 4.371435 3.971437 3.674375 3.43856 

B -8.032485 -6.563421 -5.73549 -5.430334 -5.202794 -5.021407 

C -3.726514 -3.25626 -3.055953 -2.903173 -2.797059 -2.719067 

n 3 3 3 3 3 3 

Gf (MN/m) 4.87∙10-5 6.47∙10-5 7.92∙10-5 9.26∙10-5 1.05∙10-4 1.17∙10-4 



 

fc (ΜPa) 80 90 100 110 120 

Εc (MPa) 36948 38277 39506 40652 41727 

ν 0.2 0.2 0.2 0.2 0.2 

ft (MPa) 4.405 4.728 5.036 5.333 5.618 

λt 1.816 1.904 1.986 2.063 2.136 

e 0.5117 0.5104 0.5092 0.5081 0.5071 

fco (MPa) -56.50 -70.30 -85.48 -102.01 -114.00 

p

v,tε  1.30∙10-3 1.41∙10-3 1.52∙10-3 1.62∙10-3 1.73∙10-3 

t 5.33∙10-3 6.00∙10-3 6.67∙10-3 7.33∙10-3 8.00∙10-3 

A 3.245006 3.082129 2.942391 2.820644 2.713227 

B -4.871993 -4.745867 -4.637358 -4.542587 -4.458782 

C -2.659098 -2.611426 -2.572571 -2.540158 -2.512681 

n 3 3 3 3 3 

Gf (MN/m) 1.29∙10-4 1.40∙10-4 1.50∙10-4 1.61∙10-4 1.71∙10-4 

 

Von Mises plasticity model called also as J2 plasticity is based only on one parameter k. The 

yield function is defined as: 

 ( )2( ) 0p p

ij eqF J k = − =  (2.101) 

where 
2J  denotes the second invariant of stress deviator tensor. The parameter 

( ) ( )1
3

p p

eq y eqk   =  is the maximal shear stress and y  is the uniaxial yield stress. This 

parameter controls the isotropic hardening of the yield criterion. 

 ( ) ( )2
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, :
incN

p p p p p
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i

H    
=

= + =   ε ε  (2.102) 

y  is the yield stress, H  the hardening modulus and 
p

eq  is the equivalent plastic strain 

calculated as a summation of equivalent plastic strains during the loading history. 

In case of von Mises plasticity the plastic potential function is identical with the yield function: 

 )()( ij

P

ij

p FG  =  (2.103) 

The associated flow rule is assumed. The background information can be found in (CHEN, 

SALEEB 1982, Sec.5.4.2). 

The Von Mises model could be used to model cyclic steel behavior including Bauschinger 

effect. In this case the yield function is modified as: 



 ( ) ( ) ( )1
2 0: ( 1) 0p

eqk r k − − − − − =σ X σ X  (2.104) 

where σ  is the deviatoric stress, 0k  is an initial value of ( )p

eqk   according to (2.102), X is the so 

called back stress controlling the kinematic hardening: 

 2
3 1 2

p p

eqk k  =  − X ε X  (2.105) 

In equations (2.104) and (2.105) quantities 
1 2, ,r k k  are material parameters for the cyclic 

response. If r  is non-zero, the cyclic model is activated, and it controls the radius of the Von 

Mises surface. If 1r =  the yielding will start exactly when y  is reached. For lower values, the 

non-linear behavior starts earlier, and the slope of the response is mainly affected by parameter 

1k  (larger value – higher slope). Parameter 
2k  on the other hand affects the memory of the cyclic 

response. Some examples of various parameter combinations are shown at Fig. 2-36. 
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Drucker-Prager plasticity model is based on a general plasticity formulation that is described in 

Section 2.2.4. The yield function is defined as: 

 F I J kDP

p

ij( ) = + − =1 2 0  (2.106) 

Where   and k  are parameters defining the shape of the failure surface. They can be estimated 

by matching with the Mohr-Coulomb surface. If the two surfaces are to agree along the 

compressive meridian, i.e. 00 = , the formulas are: 
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 
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 
= =

− −
 (2.107) 

This corresponds to a outer cone to the Mohr-Coulomb surface. The inner cone, which passes 

through the tensile meridian where 060 =  has the constants given by the following expressions: 

 
( ) ( )
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c
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+ +
 (2.108) 

The position of failure surfaces is not fixed but it can move depending on the value of strain 

hardening/softening parameter. The strain hardening is based on the equivalent plastic strain, 

which is calculated according to the following formula. 

 )min( p

ij

p

eq  =  (2.109) 

Hardening/softening in the Drucker-Prager model is controlled by the parameter k . This 

parameter is selected such that the surface at the peak passes through the uniaxial compressive 

strength, and it changes according to the following expression. 
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The symbol k’ in the above formula replaces k in (2.106). In the above two formulas the 

expression )( p

eqcf  indicates the hardening/softening law, which is based on the uniaxial 

compressive test. The law is shown in Fig. 2-37.  

 

 

Return direction is given by the following plastic potential: 

 21 2
3

1
)( JIG ij

p +=   (2.111) 



where   determines the return direction. If   0  material is being compacted during crushing, 

if  = 0  material volume is preserved, and if   0  material is dilating. In general, the plastic 

model is non-associated, since the plastic flow is not perpendicular to the failure surface 

The return mapping algorithm for the plastic model is based on predictor-corrector approach as 

is shown in Fig. 2-22. During the corrector phase of the algorithm the failure surface moves 

along the hydrostatic axis to simulate hardening and softening. The final failure surface has the 

apex located at the origin of the Haigh-Vestergaard coordinate system. Secant method-based 

Algorithm 1 is used to determine the stress on the surface, which satisfies the yield condition and 

also the hardening/softening law. 

 

In some situations, none of the standard material models available in ATENA can describe the 

behavior sufficiently. Many such cases can be handled by defining user laws in the fracture-

plastic material model (see CC3DNonLinCementitious2User described in section 2.2.6), in the 

others the user can provide a dynamic link library implementing his own material model. The 

user material is based on the elastic isotropic material, adding new material parameters and state 

variables (both limited to floating point values). See the User Material DLL Manual for 

description and reference, and the CCUserMaterialExampleDLL directory in Atena Science 

Examples for an example project including the source code in C and a window help file version 

of the manual, AtenaV4_UserMaterialDLL.chm. Please note that the behavior of the user model 

may have influence on convergence of the analysis.  

 

The interface material model can be used to simulate contact between two materials such as for 

instance a construction joint between two concrete segments or a contact between foundation 

and concrete structure. The interface material is based on Mohr-Coulomb criterion with tension 

cut off. The constitutive relation for a general three-dimensional case is given in terms of 

tractions on interface planes and relative sliding and opening displacements. 
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For two-dimensional problems second row and column are omitted. 

The initial failure surface corresponds to Mohr-Coulomb condition (2.113) with ellipsoid in 

tension regime. After stresses violate this condition, this surface collapses to a residual surface 

which corresponds to dry friction. 
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In tension the failure criterion is replaced by an ellipsoid, which intersect the normal stress axis 

at the value of tf  with the vertical tangent and the shear axis is intersected at the value of c (i.e. 

cohesion) with the tangent equivalent to − . 

The parameters for the interface model cannot be defined arbitrarily; there is certain dependence 

of some parameters on the others. When defining the interface parameters, the following rules 

should be observed: 
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 (2.114) 

It is recommended that parameters , ,tc f   are always greater than zero. In cases when no 

cohesion or no tensile strength is required, some very small values should be prescribed. 
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In general three-dimensional case   in Fig. 2-38 and equation (2.113) is calculated as: 
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The nnK , ttK  denote the initial elastic normal and shear stiffness, respectively. Typically for 

zero thickness interfaces, the value of these stiffnesses correspond to a high penalty number. It is 

recommended not to use extremely high values as this may result in numerical instabilities. It is 

recommended to estimate the stiffness value using the following formulas  

 nn

E
K

t
= ,     tt

G
K

t
=  (2.116) 

where E and G  is minimal elastic modulus and shear modulus respectively of the surrounding 

material. t  is the width of the interface zone. Its value can be selected either based on the reality. 

For instance, for mortar between masonry bricks the value is typically 10-20 mm. Alternatively, 

it can be estimated as a dimension, which can be considered negligible with respect to the 

structural size. For instance, in case of a dam analysis, where the dam dimensions are typically in 

the order of 100 meters, the width of the interface zone can be estimated to be 0.5 meters. It is 



suitable due to numerical reasons if stiffness is about 10 times of the stiffness of adjacent finite 

elements.  

There are two additional stiffness values that need to be specified in the ATENA input. They are 

denoted in Fig. 2-39 as min

nnK and min

ttK . They are used only for numerical purposes after the 

failure of the element to preserve the positive definiteness of the global system of equations. 

Theoretically, after the interface failure the interface stiffness should be zero, which would mean 

that the global stiffness will become indefinite. These minimal stiffnesses should be about 0.001 

times of the initial ones. 

It is possible to define evolution laws for tensile as well as shear softening by arbitrary 

multilinear laws. Examples of such laws are shown in Fig. 2-40. The figure describes bi-linear 

softening laws. The break point of this law can be determined for instance by the formula 

proposed by Bruehwiler and Wittman (1990). 
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The evolution law depends on the equivalent nonlinear interface relative displacement  

 2 2 2

1 2

f

eq f f fu u v v =  +  +    in 3D and 2 2f

eq f fu u v =  +   in 2D (2.118) 

Where fu and fiv are the inelastic components of the relative interface displacement on the 

basis of their decomposition into elastic and nonlinear, i.e. fracturing part. 

 
e f

i i fi

u u u

v v v

 =  + 

 =  + 
 (2.119) 

This approach ensures that the degradation in shear affects also tensile strength and vice versa. 

For instance, when the interface is damaged in shear, the tensile strength is reduced as well. The 

typical behavior of the interface model with the softening evolution laws is shown in Fig. 2-39 

by the dotted lines. The default behavior when no softening law is given is brittle with 

immediate drop to zero in tension and to the residual dry friction in shear. The behavior is shown 

in Fig. 2-39 by the solid black line. 

When user softening laws are defined for the interface material, it is recommended that the 

softening law for cohesion is always more ductile then the one for tensile strength, i.e. the 

cohesion should be higher than the tensile strength at any time during the softening process. 

ueq

f  ueq

f  



 

 

 

Reinforcement can be modeled in two distinct forms: discrete and smeared. Discrete 

reinforcement is in form of reinforcing bars and is modeled by truss elements. The smeared 

reinforcement is a component of composite material and can be considered either as a single 

(only one-constituent) material in the element under consideration or as one of the more such 

constituents. The former case can be a special mesh element (layer), while the later can be an 

element with concrete containing one or more reinforcements.  In both cases the state of uniaxial 

stress is assumed, and the same formulation of stress-strain law is used in all types of 

reinforcement. More info about discrete reinforcement is available in Section 10.2.3 Discrete 

Reinforcement Embedded in Solid Elements, located near the end of this manual. 

 

The bilinear law, elastic-perfectly plastic, is assumed as shown in Fig. 2-42. 



 

The initial elastic part has the elastic modulus of steel Es. The second line represents the 

plasticity of the steel with hardening and its slope is the hardening modulus Esh. In case of 

perfect plasticity Esh =0. Limit strain L represents limited ductility of steel.  

 

The multi-linear law consists of four lines as shown in Fig. 2-43. This law allows to model all 

four stages of steel behavior: elastic state, yield plateau, hardening and fracture. The multi-line is 

defined by four points, which can be specified by input. 

 

The above-described stress-strain laws can be used for the discrete as well as the smeared 

reinforcement. The smeared reinforcement requires two additional parameters: the reinforcing 

ratio p (see Section 2.1.1.1) and the direction angle   as shown in Fig. 2-44.  



 

The spacing s of the smeared reinforcement is assumed infinitely small. The stress in the 

smeared reinforcement is evaluated in the cracks, therefore it should also include a part of stress 

due to tension stiffening (which is acting in concrete between the cracks, section 2.1.9). 

 
' '

scr s ts  = +  (2.120) 

where 
'

s  is the steel stress between the cracks (the steel stress in smeared reinforcement), 
'

scr  

is the steel stress in a crack. If no tension stiffening is specified ts =0 and 
' '

scr s = . In case of 

the discrete reinforcement the steel stress is always 
'

s . 

 

Normally all reinforcement material models in ATENA exhibit the same behavior in tension as 

well as in compression. The material types CCReinforcement and 

CCSmearedReinforcement include the capability to deactivate the compressive response of 

the reinforcement. This is sometimes useful, if this material model is used to simulate the 

behavior of reinforcement elements that have a very low bending stiffness, so it can be assumed 

that when the reinforcement is loaded by compressive forces, buckling occurs and the strength of 

the elements in compression is negligible.  This is controlled by the command COMPRESSION 

0 or 1, which deactivates and activates the compressive response respectively (for more details 

see ATENA Input File Format). 

 
The reinforcing steel stress-strain behavior can be described by the nonlinear model of 

Menegotto and Pinto (1973). In ATENA this model is extended to account of the isotropic 

hardening due to an arbitrary hardening law that can be specified for reinforcement (see Sections 

2.7.2, 2.7.3). The stress in the cyclic model is calculated according to the following expression. 

 ( ) *

0 r r    = − +  (2.121) 
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where 0R , 
1c  and 

2c  are experimentally determined parameters, and b the current hardening 

modulus. The Fig. 2-45 shows the meaning of strain values 
r , 0 ,   and stress values 

r  and 

0 . These values changes for each cycle. The values with the subscript r  indicate the point 

where the cycle started, and the subscript 0  indicates the theoretical yield point that would be 

reached during the unloading if the response would not have been modified by the hysteretic 

behavior. During the calculation of this point the material stress-strain law is considered (see 

Sections 2.7.2, 2.7.3) 

 ( )*

R eqf = ,   
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1
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eq eq
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=   (2.123) 

 

 

 

Another nonlinear constitutive model for reinforcement which captures cyclic behavior and is 

implemented in ATENA is described by Dodd and Restrepo (1995) and further improved by Se-

Hyung Kim (2015). 



 

 





 

The basic property of the reinforcement bond model is the bond-slip relationship. This 

relationship defines the bond strength (cohesion) b depending on the value of current slip 

between reinforcement and surrounding concrete. ATENA contains three bond-slip models: 

according to the CEB-FIB model code 1990, slip law by Bigaj and the user defined law. In the 

first two models, the laws are generated based on the concrete compressive strength, 

reinforcement diameter and reinforcement type. The important parameters are also the 

confinement conditions and the quality of concrete casting. 
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fb =  ,   

3
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 2 3 4 5 

Value Unconfined concrete* Confined concrete** 

 Bond conditions Bond conditions 

 Good All other cases Good All other cases 

S1 0.6 mm 0.6 mm 1.0 mm 

S2 0.6 mm 0.6 mm 3.0 mm 

S3 1.0 mm 2.5 mm clear rib spacing 

 0.4 0.4 

max 

2.0
C

f  1.0
C

f  2.5
C

f  1.25
C

f  

f 

max0.15   max0.40   

*  Failure by splitting of the concrete 

**Failure by shearing of the concrete between the ribs 

Values Cold drawn wire Hot rolled bars 

 Bond conditions Bond conditions 

 Good All other 

cases 

Good All other cases 

1 2 3
s s s= =  

0.01 mm 0.1 mm 

 0.5 0.5 



max f
 =  

0.1
C

f  0.05
C

f  0.3
C

f  0.15
C

f  

 

The second pre-defined bond model available in ATENA is based on the work by BIGAJ 1999. 

This model depends on the bond quality, concrete cubic compressive strength '

cuf  and 

reinforcement bar radius D . The slip law for this model is shown in Fig. 2-49. 

 

The ascending part of the stress-slip law i.e. part a  is modeled by a bi-linear curve. The 

coordinates of the four points defining this stress-slip relationship are listed in the table below. 

 

Concrete 

Type 

Bond 

quality 

 Point 1 Point 2 Point 3 Point 4 

 

 

'

cf  < 60 

Excelent /s D  0.000 0.020 0.044 0.480 

'/ 0.8b cuf  0.500 3.000 0.700 0.000 

Good /s D  0.000 0.030 0.047 0.480 

'/ 0.8b cuf  0.500 2.000 0.700 0.000 

Bad /s D  0.000 0.040 0.047 0.480 

'/ 0.8b cuf  0.500 1.000 0.700 0.000 

 Excelent /s D  0.000 0.012 0.030 0.340 



 

'

cf  > 60 

'/ 0.88b cuf  0.600 2.500 0.900 0.000 

Good /s D  0.000 0.020 0.030 0.340 

'/ 0.88b cuf  0.600 1.900 0.900 0.000 

Bad /s D  0.000 0.025 0.030 0.340 

'/ 0.88b cuf  0.600 1.100 0.900 0.000 

 

The Memory Bond material is an improvement to better capture the response during cyclic 

loading and unloading in general. It can be used with any of the above-mentioned bond strength 

– bond slip envelope functions. The response only differs after the bond stress sign changes. 

Instead of following the same envelope as during loading, the maximum bond stress is 

determined by the additional parameter 1 , see Fig. 2-50. Admissible values are res  ≤ 1  ≤ max , 

where res  is the residual bond stress (last value from the bond strength – bond slip function) and 

max  the maximum bond stress (max. value from the bond strength – bond slip function).  

In the figure, s is the current slip value, smax the maximum of the absolute slip value ever reached 

(damage variable), ( )f s =  is the bond strength function.  

 

The response for a slip change 1i i is s s−= +   is defined separately for 2 cases:  

(1) Loading range maxs s  

 ( )f s =  

(2) Unloading range -smax < s < smax  

 



10s    =  

10s    = −  

 

The basic idea of the microplane model is to abandon constitutive modelling in terms of tensors 

and their invariants and formulate the stress-strain relation in terms of stress and strain vectors 

on planes of various orientations in the material, now generally called the microplanes.  This 

idea arose in G.I. Taylor’s (TAYLOR 1938) pioneering study of hardening plasticity of 

polycrystalline metals.  Proposing the first version of the microplane model, BAZANT 1984, in 

order to model strain softening, extended or modified Taylor’s model in several ways (in detail 

see BAZANT et al. 2000), among which the main one was the kinematic constraint between the 

strain tensor and the microplane strain vectors.  Since 1984, there have been numerous 

improvements and variations of the microplane approach. A detailed overview of the history of 

the microplane model is included in BAZANT et al 2000 and CANER and BAZANT 2000.  In 

what follows, we briefly review the derivation of the microplane model that is used in this work. 

     In the microplane model, the constitutive equations are formulated on a plane, called 

microplane, having an arbitrary orientation characterized by its unit normal .in  The kinematic 

constraint means that the normal strain N  and shear strains ,M L   on the microplane are 

calculated as the projections of the macroscopic strain tensor ij : 

 ( ) ( )
1 1

, ,
2 2

N i j ij M i j j i ij L i j j i ijn n m n m n l n l n     = = + = +  (2.128) 

where im  and il  are chosen orthogonal vectors lying in the microplane and defining the shear 

strain components. The constitutive relations for the microplane strains and stresses can be 

generally stated as: 
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 (2.129) 

where F  and G  are functionals of the history of the microplane strains in time t. For a detailed 

derivation of these functionals a reader is referred to BAZANT et al 2000 and CANER and 

BAZANT 2000. The macroscopic stress tensor is obtained by the principle of virtual work that is 

applied to a unit hemisphere .  After the integration, the following expression for the 

macroscopic stress tensor is recovered (BAZANT 1984): 

( ) ( )( )

1

3
6 , where

2 2 2

mN

M L
ij ij ij ij N i j i j j i i j j is d w s s n n m n m n l n l n





 
 

 =

=   = + + + +  (2.130) 

where the integral is approximated by an optimal Gaussian integration formula for a spherical 

surface; numbers   label the points of the integration formula and w  are the corresponding 

optimal weights. 



 

The objective of the equivalent localization element is to achieve equivalence with the crack 

band model. This basic idea is that the material properties and parameters of the softening 

material model are not modified to account for the differences in the finite element size, but 

rather the softening crack band is coupled in series with an elastically behaving layer, to obtain 

equivalence.  For brevity, this layer will henceforth be called the `spring’. For large finite 

elements, the effective length of this added elastic spring, representing the thickness of the added 

elastic layer having the elastic properties of the material, will be much larger than the size (or 

thickness) of the localization zone (crack band). Thus, after the crack initiation, the energy stored 

in the elastic spring can be readily transferred to the localization zone and dissipated in the 

softening (i.e., fracturing) process.  

Inside each finite element at each integration point, an equivalent localization element is 

assumed. The localization element is a serial arrangement of the localization zone, which is 

loading, and an elastic zone (spring), which is unloading. The total length of the element is 

equivalent to the crack band size L  (width), and can be determined using the same methods as 

described in Section 2.1.3 (see Fig. 2-12). The width of the localization zone is given either by 

the characteristic length of the material or by the size of the test specimen for which the adopted 

material model has been calibrated.  

The three-dimensional equivalent element is constructed by three serial arrangements of the 

elastic zone (spring) and localization band. The spring-band systems are perpendicular to each 

other, and they are arranged parallel to the principal strain directions (Fig. 2-51). The simplified 

two-dimensional version is shown in Fig. 2-52. In this arrangement of spring-band systems it is 

possible to identify the following unknown stresses and strains: 

 1 2 3 1 2 3, , , and , , ,b u u u b u u u

ij ij ij ij ij ij ij ij         

where superscript b  denotes the quantities in the localization band and the symbol m ux   with 

superscripts u  and m  defines the quantities in the elastic spring in the direction m . 
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Ideally, the chosen directions should be perpendicular to the planes of failure propagation. In 

ATENA, it is assumed for them to be aligned with the principal axes of the total macroscopic 

strain tensor, which in most cases should approximately correspond to the above requirement. 



Altogether there are 48 unknown variables. In the subsequent derivations, it is assumed that 

these stresses and strains are defined in the principal frame of the total macroscopic strain tensor. 

The set of equations available for determining these variables starts with the constitutive 

formulae for the band and the elastic springs: 

 ( )b b

ij ijF =  (2.131) 

 for 1...3m u m u

ij ijlk klD m = =  (2.132) 

The first formula (2.131) represents the evaluation of the non-linear material model, which in our 

case is the microplane model for concrete. The second equation (2.132) is a set of three elastic 

constitutive formulations for the three linear zones (springs) that are involved in the arrangement 

at Fig. 2-51. This provides the first 24 equations, which can be used for the calculation of 

unknown strains and stresses. 

The second set of equations is provided by the kinematic constrains on the strain tensors. 
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 (2.133) 

These 6 additional equations can be written symbolically as: 

 ( ) ( )
1 1 1

2

b i i u i i b j j u j j

ij ij ij ij iji j
h L h h L h

L L
    

    = + − + + −     
 (2.134) 

The next set of equations is obtained by enforcing equilibrium in each direction between the 

corresponding stress components in the elastic zone and in the localization band. For each 

direction m , the following condition must be satisfied: 

 for 1...3b m m u m

ij j ij je e m = =  (2.135) 

where 
m

je denotes coordinates of a unit direction vector for principal strain direction m . Since 

the principal frame of the total macroscopic strain tensor is used the unit vectors have the 

following coordinates: 

 ( ) ( ) ( )1 2 31,0,0 , 0,1,0 , 0,0,1j j je e e= = =  (2.136) 

The remaining equations are obtained by enforcing equilibrium between tractions on the other 

surfaces of the band and the elastic zone (layer) imagined as a spring: 

 where 1..3, 1...3,b m n u m

ij j ij je e m n m n = = =   (2.137) 



The equation (2.137) is equivalent to a static constraint on the remaining stress and strain 

components of the elastic springs. Formulas (2.135) and (2.137) together with the assumption of 

stress tensor symmetry represent the remaining 18 equations that are needed for the solution of 

the three-dimensional equivalent localization element. These 18 equations can be written as: 

 for 1...3b m u

ij ij m = =  (2.138) 

This means that the macroscopic stress must be equal to b

ij , i.e., the stress in the localization 

element, and that the stresses in all the three elastic zones must be equal and to the microplane 

stress b

ij . This also implies the equivalence of all the three elastic strain tensors. 

Based on the foregoing derivations, it is possible to formulate an algorithm for the calculation of 

unknown quantities in the three-dimensional equivalent localization element. 

Input: , , ,b u

ij ij ij ij     (2.139) 

Initialization: 
b u

ij ij ij   =  =   (2.140) 
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( ) ( 1) ( )i i iu u u
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 =  +  (2.142) 
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Step 4: 
( ) ( )( ) i ii b u

ij ij ijr  = −  (2.144) 

where ijlkC is the compliance tensor. The above iterative process is controlled by the following 

convergence criteria; 
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 (2.145) 

The macroscopic stress is then equal to the stress in the localization band 
b

ij . More details about 

the derivations of the above algorithm as well as various examples of application can be obtained 

from the original reference CERVENKA et al. 2004. It should be noted that the described 

equivalent localization element is used only if the calculated crack band size L  (see Section 

2.1.3) in each principal strain direction is larger than the prescribed localization band size h . For 

smaller element sizes the equivalent localization approach is not used and mesh-dependent 

results may be obtained. 
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The preceding chapters dealt with the general formulation of the problem, geometric and 

constitutive equations. All expressions were derived independently of the structural shape, the 

finite elements used etc. Here, an information about finite elements currently implemented in 

ATENA is given.   
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The available elements can be divided into three groups: plane elements for 2D, 3D and axi-

symmetric analysis, solid 3D elements and special elements, which comprises elements for 

modeling external cable, springs, gaps etc. 

With few exceptions all elements implemented in ATENA are constructed using isoparametric 

formulation with linear and/or quadratic interpolation functions. The isoparametric formulation 

of one-, two- and three-dimensional elements belong to the "classic" element formulations.  This 



is not because of its superior properties, but since it is a versatile and general approach with no 

hidden difficulties and, also very important, these elements are easy to understand. This is very 

important particularly in nonlinear analysis. For example, it is highly undesirable to add element-

related problems to problems related to e.g. material modeling. 

Big advantage of ATENA isoparametric elements is that their interpolation functions ( , , )ih r s t  

are constructed in hierarchical manner. Take an example of plane quadrilateral element. Some of 

its interpolation functions are depicted in Fig. 3-1. The 1st four functions, i.e. functions 1( , , )h r s t  

to 4( , , )h r s t  has to be always present in the interpolation set, (to ensure bilinear approximation). 

Then, any additional function 6( , , )h r s t  through 9( , , )h r s t  can be added independently. This 

would involve adding the new function itself and amendments to the already present 

interpolation functions. This approach (and use of C++ templates) makes possible that one 

element formulation generates quadrilateral elements with nodes (1,2,3,4), (1,2,3,4,5), 

(1,2,3,4,6), ... (1,2,3,4,8), (1,2,3,4,9), (1,2,3,4,5,6), (1,2,3,4,5, 7), ... (1,2,3,8,9), ... 

(1,2,3,4,5,6,7,8,9). Additional mid-side points are particularly useful for changing mesh density, 

(i.e. element size), see Fig. 3-2, as they allow change of mesh density without need triangular 

elements. 

Although the concept of hierarchical elements was described for plane quadrilateral elements, in 

ATENA it applies for plane triangular elements, 3D bricks, tetrahedral and wedge elements, too. 

Always there is a set of basic interpolation function that can be extended by any “higher” 

interpolation function. This does not apply to pyramidal elements. 

Apart of interpolation functions finite element properties depend strongly on numerical 

integration scheme used to integrate element stiffness matrix, element nodal forces etc. In Atena, 

majority of elements are integrated by Gauss integration scheme that ensure ( 1)n n − order 

accuracy, where n  is degree of the polynomial used to approximate the integrated function.   
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2D and 3D truss elements in ATENA are coded in group of elements CCIsoTruss<xx> ... 

CCIsoTruss<xxx>. The string in < > describes present element nodes, (see Atena Input File 

Format document for more information). These are isoparametric elements integrated by Gauss 

integration at 1 or 2 integration points for the case of linear or quadratic interpolation, i.e. for 

elements with 2 or 3 element nodes, respectively. They are suitable for plane 2D as well as 3D 

analysis problems. Geometry, interpolation functions and integration points of the elements are 

given in Fig. 3-3, Table  3.2-1 to Table  3.2-3. 
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1 0. 2. 
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Weight 

1 0.577350269189626 1. 

2 -0.577350269189626 1. 

The element vectors and matrices for Total Lagrangian formulation, configuration at time t  and 

iteration (i)  are as follows. Note that they are equally applicable for Updated Lagrangian 

formulation upon applying changes related to the element reference coordinate system 

(undeformed vs. deformed element axis.). The formulation is present for 3-nodes element option. 

The 2-nodes variant is obtained by simply neglecting the terms for the element mid-point. 

An arbitrary point on the truss element has at reference time t  coordinates 1 1 1[ , , ]t t t tX x x x= : 

 

1 2 3

1 1 1 1 2 1 3

1 2 3

2 2 1 2 2 2 3

1 2 3

3 3 1 3 2 3 3

t t t t

t t t t

t t t t

x x h x h x h

x x h x h x h

x x h x h x h

= + +

= + +

= + +

 (3.1) 

At time ( 1)it t −+   the same point has coordinates ( 1)t t iX+ − :  

  

 

( 1) 1 1( 1) 2 2( 1) 3 3( 1)

1 1 1 1 1 1 2 1 1 3

( 1) 1 1( 1) 2 2( 1) 3 3( 1)

2 2 2 1 2 2 2 2 2 3

( 1) 1 1( 1) 2 2( 1) 3 3( 1

3 3 3 1 3 3 2 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) (

t t i t t i t t i t t i

t t i t t i t t i t t i

t t i t t i t t i t t i

x x u h x u h x u h

x x u h x u h x u h

x x u h x u h x u

+ − − − −

+ − − − −

+ − − − −

= + + + + +

= + + + + +

= + + + + + )

3)h

 (3.2) 

and at time 
( )it t+   coordinates ( )t t iX+  

 

( ) 1 1( ) 2 2( ) 3 3( )

1 1 1 1 1 1 2 1 1 3

( ) 1 1( ) 2 2( ) 3 3( )
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 (3.3) 

Increment of Green Lagrange strain 
( ) ( ) ( 1)

11 11 11

i t t i t t t t i

t t t  + + + −= −  (at time t t+  , iteration ( )i with 

to configuration at time t ) is calculated:  
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 (3.4) 

where truss length differentials are 

 

2 2 2 2
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Substituting (3.5), (3.3) into (3.4) after some math manipulation it can be derived: 
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+ +

     

   
+

  

2( 1) 3( 1)2 3 3
3 3

t t i t t ih h h
u u

r r r

+ − + −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  +
    

 (3.7) 

 and 

 

1 2 3

( 1) 1 2 3

1 2 3

0 0 0 0 0 0

1
0 0 0 0 0 0

0 0 0 0 0 0

t t n

t NL t

h h h

r r r

h h h

r r rl

h h hr

r r r

+ −

   
   
 

   =
    
        
    

B  (3.8) 

 

The 2nd Piola-Kirchhoff stress matrix and tensor are: 

 

( 1)

11

( 1) ( 1) ( 1) ( 1)

11 11

( 1)

11

0 0

0 0 , [ ]

0 0

t t i

t

t t i t t i t t i t t i

t t t t

t t i

t

S

S S S S

S

+ −

+ − + − + − + −

+ −

 
 

= = 
 
 

 (3.9) 

The formulation is completed by relationship for element deformation gradient ( )

1,1

t t i

t X+ , which 

yields:  

 

( )

( )

1,1

t t i

t t i

t t

l

r
X

l

r

+

+

 
 

 =
 
 

 

 (3.10) 

Note that 2-nodes truss element has constant  strains along its length and thus the increment of 

Green Lagrange strain can be calculated directly, (i.e. not using differentials truss length as it 

was the case of (3.4) ): 



 
( ) ( )

2 2
( ) ( 1)

( )

11 2

1

2

t t i t t i

i

t t

l l

l


+ + − −
 =
 
 

 (3.11) 

This yields a bit simpler element formulation (with the same results). However, for the sake of 

preserving unified approach to all truss elements, ATENA uses even in this case the equation 

(3.4). 

 

Plane quadrilateral elements in ATENA are coded in group of elements CCIsoQuad<xxxx> ... 

CCIsoQuad<xxxxxxxxx>. The string in < > describes present element nodes (see Atena Input 

File Format document for more information). These are isoparametric elements integrated by 

Gauss integration at 4 or 9 integration points for the case of bilinear or bi-quadratic interpolation, 

i.e. for elements with 4 or 5 and more element nodes, respectively. They are suitable for plane 

2D, axisymmetric and 3D problems.  

CCIsoQuad2_5<...> elements present a simplified 3D formulation of the CCIsoQuad<...> 

elements. Their higher execution performance is achieved at cost of omitting some nonlinear 

terms, see below.  

Geometry, interpolation functions and integration points of the elements are given in Fig. 3-4 

and in the subsequent tables. 

 

 

3

4

1

2

7

8

5

6

9

CCIsoQuad<xxxx>
CCIsoQuad<xxxxx>
CCIsoQuad<xxxx_x>

....
CCIsoQuad<xxxx_x_x_>
....
CCIsoQuad<xxxxxxxxx>

r

s

x

y



 

Node 

i 

 

Function hi 

 

Include only if node i is defined 

 

i = 5 I = 6 i = 7 i = 8 i = 9 

1 1
(1 )(1 )

4
r s+ +  5

1

2
h−  

  
8

1

2
h−  9

1

4
h  

2 1
(1 )(1 )

4
r s− +  5

1

2
h−  6

1

2
h−  

  
9

1

4
h  

3 1
(1 )(1 )

4
r s− −  

 
6

1

2
h−  7

1

2
h−  

 
9

1

4
h  

4 1
(1 )(1 )

4
r s+ −  

  
7

1

2
h−  8

1

2
h−  9

1

4
h  

5 21
(1 )(1 )

2
r s− +  

    
9

1

2
h−  

6 21
(1 )(1 )

2
s r− −  

    
9

1

2
h−  

7 21
(1 )(1 )

2
r s− −  

    
9

1

2
h−  

8 21
(1 )(1 )

2
r s+ −  

    
9

1

2
h−  

9 2 21
(1 )(1 )

2
r s− −

 

     

 

Integration 

point 

Coordinate r Coordinate s Weight 

1 0.577350269189626 0.577350269189626 1. 

2 0.577350269189626 -0.577350269189626 1. 

3 -0.577350269189626 0.577350269189626 1. 

4 -0.577350269189626 -0.577350269189626 1. 

 



 

Integrati

on point 

 

Coordinate r 

 

Coordinate s 

 

Weight 

1 0.774596669241483 0.774596669241483 0.3086419753 

2 0.774596669241483 0. 0.4938271605 

3 0.774596669241483 -0.774596669241483 0.3086419753 

4 0. 0.774596669241483 0.4938271605 

5 0. 0. 0.7901234568 

6 0. -0.774596669241483 0.4938271605 

7 -0.774596669241483 0.774596669241483 0.3086419753 

8 -0.774596669241483 0. 0.4938271605 

9 -0.774596669241483 -0.774596669241483 0.3086419753 

 

Equations (3.12) through (3.21) present CCIsoQuad<...> axisymmetric element formulation. 2D 

element formulation is simply obtained by removing terms associated with circumferential 

strains and stresses ( ) ( )

33 33,t t i t t i

t t S+ + . 

Incremental strains:  

 

( ) ( )( )

( ) ( )( )

( )

2 2
( ) ( ) ( 1) ( ) ( 1) ( ) ( ) ( )

11 1,1 1,1 1,1 2,1 2,1 1,1 2,1

2 2
( ) ( ) ( 1) ( ) ( 1) ( ) ( ) ( )

22 2,2 1,2 1,2 2,2 2,2 1,2 2,2

( ) ( ) ( )

12 1,2 2,1

1

2

1

2

1

2

1

2

i i t t i i t t i i i i

t t t t t t t t

i i t t i i t t i i i i

t t t t t t t t

i i i

t t t

t

t

u u u u u u u

u u u u u u u

u u







+ − + −

+ − + −

= + + + +

= + + + +

+= +

( )

( )

( )

( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( )

1,1 1,2 2,1 2,2 1,2 1,1 2,2 2,1

( ) ( ) ( ) ( )

1,1 1,2 2,1 2,2

2
( ) ( ) ( ) ( )

( ) 1 1 1 1
33 2

1 11

1

2

1

2

t i i t t i i t t i i t t i i

t t t t t t t

i i i i

t t t t

i t t i i i
i

t t tt

u u u u u u u u

u u u u

u u u u

x xx


+ − + − + − + −

+

+ + + +

+

 
= + +  

   (3.12) 



Displacement derivatives: 

 

( )( ) ( 1)

( )

,

( 1)
( 1)

,

t t i t t i

i ii

t i j t

j

t t i
t t i i

t i j t

j

u u
u

x

u
u

x

+ + −

+ −
+ −

 −
=




=



 (3.13) 

Strains and matrices to calculate them: 

 

( ) ( 1) ( )

( ) ( ) ( ) ( ) ( )

11 22 12 33

( ) ( ) ( 1) 1( ) 1( ) 2( ) 2( ) ( ) ( )

1 2 1 2 1 2

, , 2 ,

, , , ,..... ,

i t t i i

t t L

i i i i i

t t t t t

i t t i t t i i i i i n i n i

U

U U U u u u u u u



    

+ −

+ + −

= 

 =  

  = − =  

B

 (3.14) 

Linear strain-displacement matrix: 

 ( 1) ( 1)

0 1

t t i t t t t i

t L t L t L

+ − + + −= +B B B  (3.15) 

Linear strain-displacement matrix – constant part: 

 

1,1 2,1

1,2 2,2 ,2

0 1,2 1,1 2,2 2,1 ,2 ,1

1 2

1 1 1

0 0 ... 0 0

0 0 ... 0

...

0 0 ... 0

t t

t t t n

t t

t L t t t t t n t n

n

t t t

h h

h h h

h h h h h h

h h h

x x x

+

 
 
 
 =
 
 
  

B  (3.16) 

where 

 

,

( ) ( ) ( 1)

1 1

1

i
t i j t

j

i t t i t t i

i i i

n
t t k

k

k

h
h

x

u u u

x h x

+ + −

=


=



= −

= 

 (3.17) 



Linear strain-displacement matrix – non-constant part:  

( 1) ( 1) ( 1) ( 1)

11 1,1 21 1,1 11 2,1 21 2,1

( 1) ( 1) ( 1) ( 1)

11 1,2 21 1,2 11 2,2 21 2,2

( 1) ( 1) ( 1) ( 1)
1 11 1,2 11 1,1 21 1

t t i t t i t t i t t i

t t t t

t t i t t i t t i t t i

t t t t

t t i t t i t t i t t i
t L t t t

l h l h l h l h

l h l h l h l h

l h l h l h

+ − + − + − + −

+ − + − + − + −

+ − + − + − + −= +B ( 1) ( 1) ( 1) ( 1) ( 1)

,2 21 1,1 11 2,2 11 2,1 21 2,2 21 2,1

( 1) ( 1)1 2
33 33

1 1

0 0

t t i t t i t t i t t i t t i

t t t t t

t t i t t i

t t

l h l h l h l h l h

h h
l l

x x

+ − + − + − + − + −

+ − + −




 + + +





 

( 1) ( 1)

11 ,1 21 ,1

( 1) ( 1)

11 ,2 21 ,2

( 1) ( 1) ( 1) ( 1)

11 ,2 11 ,1 21 ,2 21 ,1

( 1)

33

1

...

...

...

... 0

t t i t t i

t n t n

t t i t t i

t n t n

t t i t t i t t i t t i

t n t n t n t n

t t i n

t

l h l h

l h l h

l h l h l h l h

h
l

x

+ − + −

+ − + −

+ − + − + − + −

+ −




+ +





 (3.18) 

where 

 

( 1) ( 1)

11 ,1 1

1

( 1) ( 1)

12 ,2 1

1

( 1) ( 1)

21 ,1 2

1

( 1) ( 1)

22 ,2 2

1

( 1) ( 1)

33 1

11

1

n
t t i t t k i

t k t

k

n
t t i t t k i

t k t

k

n
t t i t t k i

t k t

k

n
t t i t t k i

t k t

k

n
t t i t t k i

k tt
k

l h u

l h u

l h u

l h u

l h u
x

+ − + −

=

+ − + −

=

+ − + −

=

+ − + −

=

+ − + −

=

=

=

=

=

=











 (3.19) 

 

 

 

Nonlinear strain-displacement matrix   

 

1,1 2,1 ,1

1,2 2,2 ,2

1,1 2,1 ,1( 1)

1,2 2,2 ,2

1 2

1 1 1

0 0 ... 0

0 0 ... 0

0 0 ... 0

0 0 ... 0

0 0 ... 0

t t t n

t t t n

t t t nt t i

t NL

t t t n

n

t t t

h h h

h h h

h h h

h h h

h h h

x x x

+ −

 
 
 
 

=  
 
 
 
 

B  (3.20) 



2nd Piola-Kirchhoff stress tensor and vector 

 

( 1) ( 1)

11 12

( 1) ( 1)

21 22

( 1) ( 1) ( 1)

11 12

( 1) ( 1)

21 22

( 1)

33

( ) ( 1) ( 1) (

11 22 21

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

t t i t t i

t t

t t i t t i

t t

i t t i t t i
t t t

t t i t t i

t t

t t i

t

i t t i t t i t t i

t t t t

S S

S S

S S

S S

S

S S S S

+ − + −

+ − + −

− + − + −

+ − + −

+ −

+ − + − + −

 
 
 
 =
 
 
 
 

=

S

1) ( 1)

33

t t i

t S
+ −  

 (3.21) 

 

In case of the simplified 3D analysis, i.e. elements CCIsoQuad2_5<...>, the equations are further 

extended as follows:  

All element matrices and vectors are computed with respect to element local coordinate 

system 
,1 ,2,local localx x using equations in (3.12) through (3.21). They are transformed into 

3D global coordinate system by means of simple transformation: 

 ,T

global local global localv v= =M T M T T  (3.22) 

where 

, , ,global local global localv vM M are global and local finite element matrices and vectors, 

T  is transformation matrix from local to global coordinate system: 

 

,1 ,1 ,2 ,1

,1 ,2 ,2 ,2

.1 ,3 ,2 ,3

cos( , ), cos( , )

cos( , ), cos( , )

cos( , ), cos( , )

local global local global

local global local global

local global local global

x x x x

x x x x

x x x x

 
 

=  
 
 

T  (3.23) 

where: 

, ,,local i global ix x  are local and global coordinates (in 2D and 3D space). 

The local element coordinate system (see Fig. 3-5) is defined by local ,1 ,2 ,3, ,local local localx x x  

coordinates. All of them pass through origin of the global (reference) coordinate system. The 

axes ,1localx  and ,2localx  constitute a local coordinates element plane that is parallel to the element. 

The axis ,3localx is perpendicular to the element and the axis ,1localx  is defined as a projection of 

global 1x axis to the local coordinate element plane. An exception to that is, when the element is 

normal to the global 1x .  In this case the local  ,1localx  coincides with the global 2x axis.  

The present definition of local element coordinate system depends on plane of the finite element, 

but it does not depend on its shape itself. This is very important property, as ATENA supports 

use of local (instead of global) nodal degrees of freedom and, (of course) these degrees of 

freedom must refer to a coordinate system common to all elements of the plane, in which they 

lie.    



O

x
1

x
2

x
3

1

2

3

4

x
l o c a l , 1

x
l o c a l , 2

x
l o c a l , 3

X
X’

Full 3D formulation of the CCIsoQuad<...> elements is much the same as that for simplified 3D 

elements CCIsoQuad2_5<...>. The only difference is that the matrix 0

t

NLB will include also terms 

related to the „out-of-element-plane“ direction: 

 

1,1 2,1 3,1 ,1

1,2 2,2 3,2 ,2

1,1 2,1 3,1 ,1( 1)

1,2 2,2 3,2 ,2

1,1 2,1 3,1 ,1

1,2 2,2 3,2 ,2

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0
......

0 0 0 00 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

t t t t N

t t t t N

t t t t Nt t i

t NL

t t t t N

t t t t N

t t t t N

h h h h

h h h h

h h h h

h h h h

h h h h

h h h h

+ −

 




= 



 

B










 (3.24) 

 

Plane triangular elements in ATENA are coded in group of elements CCIsoTriangle<xxx> ... 

CCIsoTriangle<xxxxxx>. The string in < > describes present element nodes (see Atena Input 

File Format document for more information). These are isoparametric elements integrated by 

Gauss integration at 1 or 3 integration points for the case of bilinear or bi-quadratic interpolation, 

i.e. for elements with 3 or 4 and more element nodes, respectively. They are suitable for plane 



2D, axisymmetric and 3D problems. Geometry, interpolation functions and integration points of 

the elements are given in 

1

2

3

4

5

6

CCIsoTriangle<xxx>
...
CCIsoTriangle<xxxxxx>

r

s

y

x  

Fig. 3-6, Table 3-1, Table 3-2, and Table 3-3.  

1

2

3

4

5

6

CCIsoTriangle<xxx>
...
CCIsoTriangle<xxxxxx>

r

s

y

x  

 

Node 

i 

Function hi Include only if node i is 

defined 

i = 4 i = 5 i = 6 

1 1 r s− −  
4

1

2
h−  

 
6

1

2
h−  

2 r  
4

1

2
h−  5

1

2
h−  

 

3 s   
5

1

2
h−  6

1

2
h−  



4 4 (1 )r r s− −     

5 4rs     

6 4 (1 )s r s− −     

Integration point Coordinate r Coordinate s Weight 

1 1/3 1/3 1/2 

 

Integration 

point 

 

 

Coordinate r 

 

Coordinate s 

 

Weight 

1 1/6 1/6 1/6 

2 2/3 1/6 1/6 

3 1/6 2/3 1/6 

All the above expressions for the formulation for plane quadrilateral elements remain valid also 

for the triangular elements, including the extension from 2D to simplified and full 3D analysis. 

The expressions only use different approximation functions ( , , )ih r s t  and different integration 

points [ , , ]r s t , see Table 3-1, Table 3-2, and Table 3-3.  

 

ATENA finite element library includes the following group of 3D solid elements: 

tetrahedral elements CCIsoTetra<xxxx> ... CCIsoTetra<xxxxxxxxxx> with 4 to 10 nodes, 

see Fig. 3-7, 

pyramidal elements CCIsoPyramid<xxxxx>, CCIsoPyramid<xxxxxxxxxxxxx> 

brick elements CCIsoBrick<xxxxxxxx> ... CCIsoBrick<xxxxxxxxxxxxxxxxxxxx> with 8 up 

to 20 nodes see Fig. 3-8 and 

wedge elements CCIsoWedge<xxxxxx> ... CCIsoWedge<xxxxxxxxxxxxxxx> with 6 to 15 

nodes, see Fig. 3-9. 

The string in < > describes present element nodes (see Atena Input File Format document for 

more information). These are isoparametric elements integrated by Gauss integration at 

integration points given in the following tables. Interpolation functions for all variants of the 

elements are also given in the tables below. 
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t
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39
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1
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13 14

15

 

 

Node 

i 

Function hi Include only if node i is defined 

i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 

1 1 r s t− − −  
5

1

2
h−  

 
7

1

2
h−  

  
10

1

2
h−  

2 r  
5

1

2
h−  6

1

2
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8

1

2
h−  

  

3 s   
6

1

2
h−  7

1

2
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9
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2
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4 t     
8

1

2
h−  9

1

2
h−  10

1

2
h−  

5 4 (1 )r r s t− − −        

6 4 (1 )rs t−        

7 4 (1 )s r s t− − −        

8 4 (1 )rt s−        

9 4 (1- )st r        

10 4 (1- - - )t r s t        

 



 

Integration point 

 

 

Coordinate r 

 

Coordinate s 

 

Coordinate t 

 

Weight 

1 1/4 1/4 1/4 1/6 

 

 

Integration point 

 

 

Coordinate r 

 

Coordinate s 

 

Coordinate t 

 

Weight 

1 0.13819660 0.13819660 0.13819660 1/24 

2 0.13819660 0.13819660 0.58541020 1/24 

3 0.58541020 0.13819660 0.13819660 1/24 

4 0.13819660 0.58541020 0.13819660 1/24 

 

Interpolation functions for CCIsoPyram<xxxxx> and their derivatives: 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

2

3

4

5

1
1 1 1

8

1
1 1 1

8

1
1 1 1

8

1
1 1 1

8

1 1

2 2

h r s t

h r s t

h r s t

h r s t

h t

= − − −

= + − −

= + + −

= − + −

= +

 (3.25) 

  



 

( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )( )

1 1 1

2 2 2

3 32

4 4 4

5 5

1 1 1
1 1 1 1 1 1

8 8 8

1 1 1
2 _ : 1 1 1 1 1 1

8 8 8

1 1 1
1 1 1 1 1 1

8 8 8

1 1 1
1 1 1 1 1 1

8 8 8

0 0

h h h
s t r t r s

r s t

h h h
dv dr s t r t r s

r s t

h hh
s t r t r s

r s t

h h h
s t r t r s

r s t

h h

r s

  
= − − − = − − − = − − −

  

  
= − − = − + − = − + −

  

 
= + − = + − = − + +

  

  
= − + − == − − = − − +

  

  
= ==

 

5 1

2

h

t
=



 (3.26) 

 

 

Interpolation functions for CCIsoPyram<xxxxxxxxxxxxx> and their derivatives: 

 

2

2

5

2

6

2

7

1

2

8

3

4

1
h = (1-r)(1-s)(1-t)(-r-s-t-2)

8

1
h = (1+r)(1-s)(1-t)(r-s-t-2)

8

1
h = (1+r)(1+s)(1-t)(r+s-t-2)

8

1
h = (1-r)

( 1)(1 )(1 )

: (1 )( 1)(1 )

( 1)(1

(1+s)(1-t)(-r+s-t-2)

)(1

8

1 1

2 2

1

4

1
)

1

4

4

h t t

h r s t

h r s t

h r s t

h

= +

= − + − −

= + − + −

= − + + −

2

9

2

10

2

11

2

12

2

13

(1 )( 1)(1 )

(1 )(1 )( 1)

(1 )(1 )( 1)

( (1 ))(1 )( 1)

( (1 ))(1 )( 1)

1

4

1

4

1

4

1

4

1

4

r s t

h r s t

h r s t

h r s t

h r s t

= − − + −

= − − − +

= + − − +

= + + − +

= − + − +

 (3.27) 



 

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )

1

1

1

2

2

2

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1

8 8

h
s t r s t r s t

r

h
r t r s t r s t

s

h
r s r s t r s t

t

h
s t r s t r s t

r

h
r t r s t r s t

s

h
r s r s t r

t


= − − − − − − − − − − −




= − − − − − − − − − − −




= − − − − − − − − − − −




= − − − − − + + − −




= − + − − − − − + − −




= − + − − − − − +


( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( )

3

3

3

4

4

4

1 1

1 1
1 1 2 1 1 1

8 8

1 1
: 1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1
1 1 2

8

s t

h
s t r s t r s t

r

h
r t r s t r s t

s

h
r s r s t r s t

t

h
s t r s t r s t

r

h
r t r s t r s t

s

h
r s r s t

t

− −


= + − + − − + + + −




= + − + − − + + + −




= − + + + − − − + + −




= − + − − + − − − − + −




= − − − + − − + − + −




= − − + − + − −



 5

5

5

0

0

1

2

h

r

h

s

h
t

t

=



=




= +



 (3.28) 

 

  

  

 



 

( )( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( )( )

2 26 6 6

2 27 7 7

2 28 8 8

2 29 9 9

1 1 1
1 1 1 1 1 1

2 4 4

1 1 1
1 1 1 1 1 1

4 2 4

1 1 1
1 1 1 1 1 1

2 4 4

1 1 1
1 1 1 1 1 1

4 2 4

h h h
r s t r t r s

r s t

h h h
s t r s t r s

r s t

h h h
r s t r t r s

r s t

h h h
s t r s t r s

r s t

h

  
= − − − = − − + − = − − + −

  

  
= − + − = − + − = − + − +

  

  
= − + − = − + − = − − + +

  

  
= − − + − = − − − = − − − +

  


( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( )

2 210 10 10

2 211 11 11

2 212 12 12

2 213 13 13

1 1 1
1 1 1 1 1 1

4 4 2

1 1 1
1 1 1 1 1 1

4 4 2

1 1 1
1 1 1 1 1 1

4 4 2

1 1 1
1 1 1 1 1

4 4 2

h h
s t r t r s t

r s t

h h h
s t r t r s t

r s t

h h h
s t r t r s t

r s t

h h h
s t r t

r s t

 
= − − − + = − − − + = − − −

  

  
= − − + = − + − + = − + −

  

  
= + − + = + − + = − + +

  

  
= − + − + = − − + = −

  
( )( )1r s t− +

 (3.29) 

  

The pyramidal elements are integrated at the material points for the corresponding 

brick(hexahedral) elements, because they use the same isoparametric space r,s,t.  

 

N
o
d
e 

i 

 

Function hi 

 

Include only if node i is defined 

 

i = 9 i = 10 i = 11 i = 12 i = 13 

 

i = 14 i = 15 i = 16 i = 17 i = 18 i = 19 i = 20 

1 1
(1 )(1 )(1 )

8
r s t+ + +  

9

1

2
h−    

12

1

2
h−

 

    
17

1

2
h−

 

   

2 1
(1 )(1 )(1 )

8
r s t− + +  

9

1

2
h−  

10

1

2
h−

 

       
18

1

2
h−

 

  

3 1
(1 )(1 )(1 )

8
r s t− − +   

10

1

2
h−

 

11

1

2
h−

 

       
19

1

2
h−

 

 

4 1
(1 )(1 )(1 )

8
r s t+ − +    

11

1

2
h−

 

12

1

2
h−

 

       
20

1

2
h−

 

5 1
(1 )(1 )(1 )

8
r s t+ + −      

13

1

2
h−

 

  
16

1

2
h−

 

17

1

2
h−

 

   



6 1
(1 )(1 )(1 )

8
r s t− + −      

13

1

2
h−

 

14

1

2
h−

 

   
18

1

2
h−

 

  

7 1
(1 )(1 )(1 )

8
r s t− − −       

14

1

2
h−  

15

1

2
h−     

19

1

2
h−

 

 

8 1
(1 )(1 )(1 )

8
r s t+ − −        

15

1

2
h−

 

16

1

2
h−

 

   
20

1

2
h−

 

9 21
(1 )(1 )(1 )

4
r s t− + +              

10 21
(1 )(1 )(1 )

4
r s t− − +              

11 21
(1 )(1 )(1 )

4
r s t− − +              

12 21
(1 )(1 )(1 )

4
r s t+ − +              

13 21
(1 )(1 )(1 )

4
r s t− + −              

14 21
(1 )(1 )(1 )

4
r s t− − −              

15 21
(1 )(1 )(1 )

4
r s t− − −              

16 21
(1 )(1 )(1 )

4
r s t+ − −              

17 21
(1 )(1 )(1 )

4
r s t+ + −              

18 21
(1 )(1 )(1 )

8
r s t− + −              

19 21
(1 )(1 )(1 )

4
r s t− − −              

20 21
(1 )(1 )(1 )

4
r s t+ − −              

Inte-

gration 

point 

Coordinate r Coordinate s Coordinate t  Weight 

1 0.5773502691896

26 

0.5773502691896

26 

0.577350269189626 1. 

2 0.5773502691896

26 

0.5773502691896

26 

-

0.577350269189626 

1. 



3 0.5773502691896

26 

-

0.5773502691896

26 

0.577350269189626 1. 

4 0.5773502691896

26 

-

0.5773502691896

26 

-

0.577350269189626 

1. 

5 -

0.5773502691896

26 

0.5773502691896

26 

0.577350269189626 1. 

6 -

0.5773502691896

26 

0.5773502691896

26 

-

0.577350269189626 

1. 

7 -

0.5773502691896

26 

-

0.5773502691896

26 

0.577350269189626 1. 

8 -

0.5773502691896

26 

-

0.5773502691896

26 

-

0.577350269189626 

1. 

 

Inte-

gration 

point 

Coordinate r Coordinate s 

 

Coordinate t  Weight 

1 0.7745966692414

83 

0.7745966692414

83 

0.774596669241483 0.1714677641 

2 0.7745966692414

83 

0.7745966692414

83 

0. 0.2743484225 

3 0.7745966692414

83 

0.7745966692414

83 

-

0.774596669241483 

0.1714677641 

4 0.7745966692414

83 

0. 0.774596669241483 0.2743484225 

5 0.7745966692414

83 

0. 0. 0.4389574760 

6 0.7745966692414

83 

0. -

0.774596669241483 

0.2743484225 



7 0.7745966692414

83 

-

0.7745966692414

83 

0.774596669241483 0.1714677641 

8 0.7745966692414

83 

-

0.7745966692414

83 

0. 0.2743484225 

10 0. 0.7745966692414

83 

0.774596669241483 0.2743484225 

11 0. 0.7745966692414

83 

0. 0.4389574760 

12 0. 0.7745966692414

83 

-

0.774596669241483 

0.2743484225 

13 0. 0. 0.774596669241483 0.4389574760 

14 0. 0. 0. 0.7023319616 

15 0. 0. -

0.774596669241483 

0.4389574760 

16 0. -

0.7745966692414

83 

0.774596669241483 0.2743484225 

17 0. -

0.7745966692414

83 

0. 0.4389574760 

18 0. -

0.7745966692414

83 

-

0.774596669241483 

0.2743484225 

19 -

0.7745966692414

83 

0.7745966692414

83 

0.774596669241483 0.1714677641 

20 -

0.7745966692414

83 

0.7745966692414

83 

0. 0.2743484225 

21 -

0.7745966692414

83 

0.7745966692414

83 

-

0.774596669241483 

0.1714677641 

22 -

0.7745966692414

83 

0. 0.774596669241483 0.2743484225 



23 -

0.7745966692414

83 

0. 0. 0.4389574760 

24 -

0.7745966692414

83 

0. -

0.774596669241483 

0.2743484225 

25 -

0.7745966692414

83 

-

0.7745966692414

83 

0.774596669241483 0.1714677641 

26 -

0.7745966692414

83 

-

0.7745966692414

83 

0. 0.2743484225 

27 -

0.7745966692414

83 

-

0.7745966692414

83 

-

0.774596669241483 

0.1714677641 

 

1

2

3

4

5

6

1

2

2

3

(1 )

4 (1 )

4

4 (1 )

1

2

1

2

(1 )

hh r s

hh r

hh s

hh r r s

hh rs

hh s r s

t
hv

t
hv

hv t

= − −

=

=

= − −

=

= − −

+
=

−
=

= −  



 
N

o
d
e 

I Function 

hi 

Include only if node i is defined 

i = 7 i = 8 i = 9 i = 10 i = 11 

 

i = 12 i = 13 i = 14 i = 15 

1 
1 1hh hv  

7

1

2
h−  

 
9

1

2
h−  

   
13

1

2
h−  

  

2 
2 1hh hv  

7

1

2
h−  8

1

2
h−  

     
14

1

2
h−  

 

3 
3 1hh hv   

8

1

2
h−  9

1

2
h−  

     
15

1

2
h−  

4 
1 2hh hv     

10

1

2
h−  

 
12

1

2
h−  13

1

2
h−  

  

5 
2 2hh hv     

10

1

2
h−  11

1

2
h−  

  
14

1

2
h−  

 

6 
3 2hh hv      

11

1

2
h−  12

1

2
h−  

  
15

1

2
h−  

7 
4 1hh hv           

8 
5 1hh hv           

9 
6 1hh hv           

10 
4 2hh hv           

11 
5 2hh hv           

12 
6 2hh hv           

13 
1 3hh hv           

14 
2 3hh hv           

15 
3 3hh hv           

 

Integration point 

 

Coordinate r 

 

Coordinate s 

 

Coordinate t  

 

Weight 

1 1/6 1/6 0.577350269189626 1/6 

2 2/3 1/6 0.577350269189626 1/6 

3 1/6 2/3 0.577350269189626 1/6 



4 1/6 1/6 -0.577350269189626 1/6 

5 2/3 1/6 -0.577350269189626 1/6 

6 1/6 2/3 -0.577350269189626 1/6 

 

Integration point 

 

Coordinate r 

 

Coordinate s 

 

Coordinate t  

 

Weight 

1 1/6 1/6 0.774596669241483 0.0925925926 

2 2/3 1/6 0.774596669241483 0.0925925926 

3 1/6 2/3 0.774596669241483 0.0925925926 

4 1/6 1/6 0. 0.1481448148 

5 2/3 1/6 0. 0.1481448148 

6 1/6 2/3 0. 0.1481448148 

7 1/6 1/6 -0.774596669241483 0.0925925926 

8 2/3 1/6 -0.774596669241483 0.0925925926 

9 1/6 2/3 -0.774596669241483 0.0925925926 

Formulation of 3D solid elements is given in the following equations:  

Incremental strains:  

 ( ) ( ) ( )( ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( ) ( )

, , , , , , , ,

1 11

2 2 2

i i i t t i i t t i i i i

t ij t i j t j i t k i t k j t k j t k i t k i t k ju u u u u u u u + − + −+= + + +  (3.30) 

where indices  , , 1...3i j k    

Displacement derivatives: 

 

( )( ) ( 1)

( )

,

( 1)
( 1)

,

t t i t t i

i ii

t i j t

j

t t i
t t i i

t i j t

j

u u
u

x

u
u

x

+ + −

+ −
+ −

 −
=




=



 (3.31) 

Strains and matrices to calculate them: 



 

( ) ( 1) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

11 22 33 12 23 13

( ) ( ) ( 1)

1( ) 1( ) 1( ) 2( ) 2( ) 2( ) ( ) ( ) ( )

1 2 3 1 2 3 1 2 3

2 2 2

...

i t t i i

t t L

i i i i i i i

t t t t t t t

i t t i t t i

i i i i i i n i n i n i

U

U U U

u u u u u u u u u



      

+ −

+ + −

= 

 =  

 = − =

  

B

 (3.32) 

Linear strain-displacement matrix: 

 ( 1) ( 1)

0 1

t t i t t t t i

t L t L t L

+ − + + −= +B B B  (3.33) 

Linear strain-displacement matrix – constant part: 

 

1,1 2,1 ,1

1,2 2,2 ,2

1,3 2,3 ,3

0

1,2 1,1 2,2 2,1 ,2 ,1

1,3 1,2 2,3 2,2 ,3 ,2

1,3 1,1 2,3 2,1 ,3 ,1

0 0 0 0 ... 0 0

0 0 0 0 ... 0 0

0 0 0 0 ... 0 0

0 0 ... 0

0 0 ... 0

0 0 ... 0

t t t n

t t t n

t t t nt t

t L

t t t t t n t n

t t t t t n t n

t t t t t n t n

h h h

h h h

h h h

h h h h h h

h h h h h h

h h h h h h

+

 




= 





B










 (3.34) 

where 

 
,

( ) ( ) ( 1)

i
t i j t

j

i t t i t t i

i i i

h
h

x

u u u+ + −


=



= −

 (3.35) 

 

Linear strain-displacement matrix – non-constant part:  

( 1) ( 1) ( 1) ( 1)

11 1,1 21 1,1 31 1,1 11 2,1

( 1) ( 1) ( 1) ( 1)

12 1,2 22 1,2 32 1,2 12 2,2

( 1) ( 1) ( 1)

13 1,3 23 1,3 33 1,( 1)

1

t t i t t i t t i t t i

t t t t

t t i t t i t t i t t i

t t t t

t t i t t i t t i

t t tt t i

t L

l h l h l h l h

l h l h l h l h

l h l h l h

+ − + − + − + −

+ − + − + − + −

+ − + − + −

+ − =B

( 1)

3 13 2,3

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

11 1,2 11 1,1 21 1,2 21 1,1 31 1,2 31 1,1 11 2,2 12 2,1

( 1) ( 1)

12 1,3 13 1,2 22

t t i

t

t t i t t i t t i t t i t t i t t i t t i t t i

t t t t t t t t

t t i t t i t t

t t

l h

l h l h l h l h l h l h l h l h

l h l h l

+ −

+ − + − + − + − + − + − + − + −

+ − + − +

+ + + +

+ ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1,3 23 1,2 32 1,3 33 1,2 12 2,3 13 2,2

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

11 1,3 13 1,1 21 1,3 23 1,1 31 1,3 33

i t t i t t i t t i t t i t t i

t t t t t t

t t i t t i t t i t t i t t i t t i

t t t t t t

h l h l h l h l h l h

l h l h l h l h l h l h

− + − + − + − + − + −

+ − + − + − + − + − + −

+ + +

+ + + ( 1) ( 1)

1,1 11 2,3 13 2,1

t t i t t i

t tl h l h+ − + −










+

   

 

( 1)

31 ,1

( 1)

31 ,2
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where 

 ( 1) ( 1)

,

1

n
t t i t t k i

ij t k j t i

k

l h u+ − + −

=

=   (3.37) 



Nonlinear strain-displacement matrix   
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2nd Piola-Kirchhoff stress tensor and vector 
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 (3.39) 

 

Spring elements in ATENA are used to model spring-like boundary conditions, i.e. situation 

where external forces acting on boundary of the structure are linearly proportional to the 

associated displacements. Three elements of this type are available, see also Fig. 3-10, Fig. 3-11: 

CCSpring – 2D and 3D element to model spring-like boundary conditions at a point, 

CCLineSpring – 2D element to model spring-like boundary conditions along a line 

CCPlaneSpring – 3D element to model spring-like boundary conditions along a triangular area. 

All these elements are derived from 2D or 3D formulation of the CCIsoTruss<xx> element 

described earlier in this chapter. For example, CCSpring element consists of one 

CCIsoTruss<xx> element. The 1st node of each CCIsoTruss<xx> coincides with one node of the 

CCSpring element, whereas the 2nd node of the CCIsoTruss<xx> is set by direction vector, see 

Fig. 4-4.  Note that as the analysis is nonlinear, length of the direction does matter. This vector is 

specified in ATENA &SPRING_GEOMETRY_SPEC command and is common for all spring 

elements that use this geometry. 



CCLineSpring and CCPlaneSpring elements were created to enable convenient definition of 

„uniform“ spring-like conditions along the boundaries. The boundary force at a node i of the 

spring element is calculated: 

 i
i

u kA
R

n direction
=  (3.40) 

where 

k is spring material stiffness parameter set by &MATERIAL SPRING command, 

(parameter k has character of multi-linear Young modulus), 

iu is displacement at spring element node  i , 

A is the area of CCPlaneSpring element or length of CCLineSpring multiplied by 

thickness (which defaults to 1 if not specified in element geometry) or the area defined in 

element geometry for CCSpring (similarly, with a default of 1 if not specified) for the 

respective element,  

n is number element nodes, i.e. 1, 2 or 3 for CCSpring, CCLineSpring or CCPlaneSpring 

element respectively, 

direction  is Euclidean norm (i.e., length) of the direction vector, see above. 

 

Note that the original CCPlaneSpring element has been recently  added by 

CCPlaneSpringTriangle<xxx>, CCPlaneSpringTriangle<xxxxxx>, 

CCPlaneSpringQuad<xxxx> and  

CCPlaneSpringQuad<xxxxxxxx> elements to support linear/nonlinear plane springs of 

triangular and quadrilateral shape. 
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The quadrilateral finite element Q-10 is derived from a six-node triangle (CCQ10<xxxx>, 

CCQ10Sbeta<xxxx>). The derivation of the stiffness matrix is taken from FELIPPA 1966. The 

position of any internal point P in the element is defined by the triangular coordinates  (called 

also natural coordinates). These coordinates are expressed by means of areas within the triangle 

as shown in Fig. 3-12. Sub-areas Ai are subtended by the point P and two corners. A is the area 

of triangular element.  

 

 1 2 3
1 2 3, ,

A A A

A A A
  = = =  (3.41) 

 1 2 3 1  + + =  



Using the quadratic interpolation function, the displacement components u( i ), v( i ) is written 

in the terms of triangular coordinates i  and nodal displacement vectors : 

 ( ) ( ) , ( ) ( )T T

i i i iu v   = =F u F v  (3.42) 

The displacement vectors u, v contain six components of the nodal displacements and the vector 

F ( )i  contains the quadratic interpolation functions in triangular coordinates: 

    1 2 3 4 5 6 1 2 3 4 5 6,
T T

u u u u u u v v v v v v= =u v  (3.43) 

  1 1 2 2 3 3 1 2 2 3 3 1( ) (2 1) (2 1) (2 1) 4 4 4
T

i            = − − −F  (3.44) 

A general procedure to construct the element stiffness matrix is described by the set of following 

equations: 

(a) The constitutive equation: 

 =s D e  (3.45) 

(b) The strain-displacement equations in the Cartesian coordinates: 

 
( ) ( ) ( ) ( ), , , ,

, ,x y

u x y v x y u x y v x y

x y y x
  

   
= = = +

   
 (3.46) 

which is written in terms of the natural coordinates i  and the nodal displacements vectors u, v: 

 ( ) T

i  
 

=  
 

u
F

v
 (3.47) 

The stiffness matrix: 

 T

V

dV = K F D F  (3.48) 

The matrix F  contains partial derivatives of the interpolation function F and the integral in the 

last equation is made over the element volume V. The details of the derivation can be found in 

FELIPPA 1966 and here only the final matrix equations are presented. 

 

The quadrilateral finite element is composed from two 4-node triangular elements, as shown in 

Fig. 3-13. Two degrees of freedom in a node are the horizontal and vertical displacements. The 

triangular element is derived from the 6-node triangle by imposing kinematic constraints on two 

mid-side nodes. The resulting strain-displacement matrix relation for the 4-node triangle is: 



 =e Bd                

x

y

   
    

=    
       

e U O
u

e O V
v

g V U

 (3.49) 

where ex, ey are the normal strain vectors, g is the shear strain vector (engineering type) and O is 

the null matrix. The strain and displacement vectors contain nodal components: 

      1 2 3 1 2 3 1 2 3, ,
T T T

x x x x y y y y x x xg        = = =e e  (3.50) 

    1 2 3 4 1 2 3 4,
T T

u u u u v v v v= =u v  (3.51) 

The strain interpolation function in the element is linear and is uniquely specified by three nodal 

values in the corners of the triangular element, while the displacement interpolation function is 

quadratic and is specified by three corners and one mid-side nodal displacement. The 

components ui, vi are the horizontal and vertical displacements, respectively, in the node i. The 

indexes 1, 2 and 3 denote the corner nodes of a sub-triangle and the index 4 is for the mid-side 

node, see Fig. 3-13 (a). The strain-displacement sub-matrices in (3.49) are 
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V  (3.52) 

 

1 3 2 1 2 3

2 1 3 2 3 1

3 2 1 3 1 2

a x x b y y

a x x b y y

a x x b y y

= − = −

= − = −

= − = −

 

 3 2 2 32S a b a b= −  

where xi, yi are the global Cartesian coordinates of the node i in a sub-triangle, S is the area of the 

sub-triangle. 

The element stiffness matrix for the 4-node sub-triangle is 

 
uu uv

vu vv

K K

K K

 
=  

 
K  (3.53) 

The stiffness matrix K has an order 8 and is so partitioned that the upper four rows correspond to 

the horizontal displacement components (index u) and the lower four rows correspond to the 

vertical displacement components (index v). The integration of the stiffness coefficients is made 

exactly, and the resulting sub-matrices are: 

 11 13 33( )T

uu St d d d = + + + K A H H C  

 22 23 33( )T

vv St d d d = + + + K C H H A  

 12 13 23 33

T

uv St d d d d = + + + K H A C H  (3.54) 



where t is the thickness of the element, dij are the coefficients of the material stiffness matrix D, 

(3.45). The integration in (3.48) is done explicitly by the following matrix multiplication: 

 , ,T T T= = =A U QU H U QV C V QV  (3.55) 

Where the area integration matrix Q is: 

 

2 1 1
1

1 2 1
12

1 1 2

 
 

=
 
  

Q  (3.56) 

The element stiffness matrix of the 5-node quadrilateral, Fig. 3-13(b), is composed of the two 4-

node sub-triangles by summing the stiffness coefficients of the appropriate nodes. The resulting 

matrix of the 5-node quadrilateral K10 has the order 10. The coefficients of the matrix can be 

rearranged according to the external (index e) and internal (index i) degrees of freedom: 

 
10

ee ei

ie ii

 
=  

 

K K
K

K K
 (3.57) 

The sub-matrices corresponding to two internal degrees of freedom are eliminated by 

condensation procedure and the final element stiffness matrix K of the order 8 is obtained: 

 1

ee ei ii ie

−= −K K K K K  (3.58) 

 

The subdivision of the quadrilateral element into the triangular elements must be done in an 

optimal way and it is preformed automatically by the program. The examples of the subdivisions 

are illustrated by Fig. 3-14. Due to this method of the subdivision, a concave form of the 

quadrilateral element is acceptable. This element form could not be achieved by an isoparametric 

element. 

 

For the given displacement field, the strains and stresses are evaluated in the center of the 

quadrilateral element. The stresses at this point are obtained from material laws as functions of 

strains according to Section 2.1.12. Also, the constitutive law for the element and the matrix D 

are calculated from the stresses and strains at the center of the element. These stresses and strains 

are written in the output file as a part of the results. 

The calculation of resisting nodal forces of the sub-triangle for a current displacement field and a 

constitutive law is done by the following equation: 

 9 9

Tt=R B Q s  (3.59) 

where R is the vector of nodal forces (same arrangement and numbering as in the vector d in 

(3.49)). The matrix Q9 contains three integration matrices Q in the diagonal. The stress vector  s9 



(same numbering as the vector e, (3.45), is calculated from the current strains and secant material 

matrix, Section 2.1.12. 

There are two variations of this element in program ATENA: CCQ10<xxxx> and 

CCQ10Sbeta<xxxx>. The main difference between these two elements lies in the way how the 

resisting forces are calculated. In case CCQ10<xxxx>, they are computed as described by 

Equation (3.59). In the second case, however, the material law is evaluated only at the element 

centroid. Based on the current state of damage a secant constitutive matrix is calculated and it is 

used to determine the integration point stresses and resulting resisting forces. This element type 

is almost identical to the element that was implemented in the program SBETA, i.e. the former 

version of this program. Due to this approach, there are some limitations for usage of this 

element with respect to some material models. It can be only used with material models that are 

able to calculate and exact secant constitutive matrix. This means that only the following 

material models can be used with the element CCQ10Sbeta<xxxx>: CCElastIsotropic and 

CCSbetaMaterial. 



 

External pre-stressing cables are reinforcing bars, which are not connected with the most of the 

concrete body, except of limited number of points, so called deviators, as shown in Fig. 3-15. 

This element type is denoted in ATENA as CCExternalCable. 

 

Each cable has two ends provided with anchors. The anchor, where the pre-stressing force is 

applied is denoted as the active anchor, the anchor on the other side is the passive anchor. The 

points between the anchors are called deviators (or links). After applying pre-stressing the cable 

is fixed at anchors. In the deviators, cable can slide while its movements and the forces are 

governed by the law of dry friction. The slips of the cable in the deviators (the relative 

displacement of the cable ends with respect to the deviators) are denoted as 1 2, ...   They are 

introduced as variables to be determined by the analysis. 

 

The forces, F1 and F2 acting on a deviator i are the cable forces at the adjacent cable sections, 

Fig. 3-16. Their difference Pi = F1 -F2, (F1> F2) is the loss of the pre-stressing force due to 

friction in the deviator i. The relation between these forces according to the law of friction is 

expressed as: 

 ( )2 1 ( ) ( )i p

rF F e Q f f r
 

 −
= −  (3.60) 



The term 1
i p

F e
 −

 reflects dependence of 
2F  on the angular change 

i  of the cable direction at 

the deviator I, [deg], R is the radius of the deviator, [L], (i.e. the product 
iR  is the length the 

contact between the cable and the deviator.).   is the friction coefficient, [1/(deg L)]. The 

constant part of the friction is i f iQ pc R= , where fc  is the cohesion (a constant part of the 

friction) of the cable per unit length and unit perimeter, [(F/L2)/(L L deg)] = [(F/L4deg)]. p stands 

for reinforcement bar perimeter, [L]. If the constant part of friction is neglected, the term Q is 

zero. ( ) , ( )rf f r   are user defined function that enable change of deviator's properties 

depending on value of slip   and deviator position coordinate r (measured from its starting 

point), [-].  By default, these functions are set to one.  

Introducing  

 
( ) ( )

( ) ( )

i pa

i r

b

i f i r

d e f f r

d pc R f f r

 







 

−
=

=
 (3.61) 

we can simplify (3.60) to 

 

 2 1 1 1

a bF F d d= −   (3.62) 

 

A section of the cable between the deviators is considered as the uniaxial bar element, Fig. 3-17. 

The force F , [F], in the cable element depends on the pre-stressing force P, the displacements of 

ends u1, u2 , [L], due to structural deformation and the cable slips 1 2,   in the deviators. The 

slips  , [L] are introduced as an additional variable for the external cables. The equilibrium 

equation of the cable section is: 

 2 1 2 1( )F P K u u  = + − + −  (3.63) 

The element stiffness K = Es A/L, where A, L are the cable’s cross section area , [L2],  and length, 

[L], respectively, and Es is the actual secant or tangent modulus derived in the same way as in 

case of other reinforcement using bilinear or multi-linear law, [F/L2]. 

The cable forces F1, F2, … are determined by applying the above equations for all cable 

deviators, i.e. an iterative solution is executed for displacements u, (outer iterations loop), and on 

slips i , (inner iteration loop).  

Introduction of pre-stressing is accomplished by applying an initial slip (cable pull-out) at the 

anchor end until a prescribed pre-stressing force is reached. This procedure reflects a real 

process of pre-stressing and considers the loss of pre-stressing due to friction deviators and 

deformation of the structure. 



 

Reinforcement bars with prescribed bonds are an extension of the external cables described in 

the previous section. The main difference is that they can also account for a bond between the 

bar and the surrounding concrete body. This connection need not be perfect, because the 

cohesion strength has a limited value. It is inputted in form of a “bond” cohesion stress.  

This type of element is denoted as CCBarWithBond in ATENA. A typical reinforcement bar of 

this type is depicted in the figure below. The detail shows undeformed and deformed shape of a 

segment of the bar. The original length 0l  will change to l  due to displacement u  of the 

surrounding body and bar slips  . 
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Normal stress at element i  is calculated by: 

 1( )i i i i i
i

i

u u
E

l

 
 + ++ − −

=  (3.64) 



Its derivative is compared with the total cohesion stress c , i.e. x
c

x








. If the cohesion stress 

between the bar and the surrounding concrete is to be exceeded, the bar will slip to reduce this 

stress. Otherwise, the slips   will remain unchanged (or initially equal to zero), which 

corresponds to the case of perfect bond.  

The total cohesion stress consists of two parts: base cohesion stress and so-called wobble 

cohesion stress, i.e. an extra cohesion dependent on axial stress in the bar, (see the term 
x wf  

below). The wobble cohesion is derived as follows: Prestress losses are calculated by: 
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  (3.65) 

 

,r i  is stress at the bar at (slip) iteration , [F/L2]. The wobble related cohesion stress is thus 

r w rf  − = .   

Realizing that the cohesion stress can be constant, or it can be defined as a function of   and r , 

we can calculate the total cohesion stress c as follows: 

 ( )0( ) ( ) ( ) ( ) ( )
corrc r T c corr t c x wf r f T f c f t f f   = +  (3.66) 

( ) , ( )rf f r   are the same as those described for external cables near (3.60), 0c  is reference 

base cohesion stress due to slipping (to be inputted), c  is total cohesion stress due to slipping 

and wobble cohesion,  p is perimeter of the reinforcement bar, r  is location at the bar. x  is 

normal stress in the bar and wf  states for wobble coefficient, [((F/L2)/(L L)) ( L2/F) ] =  [(1/L2)]. 

The remaining parameters are: r  is axial normal stress in the bar in direction of local 

coordinate axis r (in direction of the bar) and ,p A  means perimeter and cross-sectional area of 

the bar, (again similar to r in the case of external cable). Function ( )
corrc corrf c , ( )Tf T  and ( )tf t , 

[-], expresses, how the cable’s cohesion depends on current temperature, corrosion ratio 

/curr origA A  and time at a point of the cable. ,curr origA A  is current and original (i.e. before 

corrosion started) area of cross section of the cable. 

Examples of c are given in the section Reinforcement Bond Model, e.g. CEB-FIP 1990 Model 

Code, Bond Model by Bigaj etc. 

 



 

The discretized solution equation for node i, (considering elements 1,i i− ), reads (the bars are of 

constant strain type): 
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 (3.67) 

 

If this element acts as the external cable, see the previous section, then 
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,i lossF  stands for the cable prestress loss at node i. It is calculated as a product of the original 

cable prestressing force, (positive), and coefficient ( )lossf s . s is longitudinal coordinate of the 

node i. Note that 
a

id  and 
b

id are defined earlier in (3.61). 

 

 , ( ) min( ( ), ( ))R L R L

i loss i i i i prestress lossF sign F F abs F F F f s = − −  (3.69) 

 

Assembling (3.67) and (3.68) yields final (in)equations for force difference at node i: 
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Note that at this stage we solve for slips  , (while keeping constant cable displacements u ). As 

the reference cohesion stress is a function of  , i.e. 
0 ( ...)c co  = , in the above equations we 

use its Taylor approximation   
i

c
c

i


 




+ 


 

The above set of (in)equations is calculated in iterative manner. Assume we know the forces at 

iteration ( 1)k − , then the forces at iteration k are: 
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and 
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  (3.72) 

 

If the above equation is written for all nodes on the bar, we obtain a set of inequalities. These 

have to be solved in iterative manner (within each iteration of the main solution loop).  

 

Atena also support so called CCBarWithMemoryBond 2D and 3D elements. They differ from 

their original formulation, (i.e. elements CCBarWithBond), in that they have different function 

( )f   for "loading“ and , ( )unloadf  for "unloading" regime. This means min max( , )   in the 

former and min max( , )   in the latter case.  

 



 

 

 

 

To obtain more realistic shape, the resulting cohesion stresses are prior their output smoothed. 

The smoothing operation for node i is expressed as follows: 
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 (3.73) 

The equation (3.64) together with (3.67) completes the element description. The element can be 

used to realistically model cohesion between reinforcement bar and concrete. Such a model is 

needed for analysis of pullout tests etc. Although the adopted solution is simple, it provides 

reasonable results accuracy at low computation cost. A more elaborate model of cohesion 

between reinforcement bar and surrounding concrete can be achieved by using special interface 

elements that is described in the next section.    

 

The interface elements are used to model a contact between two surfaces. Currently, the 

following element types are available: CCIsoCCIsoGap<xxxx> and CCIsoGap<xxxxxx>, 

CCIsoGap<xxxxxxxx> for 2D and 3D analysis, respectively. These elements use linear 

approximation of geometry. For the case of nonlinear geometry, use element type 



CCIsoGap<xxxxxx> for 2D and CCIsoGap<xxxxxxxxxxxx> or 

CCIsoGap<xxxxxxxxxxxxxxxx> for 3D. The string in < > describes present element nodes, (see 

Atena Input File Format document for more information). The elements are derived from the 

corresponding isoparametric elements (described in sections 3.3 and 3.4), i.e. they use the same 

geometry and nodal ids etc. Geometry of the supported gap elements is depicted in Fig. 3-21. 
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The interface is defined by a pair of lines, (or surfaces in 3D) each located on the opposite side 

of interface. In the original (i.e. undeformed) geometry, the interface lines/surfaces can share the 

same position, or they can be separated by a small distance. In this case we speak about the 

interface with nonzero thickness.  

In the following, the interface behavior is explained on a simple 2-dimensional case, see section 

2.6 for a full description of the interface material.  

The interface element has two states:  

• Open state: There is no interaction of the contact sides. 

• Closed state: There is full interaction of the contact sides. In addition, friction sliding of 

the interface is possible in case of interface element with a friction model.   



  

Penalty method is employed to model the above behavior of the interface. For this purpose, we 

define a constitutive matrix of the interface in the form: 
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in which ,u v   are the relative displacements of the interface sides (sliding and opening 

displacements of the interface) in the local coordinate system ,r s  and ,tt nnK K are the shear and 

normal stiffness, respectively. This coefficient can be regarded as stiffness of one material layer 

(real, or fictious) having a finite thickness. The layer is only a numerical tool to handle the gap 

opening and closing. F , F  are forces at the interface, (again at the local coordinate system). 

The actual derivation of gap elements is now demonstrated for the case of linear 2D gap element 

CCIsoGap<xxxx>, see Fig. 3-21. The other elements are constructed in a similar way.  

The element has two degrees of freedom defined in the local coordinate system, which is aligned 

with the gap direction. They are relative displacements ,v u   and are defined as follows: 
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 (3.75) 

The rest of the element derivation is the same as in case of any other elements, i.e. the stiffness 

matrix T dV= K Β DB , vector of internal forces TQ FdV= Β  etc. A numerical integration in 

two Gauss points is used to integrate the interface element stiffness matrix. The matrix K and the 

vector Q are in local coordinate system and therefore before they are assembled in the problem 

governing equations, they must be transformer in global coordinates.  

The stiffness coefficients depend on the gap state. The interface is considered open, if the normal 

force F >Rti (Rti is the interface tensile strength force) and the corresponding constitutive law is 

(stress free interface): 
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The stiffness coefficients are set to small, but nonzero values ,op op

tt nnK K .  

The interface element is considered closed if F  Rti. The stiffness coefficients are set to large 

values ,cl cl

tt nnK K . It should be noted that the stiffness coefficients are defined only for the purpose 

of the numerical iterative solution. (Hint: The values of coefficients in the closed state (the large 

values) are based on thickness comparable to the size of neighbor quadrilateral elements. The 

minimum values in the open state can be about 1000 times smaller. ) 

The interface thickness in the out-of plane direction is normally provided as an input parameter. 

In the case of axi-symmetric analysis it is however calculated using the formula: 

 2t x=  (3.77) 

where x  is the distance from the axis of symmetry. 

There are two special options for processing the gap elements: 

Initial gap opening 

It is possible to "open" gap at a particular load step, typically the first step of the analysis, i.e. we 

can introduce to the gaps something like initial element strains in case of ordinary finite 

elements. This is achieved by LOAD INITIAL GAP ... INIT_STEP_ID  step_id command. Upon 

that, during calculation of the (gap) element at the step step_id  an artificial opening of the 

interface is introduced. Its value is the distance between upper and lower element surfaces/lines 

(with reference to undeformed structural shape).  

The GAP element load is typically used as follows: we have a structure with a base and upper 

block. The upper block falls towards the base block that is typically fixed. The structure is solved 

by introducing a layer of gap elements between the base and upper blocks and applying the GAP 

element load (for these gaps elements) in the 1st step. As a result, in the first steps the gaps will 

open to the distance between the blocks. It involves some tensional forces, but as the interface 

material usually sustains only compression forces, they can be neglected. In next steps the upper 

block gradually is falling to the base block until it hits it. At this moment interface gaps get fully 

closed, they change their regime form tension to compression and the upper block gets fully 

supported by the base block.  

Moving gaps3 

Suppose we have a structure has a base block and an upper block sitting on the base block. The 

base block is fixed, the upper block is dragged on the upper surface of the base block. The blocks 

are not mutually interconnected, only some friction and cohesion forces exist between them. 

Such problems can be modelled by the RESET_DISPLS n flag for the CC2DInterface / 

CC3DInterface. If this flag is input, then the upper and bottom surface/lines for all corresponding 

elements are realigned at the end of each step as shown for 2D elements in the following picture. 

The 3D gaps element is realigned in the same way. 

Of course, the boundary surface/lines projection of the gap interface (and thus its "moving" can 

be used in more complex situation, but the essence of the described technique remains the same. 

The layer of interface elements is typically connected to the bottom/ upper block of structure by 

MASTER SLAVE NODAL LISTS boundary conditions, where we must not forget to use the 

flag PROCESS_FLAG USE_CURRENT_COORDS. It will assure that after realigning the 

interface gets properly connected to the rest of the (deformed) structure.                 

 

 

3 Available starting from ATENA version 4.3.1. 



 

Note that the option of the gap's initial opening and the reset displacements flag can be 

combined. Both these special processing options are possible, because the ATENA software uses 

incremental approach to solve the structure. Thus, changing shape of the gap (at the end of the 

steps) will not harm governing equilibrium equations.  

 

In the following a circumferential truss element for axisymmetric analysis are described. The 

elements call CCCircumferentialTruss and CCCircumferentialTruss2 and they are aimed mainly 

for modeling structural circumferential reinforcement. For radial reinforcement refer to 

CCIsoTruss<xx> and CCIsoTruss<xxx> elements. 

The CCCircumferentialTruss has one node only, whereas the CCCircumferentialTruss2 has 

nodes two. They behave much the same, the difference being only in calculation of their “cross-

sectional area”. In case of the CCCircumferentialTruss element the area is entered directly from 

input data. The CCCircumferentialTruss2 element calculate the area as its thickness (defined in 

its geometry data) multiplied by its length. Unlike isoparametric elements thses elements are 

derived and computed analytically.   

Geometry, interpolation functions and integration points of the elements are given in 

Fig. 3-23. 
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In the following structural vectors and matrices for the CCIsoTruss element are derived. 

Development of the CCIsoTruss2 is much the same. In fact, it is CCIsoTruss acting at the centre-

point of the CCIsoTruss2 element with its cross-sectional area calculated as explained above. 

The element vectors and matrices for Total Lagrangian formulation (TL), configuration at time t  

and iteration (i)  are as follows. Note that they are equally applicable for Updated Lagrangian 

formulation (UL) upon applying changes related to the element reference co-ordinate system 

(undeformed vs. deformed element axis.).  

The truss element center has at reference time t and ( 1)it t −+   co-ordinates 1 1[ , ]t t tX x x=  and 
( 1) ( 1) ( 1)

1 1[ , ]
i i it t t t t tX x x
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to configuration at time t ) is calculated: 
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where truss length ( ) 1 1( 1) 1( )

1 1 12 ( )t t i t t t i i
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−+ +− . Substituting expressions for element length into (3.78)  yields: 
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Separating  1( )

1

i

t u  from (3.79) and rearranging in matrix form we obtain: 
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The 2nd Piola-Kirchhoff stress matrix and tensor are: 
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The formulation is completed by relationship for element deformation gradient ( )

1,1

t t i

t X+ , which 

yields:  
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where engineering strain ( )

11

i

t e  is calculated by  
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This section describes Ahmad shell element implemented in ATENA, see Fig. 3-27. It can be 

used to model thin as well as thick shell or plate structures. It accounts for both plane and 

bending structural stiffness. The element features quadratic geometry and displacement 

approximation and therefore, the element’s shape can be non-planar. It is possible to account for 

structural curvatures. Big advantage of this element is that it is seamlessly connectible to true 3D 

ATENA elements.   

Three modifications of this element are supported, and these are characterized by Lagrangian, 

Serendipity and Heterosis variant of geometry and displacement field approximation. To avoid 

or minimize membrane and shear locking of shell element it is further possible to use full 

integration scheme, as well as reduced and/or selective integration. The problems concerned with 

combination of displacement approximation and integration scheme with respect to locking 

phenomena are discussed.  

The element is derived in a way similar as the other finite elements, which are described in this 

manual. Hence, in the present description will concentrate mainly on features that are specific for 

this element. Following Total Lagrangian formulation of the problem, the principle of virtual 

displacement is used to assemble incremental form of governing equations of structure.  

The present Ahmad element belongs to group of shell element formulation that is based on 3D 

elements’ concept. Nevertheless, it uses some assumptions and restrictions, so that the originally 

3D element is transformed into 2D space only. It saves computational time and it also avoids 

some formulation difficulties pertaining to 3D elements.  

The element’s in-plane integration is carried out in usual way by Gauss integration scheme, 

whilst in the 3rd dimension (i.e. perpendicular to mid surface of element) the integration can be 

done in closed (analytical) form. However, in order to enable accounting for nonlinearity of 

constitutive equations, the so-called layer concept is used instead. Hence, in the 3rd dimension 

simple quadrilateral integration is employed.  

The present degenerate continuum element was originally proposed by Ahmad et al. (Ahmad, 

Irons et al. 1970).  Following general shell element theory concept, every node of element has 

five degree of freedom, e.g. three displacements and two rotations in planes normal to mid-

surface of element. In order to facilitate a simple connection of this element with other true 3D 

elements, the (original) five degrees of freedom are transformed into x,y,z displacement of a top 

node and x,y displacement of a bottom node degrees of freedom. The two nodes are located on 

the normal to mid-surface passing thru the original mid-surface element’s node, see Fig. 3-28.  



The essential point in the element’s derivation is that displacements and rotations fields are 

approximated "independently", (see e.g. (Jendele 1981), where similar approach is used for 

plates). This means that they are handled separately. Unlike in true Mindlin theory our 

formulation matches geometric equations automatically. However, a special technique is used to 

improve the element’s shear behavior (Hinton and Owen 1984).  

The first formulation of this element proposed by Ahmad was linear but since that time many 

improvements have been achieved. The most important is the application of reduced or selective 

integration scheme that reduces or totally removes locking of the element. Also, many authors 

extended the original formulation to geometrically and later also materially nonlinear analysis. 

One such an advanced form of the element is the formulation implemented in ATENA.  

On input, the Ahmad element uses the same geometry as 20 nodes isoparametric brick element, 

i.e. CCIsoBrick<xxxxxxxxxxxxxxxxxxxx>, see Fig. 3-27. This is needed, in order to be able to 

use the same pre- and postprocessors’ support for the shell and native 3D brick (i.e. hexahedron) 

elements. After the 1st step of the analysis, the input geometry will automatically change to the 

external geometry from Fig. 3-27. As nodes 17 and 18 contain only so-called bubble function, 

the element is post-processed in the same way is it would be the element 

CCIsoBrick<xxxxxxxxxxxxxxxx>. Internally, all element’s vectors and matrices are derived 

based on the internal geometry as depicted also in Fig. 3-27. 

With shell elements, the best connection at edges is to cut both at 45 degrees, or a different 

corresponding angle if the thicknesses are not the same, or if connected at other than right angle, 

see Fig. 3-24 (a). Another option is to use a volume brick element at the corner, which is the only 

feasible way when more than two shells are connected, see Fig. 3-24 (b). The nodes on the 

surface connected to the volume element have to be listed in the INTERFACE subcommand in 

the shell geometry definition for correct behavior. Connecting like in Fig. 3-25 is not 

recommended, as the master-slave relations induced by the fixed thickness of the shell may 

cause numerical problems.  



 

 

The essential point in the element’s derivation is to understand coordinate systems that are used 

within the derivation. These are as follows. Note that all vectors indicating coordinate systems’ 

axes are normalized. Thus, any directional cosines are simply computed as scalar products that 

need not be divided by the vectors’ norm. 

Global coordinate system.  

It is used to define the whole FE model. Global coordinates are denoted by 1 2 3, ,t t tx x x , where 

the index t referrers to time. Note that we are using Modified Lagrangian formulation, in which 

model configuration is updated after each time step, while within one step (for iterating) the 

configuration from the step beginning is employed. Thus, 0 0 0

1 2 3, ,x x x are a point global 

coordinates prior any load has been applied. 

Nodal coordinate system 

This coordinate system is defined at each point of element mid-plane surface, i.e. mid-nodes 1-9. 

At a node k it is specified by vectors 1 2 3, ,
t t tk k kV V V , see Fig. 3-26. 



 

 

The vectors 
1 2 3, ,

t t tk k kV V V are defined as follows: Firstly, two auxiliary vectors 
1 3,

t t

V V  are 

calculated. Vector 
3

t

V  at a point is defined as a line joining bottom and top coordinates at the 

node k (prior any deformations, i.e. at reference configuration).  The second vector 
1

t

V  is normal 

to 
3

t

V  and is parallel to plane of global 
0

1

GX  and  
0

3

GX . Hence: 

 
3 3 3 31 2 3

1 1 1 1 3 31 2 3 3 1

, ,

, , ,0,

t t t t

t t t t t t

V V V V

V V V V V V

 =
 

   = = −
   

 (3.86) 

If  
3

t

V  is parallel to 
0

2

GX  (i.e. 3 31 3
0

t t
V V= = ), 

1

t

V   is defined by 

 
1 3 2

,0,0
t t
V V = −

 
 (3.87) 

After that, the coordinate system 1 2 3, ,
t t tk k kV V V  itself is defined. The vector 3

t kV  is constructed in 

the same way as was the vector 3

t

V , however, current, i.e. deformed configuration is used. The 

remaining two vectors are defined as vector product: 

 2 3 1

tt tk kV V V=   (3.88) 

 1 2 3

t t tk k t kV V V=   (3.89) 



The vectors 
1 2 3, ,

t t tk k kV V V  define local nodal shell coordinate system in which the shell rotations 

are specified. As already mention, the original formulation of the element has 5 DOFs per nodes. 

These are 3 displacements, expressed in the global coordinate systems and two rotations ,  . 

They are rotations along the vectors 
1 2,

t tk kV V .  It comes from definition that 3

t
V  need not be 

normal to the element surface.  It must only connect the top and bottom nodes of the shell.  

Sometimes, it is advantageous to modify the nodal coordinate system so that 
3

t kV  remains 

unchanged but 
1

t kV  and 
2

t kV  are rotated (along 
3

t kV ) to a certain direction. Note however, that 

mutual orthogonality of 
1 2 3, ,

t t tk k kV V V  must not be damaged. 

Local coordinate system 

Local coordinates are denoted by 1 2 3, ,t L t L t Lx x x . The system refers to coordinate axes 

1 2 3, ,
t t tL L LX X X . It is used mainly at sampling (integration) points to calculate strains and 

stresses. The vector axes 
1 2 3, ,

t t tL L LX X X  are defined by: 

 

1 1

2 2
3

3 3

t t

t t
t L

t t

x x

r s

x x
X

r s

x x

r s

    
   

    
    

=    
 

   
    

       

 (3.90) 

 

2 3 1

1 2 3

t t tL L k

t t tL L L

X X V

X X X

= 

=   (3.91) 

As the nodal coordinate system 1 2 3, ,
t t tk k kV V V  can rotate along 3

t kV , the local coordinate system 

would 
1 2 3, ,

t t tL L LX X X  rotate simultaneously along 
3

t LX . This definition allows for user defined 

shell local coordinate system that is common for all shell elements, irrespective of their 

incidences. Note that unlike 3

t kV  the vector 3

t LX  is always normal to the element mid-plane 

surface. 

Curvilinear coordinate system 

This system is used to calculate derivatives and integration in element integration points. Its 

coordinates are ,r s  for in-plane direction and t  in direction of element thickness, see Fig. 3-26. 

The in-plane displacements are approximated by Lagrange, Hetherosis or Serendipity 

approximation similar 2D isoparametric elements. For the 3rd direction, i.e. through the depth of 

the element. linear approximation is used within the frame of the shell layer concept.  
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The coordinates of the top and bottom element surface are used to define the element geometry: 

 

, ,

1 1 1

, ,

2 2 2

1 , ,

3 3 3

1 1

2 2

t t k top t k bot

N
t t t k top t k bot

k

kt t k top t k bot

x x x
t t

x x h x x

x x x
=

      
 + −     

= = +      
      

      

  (3.92) 

where N=8 is number of nodes per element, (geometry is always interpolated by 8-nodes 

Serendipity interpolation, irrespective of displacement interpolation), h(r,s) is k-th interpolation 

function, r,s,t are isoparametric coordinates (see Fig. 3-27), 

,

1

,

2

,

3

t k top

t k top

t k top

x

x

x

 
 
 
 
 

and 

,

1

,

2

,

3

t k bot

t k bot

t k bot

x

x

x

 
 
 
 
 

 are vector of 

top and bottom coordinates of point k, see Fig. 3-29. 

 

node k

, , , ,

1 2 3[ , , ]
t k top t k top t k top t k topX x x x=

, , , ,

1 2 3
[ , , ]

t k bot t k bot t k bot t k botX x x x=

, , , ,

1 2 3[ , , ]
t k mid t k mid t k mid t k midX x x x=

 

Using the above the equation (3.92) can be rewritten in the following form: 

  

, 3 1
1 1

,

2 2 3 2
1 ,

3 3
3 3

2

t k
t t k mid

N
tt t t k mid k

k k
kt t k mid

t k

V
x x

t
x x h x V thick

x x
V

=

  
     
     = = +     
            

  (3.93) 

where  
k

thick is element thickness in node k (i.e. distance between top and bottom points) and  

 

1 1 1

2 2 2

3 3 3

1

2

t mid t top t bot

t mid t top t bot

t mid t top t bot

k k k

x x x

x x x

x x x

      
      

= +      
      

      

 (3.94) 

are coordinates of mid surface.  

 



 

The general concept of displacement approximation is very similar, (although not identical) to 

geometry approximation. As already mentioned, the original version of Ahmad element uses 5 

degrees of freedom per node, see Fig. 3-28. These are 
1 2 3, , , ,

T
t mid t mid t mid t tu u u     , where 

1 2 3, ,t mid t mid t midu u u  are displacements of the element’s node at the mid-surface and ,t t   are 

rotations with respect to vectors 1
k

v  and 2
k

v  respectively. These degrees of freedoms (DOFs) 

are used throughout the whole element’s development. However, in order to improve 

compatibility of the present shell element with other 3D elements implemented in ATENA, 

externally the element uses 
1 2 3 1 2, , , ,

T
t top t top t top t bot t botu u u u u    DOFs, i.e. displacements at the top and 

bottom of the element. The 6th displacement, i.e. 3

botu  is eliminated due to application of shell 

theory that assumes 33 0 = .  

Approximation of the original three "displacement" and two rotation degrees of freedom is 

independent. Nevertheless, the curvatures used in governing element equations use all of them in 

the sense dictated by geometric equations. This approach enables to satisfy not only equilibrium 

equations for membrane stresses and in-plane shear (in mid-surface) as it is the case of popular 

Kirchhoff hypothesis, but also to satisfy equilibrium condition for transversal shears (normal to 

mid-surface).  

Note that in the following derivation of the element we will deal with the original set of 

element’s DOFs , see (10). Every point thus has five degree of freedom, 

1 2 3, , , ,
T

t mid t mid t mid t tu u u     . Displacement vector is calculated by: 

  

, 2 11 1
1 1

,

2 2 2 12 2
1 ,

3 3
2 13 3

2

t tk k
t k t k mid

t kN
t tt k t t k mid k k

k t kk
kt k t k mid

t tk k

V V
u u

t
u u h u thick V V

u u
V V



=

  −
     

      = = + −       
          −    

  (3.95) 

The original displacement vector at point k has the form 1 2 3, , , ,
T

t mid t mid t mid t tu u u     . Unlike in the 

case of geometry approximation, were N=8, displacements approximation accounts also for 

displacement in the element mid-point, i.e. N=9. The ninth function h is so called bubble 

function. 

node k

, , , ,

1 2 3[ , , ]
k mid t k mid t k mid t k midu u u u=

1

t kV

2

t kV

3

t kV

t k


t k

 



 

The 2nd Piolla Kirchhoff tensor and Green Lagrange strain tensor is used. They are calculated 

and printed in the local coordinate system '1t x , '2t x  and '3t x . 

Green - Lagrange tensor. 

The general definition for Green-Lagrange strain tensor has the form (see eq. (1.8)): 

 ( )0 0 , 0 , 0 , 0 ,

1

2

t t t t t

ij i j j i k i k ju u u u = + +  (3.96) 

Using the above equation and applying the Von-Karman assumption, Eqn. (3.96) can be written 

as: 
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 
 
 
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 (3.97) 

The Von-Karman assumptions simplify the calculation of strain by accepting that: 

 All strains are relatively small, 

 The deflection normal to mid surface of shell is of order of thickness, 

 The both curvatures are much smaller than 1., 

 The in-plane displacements are much smaller than transverse displacement and thus their 

derivatives in 2nd order terms can be neglected. 

0

t

L  and 0

t

NL  represents linear and nonlinear part of strain vector, respectively. More 

information about their calculation is beyond the scope of this publication. It is available e.g. in 

(Jendele 1992). 

2nd Piolla Kirchhoff tensor. 

Energetically conjugated with Green - Lagrange tensor is 2nd Piolla Kirchhoff tensor, and this 

tensor is used by the present shell element. Remind that we account for all stresses with 

exclusion of normal stress which is perpendicular to shell mid surface (as it is usual practice in 

shell analysis). This is the reason, why we introduced local coordinate system and all expression 

are derived with respect to it.  

Obviously, the local coordinate system varies depending on element deformation and thus it is 

necessary to re-compute (each iteration) the transformation matrix T (that relates local and 

global coordinate systems).  



To compute internal forces, we will use 2nd Piolla Kirchhoff tensor in vector form (in a node k): 

 
0 0 11 0 22 0 12 0 13 0 23

t t t t t t

k k
S S S S S S   =     (3.98) 

Note that that it is possible to abbreviate full 3 by 3 element tensor to the above vector, because 

of adopting Von Karmann simplifying assumption. 

 

 Until now no information about interpolation function h and number of integration points were 

given. The present shell element analysis uses Serendipity interpolation functions. Note that 

bubble function 9h  (used in displacement approximation only) represents relative departure of 

approximated function with respect to the function value calculated by previous eight 

approximation functions. 

The interpolation functions ih  read:   

 

1

2

2

3

2

4

5

2

6

7

2

8

9

1
( , ) (1- )(1- )(- - -1)

4

1
( , ) (1- )(1- )

2

1
( , ) (1 )(1-  )( - -1)

4

1
( , ) (1 )(1- )

2

1
( , ) (1  )(1  )( -1)

4

1
( , ) (1 )(1- )

2

1
( , ) (1 )(1- )( - -1)

4

1
( , ) (1- )(1- )

2

(

h r s r s r s

h r s s r

h r s r s r s

h r s r s

h r s r s r s

h r s s r

h r s r s r s

h r s r s

h

=

=

= +

= +

= + + +

= +

= +

=

2 21
, ) (1- )(1- )

2
r s r s=  (3.99) 

 The actual values in center point can be calculated by: 

 
8

9 9

1

( 0, 0)i i

i

a a h r s a
=

= = = +   (3.100) 

where ih  are values of interpolation function at point (0,0), ia  are corresponding node values, 

9a  is departure in the center (i.e. computed value corresponding to degree of freedom at center) 

and 9a  is total value in center. 

Depending on combination how many nodes and integration points are used, we distinguish the 

Serendipity, Lagrange and Heterosis degenerated element variants, see Fig. 3-31. 



Serendipity element. 

This element was used in the original Ahmad work. It comprises eight nodal points (center point 

corresponding to bubble function is omitted).  

Gauss integration scheme is used for integration. It can be integrated by full, reduced, or 

selective integration procedure. Using full integration, i.e. at three by three sample points, 

element exhibits shear locking for thin and even moderately thick element. If reduced integration 

is used. the problem of locking is significantly improved without creating spurious energy modes 

on structure level. However, in case of thin element there are two non communicable spurious 

energy mode on element level. 

It should be noted that there were reported some difficulties if some unfavorable constraints are 

applied. Nevertheless, the element is popular. If reduced integration is used the provided results 

are relatively good. 

 

Nine node Lagrangian element. 

The nine-point Lagrangian element is still considered to be the best variant of the degenerated 

element. This is especially because of its versatility. For full integration scheme there is no 

problem with membrane and shear locking in very thin plate and shell application. If element is 

moderately thick, shear locking can be improved by reduced integration scheme. However, in 

that case the element exhibits rank deficiency. 



Heterosis element. 

The Heterosis element is very similar to Lagrangian element. The difference is that it assumes 

first three DOFs at the element centre to be constrained, (i.e. only the rotations are retained)  

The element exhibits better behavior compared with previous quadratic elements and especially 

in combination with selective integration scheme no locking is produced. With reduced 

integration the element provides results better than Lagrangian element. In that case there are 

some spurious mechanisms, but for practical solution there are not probable.  

 

Problem of membrane and shear locking in linear analysis are summarized in Fig. 3-32. In the 

case of nonlinearity, the situation is much more complicated and depends primarily on the 

material state at the sampling points. For more information refer to (Jendele, Chan et al. 1992)  

Element’s integration 

In previous paragraphs we mentioned many time full, reduced, and selective integration scheme. 

The sense of these procedures is best to demonstrate in Fig. 3-33. 

 



 

The steps during selective integration of shear can been explained on example of integration 

arbitrary function ( , )f r s : 

1/ First we calculate the value of f at sampling points that corresponds to two-by-two integration 

rule, i.e  

 (-0.5773,-0.5773),  (-0.5773,0.5773),  (0.5773,-0.5773),  (0.5773,0.5773)f f f f  

2/ Using bilinear approximation we calculate the values of f at points that correspond to three-

by-three integration rule. There are two possibility to that. 

The first one is based on original approximation area and the main idea is that we calculate the 

value of function f at "corners" of isoparametric element (i.e. 1., 1.r s=  =  ): 
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 (3.101) 

where 
if  are element nodal values of function f and '

ih  are interpolation functions corresponding 

to two-by-two interpolation and a node i. 

 

The set of equation (3.101) can be solved for if . Having these value, we can bi-linearly 

approximate function f and compute function value at any point, i.e. also at sampling points 

corresponding to three by three integration rule.  

The second and more elegant solution is direct approximation. The interpolation function ih  are 

presented for a square area of the size 2x2 units, but they can be extended to a rectangular of any 

size, as shown in Fig. 3-34. 

Since the functional values for the 2x2 sampling points in the corner of the square 

2 0.5775r sl l x= =  are available, the approximation functions '

ih  can be used directly to calculate 

the values of the function f at sampling points corresponding to the 3x3 integration rule. 

For integration in direction perpendicular to r - s plane, that is in t coordinate it is also possible to 

use Gauss integration, but due to material nonlinearity there is more advantages to use direct 

rectangular integration. This concept is called the Layered model, see Fig. 3-35. 

The main idea of it is to divide the element along the thickness to layers whereby in particular 

layer the values of strain and stresses are expected to be constant and equal to their value at 

weight point of layer. Hence the integration in t direction is computed as a sum of integrated 

expressions multiplicated by adequate area of layer for all layers from bottom to top of element. 

It was found that to achieve good accuracy it is necessary to about six to ten layers. 

This concept. i.e. layer model is advantageous because it enables us to create for example 

reinforcing layers in element and also we can use finer division near top and bottom of shell, 

where higher stress level can be expected. 



 

 

The ATENA implementation of the Ahmad shell element supports embedding of smeared 

reinforcement layers. In this concept, reinforcement bars with the same coordinate z, (see Fig. 

3-35), material and the same directions are replaced by a layer of smeared reinforcement. Such a 

layer is placed at the same elevation z as the original reinforcement bars and its thickness is 

calculated so that sum of cross-sectional area of the bars and the replacing smeared 

reinforcement layer is the same. The layer is usually superimposed over existing concrete layers 

and it employs CCSmeardReinforcement material law, which makes possible to account for the 

original reinforcement bars’ direction. 

Because each layer of the Ahmad shell can use a distinct material model, concrete and smeared 

reinforcement layers are treated in similar way. (Constitutive equations, i.e. material law are 

placed outside of ATENA finite elements’ code). Description of syntax of related input 

commands is beyond scope of this document, but it can be found in the “ATENA Input File 

Format” document.  

Note that the support for smeared reinforcement does not exclude use of structural discrete 

reinforcement. Both the type of reinforcement can be combined in one model to achieve the best 

likeness of the the real structure with its numerical model.         

 

This section describes in detail the whole procedure of transforming Ahmad elements from its 

original formulation to the new one used by ATENA SW. Just to remind you: The original 

formulation (described in the previous sections) differs from the new one in selection of element 

degree of freedom, see Section 3.12.3. 

Let us start to work in nodal coordinate system first. The following equation states 

transformation rules for transforming three global displacements and two nodal rotations at the 

element mid-plane, (i.e. the original DOFs at a node k), to 6 displacements at nodal coordinate 

system, three at the top and three at the bottom surface of the shell. Note the right superscripts 

“N” that indicate nodal coordinate system.  
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1T  (3.102) 

 

Transformation from nodal to global coordinated system 

The next step in the element’s derivation is to write transformation of the left-hand side vector of 

(3.102) from nodal to global coordinate system. It reads:  
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2T  (3.103) 

 

Complete transformation of the original DOFs to the new element formulation DOFs 

The final transformation from the original to the new element DOFs at a node k is obtain by 

substituting (3.102) into (3.103). Thus, we can write 
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T T T  (3.104) 

where  T 

  

In a very similar way, we can define inverse transformation, i.e. from the new DOFs to original 

one. Without any derivation the matrix reads: 
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Constraining the redundant DOF to comply with shell theory 

As noted earlier, the original set of DOFs at a node comprises 5 DOFs, whilst the new one has 

six DOFs. Consequently, one DOF from , , , , , ,

1 2 3 1 2 3, , , , ,
T

t k top t k top t k top t k bot t k bot t k botu u u u u u    must be 

fixed.  The presented  work prefers to constrain ,

3

t k botu  but ,

1

k botu  or ,

2

k botu  are also good 

candidates, if ,

3

t k botu  can not be fixed due some numerical problems, usually due to a special 

position of the element with respect to global coordinate system. 

Derivation of the constrain is now demonstrated on the case of ,

3

t k botu . Using (3.104) 
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 (3.106) 

Now in (3.106) eliminate 
k  and t k  using (3.105). Thus, we obtain one equation relating 

, , , , , ,

1 2 3 1 2 3, , , , ,
T

t k top t k top t k top t k bot t k bot t k botu u u u u u   , which is then used to constrain 
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t k botu  as a linear 

combination of  
, , , , ,

1 2 3 1 2, , , ,t k top t k top t k top t k bot t k botu u u u u : 
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The DOFs ,

1

k botu  or ,

2

k botu  can be eliminated in the same way. During the execution of the 

element, it is recommended to constrain one of  , , ,

1 2 3, ,t k bot t k bot t k botu u u  based on which solution is 

the most stable, (i.e. maximum denominator in (3.108)).  

Constraining DOFs at the centre of Hetherosis element 

A special attention needs to be paid to the 9th mid-plane node of Hetherosis element when we 

have to additionally constrain 
, , ,

1 2 3, ,t k mid t k mid t k midu u u . Thus, of the 6 DOFs we need to constrain 4 

of them. 

For example, suppose we want to keep free  ,

2

t k topu  and ,

3

t k topu  and we need to 

fix , , , ,

1 1 2 3, , ,t k top t k bot t k bot t k botu u u u .  Equation (3.106) from the previous paragraph needs to be added 

by three more equations. These are: 
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Equations (3.106) and (3.109) are then solved for 
, , , ,

1 1 2 3, , ,t k top t k bot t k bot t k botu u u u  as a linear 

combination of 
,

2

t k topu  and 
,

3

t k topu . 
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Again, there are several alternatives regarding of which of the 6 DOFs to keep and which to 

eliminate. The best option is chosen the same way as described in Section 0.  

 

Several modifications the Ahmad shell elements are implemented in ATENA. They are listed 

in the following table: 

Element name Type of 

approximation 

Number of 

in-plane 

integration 

points per 

axis direction 

for bending 

Number of 

in-plane 

integration 

points per 

axis direction 

for shear 

Comment 

CCAhmadElement33L9 Lagrange 3 3 No spurious 

modes, locking 

in this shells 

CCAhmadElement32L9 Lagrange 3 2  

CCAhmadElement33H9 Heterosis 3 3  

CCAhmadElement32H9 Heterosis 3 2 Good 

compromise 

between locking 

and spurious 

energy modes 

CCAhmadElement22S8 Serendipity 2 2 Fast, but 

spurious modes 

 

 

 

This section describes shell elements that model a structure by a curvilinear 2D surface. The 

element uses hierarchical geometry and displacement interpolation. It can have from 4 to 9 

nodes, each of them having 5 DOFs: 3 displacements in direction of global X,Y,Z axis and 2 

rotations along user defined vectors 1 2,V V  . If the shell is in the XY plane, then typically 

1 2,V X V Y= = .  



The element uses linear geometry and displacement interpolation in the direction of its thickness 

and quadratic or linear approximation in the element's plane. If quadratic approximation is used, 

behavior of the element resembles behavior of Ahmad shell element described in the previous 

section. 4 nodes version of this element, i.e. the element with linear approximation, does not 

perform well, (the element is too stiff), and thus it is recommended only for some local links etc. 

On the other hand, both bending and membrane behavior of 8-9 nodes version of the elements is 

great.   

The elements are derived based on the Shell theory, (similarly to Ahmad element). As a result, it 

is assumed 0,t t =  is negligible and the element cannot change its thickness. (t indicates local 

axis in the shell's thickness).  

Depending on number of element nodes these finite elements call CCIsoShellQuad<xxxx> ... 

CCIsoShellQuad<xxxxxxxxx>  

 

 

 

 

 

 

The shell’s geometry at the configuration t and t dt+  is defined by: 
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where i=1,2,3 is index relating  to  global axes  1 2 3, ,x x x  , (i.e. x,y,z), 1... Gk n= , Gn = number of 

the element's nodes used to approximate geometry, typically 8 or 9.  Note that due to Shell 

theory the shell thickness at node k  0 ( 1) ( )t t t i t t i

k k k k ka a a a a+ − += = = = . The symbol 
,( )kn it t

iV+  is 

ith coordinate, ( 1,2,3i =  for coordinate , ,x y z  ), of the vector nV  at node k  at time t t+  , 

iteration ( )i . The vector nV  is normal to the shell. Later we will also use vectors  1 2,V V , 

1 2( )nV V V⊥ ⊥ . They will constitute base vectors for shell's bending rotations ,  .  

Similarly, displacements at time t t+  , iteration (i-1):  

 ( 1) ( 1)t t i t t i t

i i iu x x+ − + −= −   (3.112) 

Substituting  (3.111) into (3.112) 

 

( ) ( )

,( 1)( 1) ,( 1)

,( 1),( 1)

2 2

2

k k

k k

n i nt t i t t k i t t t k t

i k i k i i k i

n i nt t k i t k t t t

k i i k i i

t t
u h X a V X a V

t
h X X a V V

−+ − + − +

−+ − +

    
= + − +    

    

 
= − + − 

 

  (3.113) 

Note that in this case 1...k n= , n is number of nodes to approximate displacements. Current 

implementation of the shell elements assumes gn n=  , (which differs for Ahmads elements).  

Displacement increments within an iteration (at time t t+  ) are: 
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  (3.114) 

 

At each node, the element has 5 DOFs: 3 displacements 
k

iU  and two rotations ,k k   described 

below: 

Let us define at each node of the shell a local coordinate system  specified by three vectors 
1 ,( 1) 2 ,( 1) ,( 1)

, ,k k ki i n it t t t t t

i i iV V V
− − −+ + +

 ,  see Fig. 3-36. The last vector is vector normal to surface of 

the shell at node k and the first and second vectors are calculated as follows: 

 
( )1 ,( 1) ,( 1) ,( 1)

2 2

2 ,( 1) ,( 1) 1 ,( 1)

/k k k

k k k

i n i n it t t t t t

i i i

i n i it t t t t t

i i i

V e V e V

V V V

− − −+ + +

− − −+ + +

=  

= 
  (3.115) 



 

For the next derivation let us assume a general vector 
1 2 3, ,

T

L L L Lv v v v =   with unit length that is 

subject to rotations  

[ , , ]T

L L L    , (where the subscript L indicates that both the vector and the rotations are defined 

with respect to the local coordinate system (defined by 
1 ,( 1) 2 ,( 1) ,( 1)

, ,k k ki i n it t t t t t

i i iV V V
− − −+ + + ). The 

rotations of the vector will produce displacements, (all in the local CS) 
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Transforming the displacements from local to global coordinate system 
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 Now assume the same behavior for a vector normal to the shell's surface (again in the local CS 

and unit length), i.e.  ,( 1)
0,0,1kn it t

L iLv V
−+= = . When this vector gets rotated, it produces 

displacements, (see (3.117): 

 

 

( ) ( )

( ) ( )

( ) ( )

1 ,( 1) 2 ,( 1)

1 1 1

1 ,( 1) 2 ,( 1)

2 2 2

1 ,( 1) 2 ,( 1)

3 3 3

k k

k k

k k

i it t t t

L L

i it t t t

L L

i it t t t

L L

u V V

u V V

u V V

 

 

 

− −+ +

− −+ +

− −+ +

 + − 
  

= + −  
   + −   

  (3.118) 

 

Substituting now 
,( 1) ,( 1),t t k i t t k i

L L   + − + −= =   and 
,( 1)

, 1..3kn it t

k iu V k
−+= =  we can write 

final equations for displacements due to rotations, (for iteration (i-1) and (i) and the difference): 
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 (3.119) 

 

Hence, they represent rotation along two user defined vectors 
,( 1)kn it t

iV
−+ . It is important to note 

that the vectors 
,( 1)kn it t

iV
−+  moves as the structure deforms. 

Using (3.119) in (3.114) yields (and assuming shell thickness at a node k ) 

 ( )2 ,( 1) 1 ,( 1)

2
k ki ik k t t k t t

i k i k i i

t
u h U a V V − −+ + 

= + − + 
 

  (3.120) 

 

Note that the vectors 
1 ,( 1) 2 ,( 1) ,( 1)

, ,k k ki i n it t t t t t

i i iV V V
− − −+ + +  must be normalized. Also note that 

(3.118) should be used to connect dofs of shell and solid elements. 

 

 

 

Connection of the shell2D element to an ambient structure consists of two part:  

1. fix a FE node with [ , , ]u v w  displacement within the shell2D element, 

2. fix two rotation dofs of the shell2D element within ambient elements.   

 [ , , ]u v w

Using the shell2D approximation the shell's displacement at the bottom bot

iu  and at the top top

iu  

are: 
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( )
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 

 
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= − +

  (3.121) 

 

The index i is 1..3 for x..z displacements. Using the shell3D approximation displacement at the 

same locations can be calculated by: 



  

 

,

,

bot bot bot l

i l i

top top top l

i l i

top bot top bot

i i i

uu hh UU

uu hh UU

uu uu uu−

=

=

= −

  (3.122) 

where bot

lhh  and top

lhh  are the solid's shell3D interpolation functions at location top and bottom 

of the shells at node i, , ,,bot l top l

i iUU UU  are corresponding nodal displacements of the solid 

element. Comparing (3.122) and (3.121) it can be shown that  

 

 

top bot

k k k

top bot

k k k

h hh hh

t h hh hh

= +

= +
  (3.123) 

 

Thus, to fix [ , , ]u v w  doffs of a node with shell2D elements we first calculate ihh  values for the 

case of shell3D approximation. Then, these are used to get ih  , (see (3.122), comprised in the 

shell2D approximation. It remains to compute shell2D rotation ,i i   and this is (again) done by 

comparing 2D and 3D approximation in (3.121) and (3.122). After some mathematical 

manipulation we will arrive to the final expressions: 
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u
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u
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 
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k
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
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 
 
 

  
   

  

(3.124) 

 

 

Derivation of expressions to fix shell2D rotations in ambient elements is based (similarly to the 

previous section) on comparing the shell2D and shell3D approximation of top and bottom nodes. 

What we do is we first we fix the top and bottom in the ambient element using (solid) 3D 

approximation. It yields expression something like: 

 

,

,

......

......

top top top l

i l i

bot top bot l

i l i

uu hh UU

uu hh UU

= +

= +
  (3.125) 

Note that rhs of (3.125) may also include rotations. The resulting equations for shell2D rotation 

,   are: 
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where 
,

1 2

,1 2k k

k i k ii iV VV V= = . 

Note that displacement dofs are fixed by (3.124).  

If either bottom or top node gets outside the ambient element, the middle point is used instead. 

Equation (3.127) is still valid but it is necessary to use 
1

2
D D= that replaces D to calculate the  

,1 ,3...top bot

k kcf cf   coefficients. 

 

   

 

 



 

 

The elements are derived using Green-Lagrange strains and 2nd Piola Kirchhoff stresses.  Green-

Lagrange strains  at (i-th iteration), i,j-axis x,y,z are calculated as follows : 
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where: 
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Element's displacements u are approximated by isoparametric interpolation. Hence, it is simple 

to calculate their derivatives with respect to local coordinate r,s,t. Using an arbitrary function 

f(x,y,z) Eqn. (3.130) to (3.132) show, how to compute its derivatives with respect to global x,y,z  

axis.  

Calculation of derivatives: 
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J   (3.130) 
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Derivatives of coordinates at t with respect to r,s,t to calculate J: 
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Derivatives of displacement increments at time ( 1)... it t t −+   with respect to r,s,t: 
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Derivatives of displacement increments at time t t+  within iteration i with respect to r,s,t: 
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To proceed further in the derivation of the 3D isoparametric element, we need to calculate 

derivatives of the displacement increments with respect to ( )1 2 3, ,t t t tx x x x= . This is achieved 

using  (3.131)  thru (3.135). 

Derivatives of displacement increments at time ( 1)... it t t −+   with respect 1 2 3, ,x x x : 
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Derivatives of displacement increments at time t t+  within iteration i with respect to 1 2 3, ,x x x : 
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After some rearrangement Eqn. (3.162) yields: 
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At this place, we can derive final expression to compute linear and nonlinear strains increments.  

Linear strains ( )i

t ije  are calculated as follows: 
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where 
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Introducing 
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we can write 
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The energy of nonlinear strains: 

Let ( 1)t t i

t S
+ −  is a matrix storing stresses ijs  at time t t+  , iteration (i-1): 

 

11

11

11

12 22

( 1)

12 22

12 22

13 23 33

13 23 33

13 23 33

0

0 0

0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

t t i

t

S

S

S SYM

S S

S S S

S S

S S S

S S S

S S S

+ −

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

  (3.146) 

Then matrix  1 ... ...NL NL NL NL

k n
 =  B B B B  is composed so that (at a node k) 

 ( ) ( )( ) ( 1) ( )
T T

i NL t t i NL i

ij ij ij k k t k ks S   + −= u B B u   (3.147) 

where   states for variation of the following entity. It can be shown that the matrix NL
B can be 

set in the following shape: 
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Having the matrices (3.142), (3.145), (3.146) and (3.148) these are used to compute the element's 

stiffness matrix, mass matrix, element loads etc. in exactly the same way as it is done for other 

ATENA's element.  

 

 

This section describes triangular shell finite elements. Their properties and their derivation are 

much the same as that for quadrilateral shell finite elements CCIsoShellQuad<xxxx> ... 

CCIsoShellQuad<xxxxxxxxx> described in the previous chapter. The only difference in that 

they feature triangular shape. Their geometry is depicted in the figure below  



Depending on number of element nodes these finite elements call CCIsoShellTriangle<xxx> ... 

CCIsoShellTriangle<xxxxxx>. 

 

 

 

 

 

 

 

A family of 3D isoparametric shell elements is presented, see the figure below. Their properties 

lie between degenerated Ahmad shell elements from Section 3.12 and full 3D brick elements 

from Section 3.5.  

Shape and kinematic behaviour resembles that of the shell's element. All points through the 

shell's thickness remain located on a line passing thru the corresponding top and bottom nodes of 

the shell, however unlike in the classical shell theory, their distance can change. As for degrees 

of freedom, (DOFS), a typical 3D isoparametric shell element has 9 nodes at the top and nine 

nodes at the botom surface, each of them having 3 DOFS, (i.e. 3 displacements). A similar 2D 



shell element would feature 9 nodes located at the shell's midplane, each of them having  5 

DOFS, (3 displacements plus 2 rotations).  

The new elements use full 3D static equations. i.e. the elements consider all 6 components of 3D 

stress and strain vector. Geometrical and material nonlinearity is supported. The governing 

equations are calculated and integrated in material points. Gauss integration is used in shell's 

plane direction, whilst layered concept is employed throughout the thickness of the shells, (i.e. 

rectangur quadrature). As each layer can use different material model, some layers can be 

employed for modelling of embedded reinforcement. The elements typically use 3 x 3 x 

number_of_layers integration (i.e. material) points. 

The elements are suitable for both shallow and deep shells and are extremely simple for use, 

because they can be input and output as usual 3D solid hexahedral elements with 8, 20 or 27 

nodes. Hence, these shells can be hadled with most 3D pre- and post-processors. They also use 

standard 3D material models, element loads and other boundary conditions designed for 

hexahedral elements.  

The presented shell elements are particularly useful for structures that combine solid 3D 

elements and shell elements, because they do not imply any additional shell kinematic constraint 

that would harm an anjancent 3D solid elements. (Typical shell elements assume 0t = that 

enforces the same displacements of the corresponding top and bottom nodes in direction of their 

connecting line). They are designed for bent shells and to analyze these structures (with the same 

accuracy) they require far less finite elements compared to a similar analysis using standard 

hexahedral elements. On the other hand, the 3D behaviour of these elements involves a small 

overhead, so that standard 2D shell elements (with only 5 stress/strain components per material 

point) can perform in some cases slightly better. Nevertheless, the overhead is well paid off by 

easy of use of the presented elements, their nice 3D visualization, simple connection to adjacent 

3D solid parts of the structure etc. In addition, the hiearchical isoparametric space interpolation 

(used for the presented 3D shell elements) ensures that finer and coarser meshes are easy to 

connect. Of coarse, this feature must be supported by pre- and postprocessor being used.   

 

 



 

 

 

Geometry and displacements are approximated by hiearchical isoparametric spatial interpolation, 

(similar to other 2D and 3D elements defined in previous sections). The elements have at 

minimum 4 points at its top and 4 points at its bottom surface. It corresponds to linear 

approximation and the element's name CCIsoShellBrick<xxxxxxxx>. The most accurate version 

of the elements uses nodes 1 to 16 and 21,22, see the figure above. Its name is 

CCIsoShellBrick<xxxxxxxxxxxxxxxxxx>. Such element can have curvilinear shape and features 

quadratic displacement approximation. Hierarchical concept the shell element is employed. 

Hence, the 3D shell element can have from 8 to 18 nodes. The nodes 1-8 are compulsory. Nodes 

9-16 and 21,22 are optional. Nodes 17 to 22 are automatically removed from the element's 

incidences. They are considered only for the sake of compatibility with input data preprocessor. 

The <xxxxx..> string in the element name (following CCIsoShellBrick) specifies, which of the 

element's node is (or is not) included. An included node is market as "x", a node not included is 

marked as "_", (underscore). The shell's nodes are maped into the string as follows: 

<1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,21,22>. For example, 

CCIsoShellBrick<xxxxxxxxx_x_x_x_xx> uses nodes 1-8,9,11,13,15,21,22. Note that the bottom 

and top surface must use the same number and location of the optional nodes. Hence, if node 9 is 

included, node 13 must be included, too.        

 



 

 

The shell’s geometry at the configuration time t and t dt+ , (iteration (i-1) and (i)), is defined by: 
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  (3.149) 

 

where i=1,2,3 is index relating  to  global axes  1 2 3, ,x x x  , (i.e. x,y,z), ( , )k kh h r s= is k-th 

interpolation function, (see Table 3-4), 1... Gk n= is number of the shell's nodes, Gn = number of 

the element's nodes used to approximate geometry, typically 8 or 9.  t

ix  represents  i-th 

coordinate of a node of the element (at the specified time).  

Displacements at time 
( 1)it t −+  , i=1,2,3 for global axes x,y,z, at iteration ( 1)i − reads :  

 ( 1) ( 1)t t i t t i t

i i iu x x+ − + −= −   (3.150) 

 

Substituting (3.149) into (3.150), i=1,2,3 for global axes x,y,z,  we can derive 
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Displacement increments within i-th iteration are calculated as 
( ) ( ) ( 1)t t i t t i t i

i i iu x x+ + −= − : 
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where , ( ) , ( ) ( 1) , ( ) , ( ) ( 1),t t k top i t t k top i t k i t t k bot i t t k bot i t k i

i i i i i iU X X U X X+ + − + + −= − = − . In the above ,k top

iX  

and ,k bot

iX is top and bottom nodal coordinate of node i. Similarly, , ( 1)t t k top i

iU+ − , , ( 1)t t k bot i

iU+ −  

denotes displacements at the same node. 

 

 

 

 

The elements are derived using Green-Lagrange strains and 2nd Piola Kirchhoff stresses.  Total 

Lagrangian formulation is employed, but after each load step we transform the analyzed model 

(and its stress and other tensors) to the coordinate system defined by the current shape of the 

model. (The standard Total Lagrangian formulation calculates all with respect to the original 

coordinate system without any transformation; Updated Lagrangian formulation carries all the 

transformation each transformation, BATHE(1982). ) 

The shell's total strains at time t t+  , i-th iteration, are calculated: ( i, j=1..3 for axis x,y,z) 
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where ( )

,

t t i

t i ju+  is derivative of displacement ( )t t i

iu+  with respect to axis t

jx  at time t, i.e. at the 

beginning of time step.  (i) refers to iteration number.  Similarly, ( )

,

i

t i ju  denotes displacement 

increment at the current iteration. 
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, , , ,

1

2

t t i t t i t t i t t i t t i

t ij t i j t j i t k i t k ju u u u+ − + − + − + − + −= + +  from (3.153) we can calculate 

linear and nonlinear strain increments  ( )i

t ije  and ( )i

t ij : 
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Derivatives with respect to global ( )1 2 3, ,x x x x=  are calculated in standard way from derivatives 

with respect to curvilinear isoparametric coordinates ( ) ( )1 2 3, , , ,r r s t r r r=  . For example, 

derivatives of a function 1 2 3( , , )f x x x  is:  
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The presented shell elements employs isoparametric hierarchical interpolation. Hence, 

coordinates t x  of a point are calculated by: 

 , ,1 1

2 2
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x h X X
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  (3.157) 

where the interpolation functions ( , )kh r s  are enlisted in Table 1-3-1 and their derivatives 
t

i

i

x

r




 

with respect to r,s,t  (to calculate J) are: 
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The above expressions are employed to obtain derivatives of (total) displacements ( 1)t t i

iu+ −  with 

respect to r,s,t. They are needed to calculate strains (3.154).  
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Derivatives of displacement increments with respect to r,s,t: 
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To proceed further in the derivation of the 3D isoparametric element, we need to calculate 

derivatives of the displacement increments with respect to ( )1 2 3, ,t t t tx x x x= . This is achieved 

using (3.156) and (3.160): 

 
( ) ( ) ( ) ( ) ( )

1 2 3

i i i i i
t inv t inv t inv t invi i i i i

jl j j jt

j l

u u u u u
J J J J

x r r s t

    
= = + +
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  (3.161) 
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After some rearrangement Eqn. (3.162) yields: 
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where 

, 1 2 3 , 1 2 3

1 1 1 1
,

2 2 2 2 2 2
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At this place, we can derive final expression to compute linear and nonlinear strains increments.  

Linear strains ( )i

t ije  are calculated as follows, see (3.154): 
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where ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( )
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we can write 

( ) ( )

( )

( 1) ( ) ( 1) ( )

, , , ,

( 1) , ( ) , ( ) ( 1) , ( ) , ( )

, , , ,

, ( ) ( 1) ( 1)

, ,

t t i i t t i i

t m i t m j t m j t m i

i top t t k top i bot t t k bot i i top t t k top i bot t t k bot i

mi k j m k j m mj k i m k i m

t t k top i i top i top t t

m mi k j mj k i

u u u u

l h U h U l h U h U

U l h l h

+ − + −

− + + − + +

+ − − +

+ =

+ + + =

+ + ( ), ( ) ( 1) ( 1)

, ,

k bot i i bot i bot

m mi k j mj k iU l h l h− −+

  (3.167) 

 

Finally, matrix 1L
B yields   
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Assembling stresses at time t t+   , iteration (i-1) into matrix ( 1)t t i

t

+ −
S , participation of nonlinear 

strains ( )i

t ij  is, see (3.154) 
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Using (3.155) and (3.156) it follows to present final expression for computation of space 

derivatives of 1 2 3( , , )f x x x : 
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Having all the matrices and relationships above, the rest of derivation of the presented 

isoparametric shell elements is straightforward. Simply use the matrices 0L
B ,  1L

B ,  NL
B  and  

( 1)t t i

t

+ −
S  to calculate structural stiffness matrices  ( 1), t t i

t L t NL

+ −
K K  , vectors of nodal forces 

( 1) ,t t iF+ −   and loads t t R+   as described in the Section Problem Discretisation Using Finite 

Element Method earlier in this document.   

 

 

This section describes wedge shell finite elements. Their properties and their derivation are much 

the same as that for hexahedral shell finite elements CCIsoShellBrick<xxxxxxxx> ... 

CCIsoShellBrick<xxxxxxxxxxxxxxxxxx> described in the previous chapter. The only diference 

in that they feature wedge shape. Their geometry is depicted in the figure below  



Depending on number of element nodes these finite elements call CCIsoShellWedge<xxxxxx> 

... CCIsoShellWedge<xxxxxxxxxxxx>. 

 



 

 

 

A curvilinear 3D beam finite element CCBeamNL is described here. The element is based on a 

similar beam element from BATHE (1982). It is fully nonlinear, in terms of its geometry and 

material response. It uses quadratic approximation of its shape, so it can be curvilinear, twisted, 

with variable dimensions of the cross-sections. Moreover, beam’s cross-sections can be of any 

shape, optionally even with holes. 

The element belongs to the group of isoparametric elements with Gauss integration along its axis 

and trapezoidal (Newton-Cotes) quadrature within the cross-section. The integration (or 

material) points are placed in a way similar to the layered concept applied to shell elements, 

however, the “layers” are located in both “s,t”  directions.  

 

Geometry of the element is depicted in Fig. 3-40. The depicted brick nodes specification is 

employed to ensure compatibility of the element with ATENA preprocessor. The beam 3D nodes 

definition is used by ATENA postprocessor. The element response is computed within the 1D 

beam geometry. Thus, on input the element has 20 nodes, while during the calculation it has only 

15 nodes, i.e. 12 nodes for 3D beam shape definition and 3 nodes for the 1D beam geometry. 

Any of the 15 nodes can be subject to a kinematic or static constraint. The 1D beam nodes have 

6 degrees of freedom (dofs) – three displacements and three rotations with respect to global 

coordinate axes. The 3D beam nodes allocate only the three displacement dofs per node. The 

redundant brick nodes are ignored, and they allocate no dofs.   

The element uses three configurations. The reference configuration corresponds to shape of the 

beam at the beginning of the step, i.e. prior any load in the current step is applied was employed. 

It is used as a reference coordinate system for all calculation within a loading step t, with respect 

to which all derivatives are computed. This configuration is denoted by a t superscript left to a 

referred symbol, e.g. t x . The element shape after all previous iterations within the current step 

and prior the current iteration is denoted by t dt+  superscript, 
t dt x+

. Increments within the 

current iteration do not use any superscript, e.g. x. 
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The beam’s geometry at the configuration t and t dt+  is defined by: 
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y h Y a V b V
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z h Z a V b V
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 

 
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 

 
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 

 (3.173) 

In the above i refers to axial nodes, i.e. 1..3i =  for the nodes 13,14,15, see the 1D beam nodes. 

( )i ih h r=  is i-th nodal interpolation function i described in Section 3.2.  , ,
T

t t t

i i iX Y Z    are 

global coordinates of a node i  at time t.  The vectors , , , , ,y yx xz z

T T
t st st st t t t t t

i i i i i iV V V V V V   
   

are the 

vectors  ,t t

t sV V  depicted in Fig. 3-40, in a cross section i, at time t, which define local coordinate 

axis s,t.   The symbols ,t t

i ia b  refers to dimensions of the cross section i, time t; see the figure, 

too.  

Geometry of the beam at time t dt+  is defined in a similar way: 
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 (3.174) 

The element’s displacements at time t dt+  is calculated as follows: 

 

t dt t dt t

t dt t dt t

t dt t dt t

u x x

v y y

w z z

+ +
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+ +

= −

= −

= −

 (3.175) 

 and displacement increments within a iteration: 
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In the above equation the vectors ,t s

i iV V  are 
t t dt t t t

i i iV V V+= −  and 
s t dt s t s

i i iV V V+= −  are 

approximated by   
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 (3.177) 

The parameters , ,x y z

i i i    are rotations around the global axis, with respect to beginning of the 

current load step. Note that (3.177) is valid only approximately.  

 

The element uses Green-Lagrange strain and Piola-Kirchhof stresses, see Section 1.4.2 and 

Section 1.3.2. transformed to the local isoparametric r,s,t coordinate system. As the beam theory 

implies, only normal strain component r  and shear components ,rs rt   are considered. The 

stress vector includes the corresponding , ,rr rs rt    entries, whereby the remaining strains have 

to remain zero.  The procedure of calculation stress-strain response is as follows: 

1. Calculate all 6 components of Green-Lagrange strains (1.8) and their increments within 

global coordinate systems. The increments are computed with respect to the beginning of 

the current load step. 

2. Transform the strains increments into local r,s,t coordinate system. 

3. Zeroise components , ,ss tt st     . 

4. Execute material law to compute corresponding stresses. 

5. Transform the stresses to the global coordinate system. 

The following expressions are used to calculate displacement derivatives needed for calculation 

of the strains: 
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 (3.178) 

 where f is a displacement function to be derived. 

 

Substituting equations (3.173) to (3.178) into the expressions for calculating element matrices 

(1.31) to (1.34) all important matrices and vectors of the beam element can be calculated. Their 



explicit presentation is beyond the scope of this document. Nevertheless, the most important 

ones are now given: 

The Jacobian matrix: 

 

11

12

13

21

22

23

2 2

2 2

2 2

1

2

1

2

x x

y y

z z

x

y

t
t st t t t ti

i i i i i

t
t st t t t ti

i i i i i

t
t st t t t ti

i i i i i

t
st t

i i i

t
st t

i i i

t

x h t s
J X a V b V

r r

y h t s
J Y a V b V

r r

z h t s
J Z a V b V

r r

x
J h b V

s

y
J h b V

s

J

   
= = + + 

   

   
= = + + 

   

   
= = + + 

   

  
= =  

  

  
= =  

  


=

31

32

33

1

2

1

2

1

2

1

2

z

x

y

z

st t

i i i

t
tt t

i i i

t
tt t

i i i

t
tt t

i i i

y
h b V

t

x
J h a V

t

y
J h a V

t

z
J h a V

t

 
=  

  

  
= =  

  

  
= =  

  

  
= =  

  

 (3.179) 



 

The matrix t dt

t NLB+ : 

It is constructed in the way that 
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The detailed expressions for calculating t dt

t NLB+  are given in (3.183) and (3.184).  The equations 

are important because they present the way, how spatial derivatives of all the displacements are 

calculated. The entries in  t dt

t NLB+  are thus used to setup also the matrix 0

t dt

t LB+  and 1

t dt

t LB+ .  

These matrices are computed as follows: 
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The stress matrix t t
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+ S  from (1.34) has he form: 

.

t t t t t t

t xx t xy t xz

t t t t

t yy t yz

t t

t zz

t t t t t t

t xx t xy t xz

t t t t t t
t ij t yy t yz

t t

t zz

t t t t t t

t xx t xy t xz

t t t t

t yy t yz

t t

t zz

sym

  

 



  

 



  

 



+ + +

+ +

+

+ + +

+ + +

+

+ + +

+ +

+

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

S  (3.185) 

 

As already mentioned, stress-strain relations are calculated in r,s,t coordinate system, hence we 

need equations for their transformations from global x,y,z coordinate system to the isoparametric 

system with r,s,t coordinates and vice versa. 

Let us denote ,t dt t dtT T 

+ +  transformation matrices for strain and stress transformation from 

global to isoparametric coordinate system, so that: 
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Then the transformation matrices are calculated by: 
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where vectors yx z
ss st dt s t dt t dt t dtV V V V+ + + + =

 
, yx z

tt tt dt t t dt t dt t dtV V V V+ + + + =
 

 are 

vectors of unity length from Fig. 3-40. The remaining vector is calculated as a vector product of 

the previous two vectors: 

 yx z
rr rt dt r t dt t dt t dt t dt s t dt tV V V V V V+ + + + + + = = 

 
 (3.189) 

Inverse transformation matrices are calculated as: 
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The element is integrated numerically. Along its longitudinal axis the element is integrated by 

standard two to six nodes Gaussian integration. The table below lists r coordinates and 

associated weights for utilized integration points: 

Number of 

integ. points 

 

Integrat

ion 

point 

 

 

Coordinate r 

 

Weight 

2 
1 0.577350269189626 1. 

2 -0.577350269189626 1. 



3 

1 0.774596669241483 0.555555555555556 

2 0. 0.888888888888889 

3 -0.774596669241483 0.555555555555556 

4 

1 0.861136311594053 0.347854845137454 

2 0.339981043584856 0.652145154862546 

3 -0.339981043584856 0.652145154862546 

4 0.861136311594053 0.347854845137454 

5 

1 0.906179845938664 0.236926885056189 

2 0.538469310105683 0.478628670499366 

3 0. 0.568888888888889 

4 -0.538469310105683 0.478628670499366 

5 -0.906179845938664 0.236926885056189 

6 

1 0.932469514203152 0.171324492379170 

2 0.661209386466265 0.360761573048139 

3 0.238619186083197 0.467913934572691 

4 -0.238619186083197 0.467913934572691 

5 -0.661209386466265 0.360761573048139 

6 -0.932469514203152 0.171324492379170 

In most cases the 2-nodes integration should be sufficient, for a higher order integration schemes 

oscillatory shear stresses and forces may be observed along the length of the beam.    

As for integration within the cross-section, i.e. in s,t coordinates, trapezoidal quadrature is used. 

The element cross-section is subdivided into ,s tn n  “strips” as depicted in the following figure. 
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ds1
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and materia l
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The integration is then carried out by summing functional values in center of all quadrilaterals 

multiplied by their area.   

Note that the element is integrated within the isoparametric coordinate system, hence we have to 

use det( )dxdy dz J dr ds dt= , see (3.178).  

Nice feature of the ATENA’s implementation of the beam is that each of the quadrilaterals in a 

cross section adopts an artificial input weight factor. By default, such a “weight” is equal to one, 

however, if we set its value to zero, essentially a hole is introduced. This mechanism, together 

with possibility of defining a customized material law in each of the quadrilaterals facilitates to 

analyze beams that have a arbitrary shape of cross-sections. 

The present beam implementation supports also smeared reinforcement. This is done in the same 

way as it was for the Ahmad elements described in the previous section.   

 

 

CCIsoBeamBrick20_3, CCIsoBeamBrick12_3D and CCIsoBeamBrick8_3D are beam curved 

isoparametric elements similar to the previous CCBeamNL_3D element. They use similar 

geometry, node numbering etc., but differ from CCBeamNL_3D in that they account for all 6 

components of 3D strains and stress vectors. They comply with all 3D static equations and no 

additional static or kinematic constrains are imposed. The comparison of CCBeamNL_3D vs. 

CCIsoBeamBrick12_3D resembles that of CCAhmad vs. CCIsoShell elements described above. 

The CCIsoBeamBrick20_3, CCIsoBeamBrick12_3D and CCIsoBeamBrick8_3D are easy to use, 

they preserve their 3D volume and they are nicely visualized during pre and post processing. 

They can be input, loaded, and output in the same way as CCIsoBrick hexahedral elements.  

CCIsoBeam8_3D features linear geometry and displacement approximation, (i.e. it has nodes 

1...8, see the figure below), whilst CCIsoBeam12_3D has reduced quadratic approximation, (i.e. 

it has nodes 1...12). CCIsoBeam20_3D comprises 20 nodes as shown in the sub-figure “Brick 

nodes” below and it has full serendipity displacements approximation. 
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Shape of cross section can be any quadrilateral, i.e. it need not be only a rectangle as depicted 

above. The elements are particularly useful for analyses of structures, where beam elements must 

be combined with 3D solid and/or shell elements.  

Derivation of the element is much the same as that for CCIsoShell element, i.e. Equations  

(3.150) and (3.152) thru (3.172) remain valid. Geometry and displacement approximation 

(3.151) is replaced by: 
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  (3.191) 

( )k kh h r=  are 1D interpolation functions, see the interpolation function for CCIsoTruss 

elements. The same notation is used for CCIsoShell Elements.  



The element is calculated in integration points, (i.e. material points) that are located similar to 

CCBeamNL_3D elements, refer to Fig. 3-41.  The element can use any 3D material model. 

Different materials can be specified for each material points, (or points in cross section). Some 

of them can be used for modelling of embedded reinforcement. (Btw. discrete reinforcement can 

be employed, too). The elements support both material and geometric nonlinearity.    

  

 

The elements CCIsoBeamBar<xx> and CCIsoBeamBar<xxx> are from the point of view of 

mechanics nearly identical to the element described in Section 3.13, the difference being only in 

that that these elements are specified by their axis as 1D beams. The first element has 2 nodes 

(and uses linear interpolation of its geometry and displacements). The latter element has 3 nodes 

(and uses quadratic interpolation of its geometry and displacements, which is identical to 

CCBeamNL element referred above). The elements can be curved and can have variable height, 

width and orientation of their cross section. All these parameters are input in CCBeam1D 

geometry in form of algebraic expressions. The expression are functions of beam's coordinates 

x,y,z. Similar to CCBeamNL element, these elements are also integrated by Gauss integration 

along the beam's axis while grid quadrature is used for the remaining 2 directions (within cross 

sections). The elements support embedded reinforcements, holes different materials in different 

integration points etc. in the same way as it is the case of CCBeamNL element. They are suitable 

for modeling of both shallow and deep beams. Note that CCIsoBeamBar<xx> has far worse 

properties compared to CCIsoBeamBar<xxx>. Hence, the linear element should be used only to 

model some links and connections within the structures.    
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The procedure to connect beam1D's dofs to an ambient element is like that for shell2D elements, 

see 3.13.2. Again, it consists of two parts: 

1. fix a FE node with [ , , ]u v w  displacement within the beam1D element,  



2.  fix three rotation dofs of the beam1D element within ambient elements 

 [ , , ]u v w

 

Using (3.176) and (3.177) write expression for beam1D displacements at the top top

iu and bottom 

bot

iu  , i.e. 0, 1s t= =   of a cross section.  Do the same for right right

iu and left left

iu point, i.e. 

1, 0s t=  = .  

Write 3D solid approximation for the same 4 nodes.  Then, if we compare the 1D and 3D 

approximation, after some mathematical manipulation we derive  
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Similarly, to the expressions for shell2D the resulting equations for beam1D rotation , ,x y z    

are 
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where 
, , , ,k kr s

i i kk i k i kV V V a ar Vs b b= = = =  

Note that displacement dofs are fixed by(3.192).  

If either bottom or top node gets outside the ambient element, the middle point is used instead. 

Equations (3.193) and (3.194) are still valid but it is necessary to use 

1
( , ) ( , ), 1..6, ( , ) ( , ), 7..12

2
MM i j MM i j j MM i j MM i j j= = = =   to calculate 

T

x y z     . 

Similarly, if either right or bottom node gets outside the ambient element, the middle point is 

used instead. Then, it is necessary to use 

1
( , ) ( , ), 1..6, ( , ) ( , ), 7..12

2
MM i j MM i j j MM i j MM i j j= = = =   to calculate 

T

x y z     . 

 

Integrated forces for shells are computed as follows: 



 

/ 2

' ' '
/ 2

/ 2

' ' '
/ 2

/ 2

' ' '
/ 2

/ 2

' ' ' '
/ 2

/ 2

' ' ' '
/ 2

/ 2

' ' ' '
/ 2

/ 2

' ' '
/ 2

/ 2

' ' '
/ 2

/ 2

' ' ' '
/ 2

'

'

'

'

'

'

'

( ) '

( ) '

t

x x x
t

t

y y y
t

t

z z z
t

t

x z x z
t

t

x y x y
t

t

y z y z
t

t

y x x
t

t

x y y
t

t

x y x y
t

N dz

N dz

N dz

Q dz

Q dz

Q dz

M z dz

M z dz

K z dz



















−

−

−

−

−

−

−

−

−

=

=

=

=

=

=

=

= −

= −



















  (3.195) 

 

The above forces and moments act on planes indicated below: 

' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' ' ' '

' ' : 0

' ' : 0

' ' : 0 0 0

x x y x z x y y x z

y x x y y y z x y x x y y z

z x x z z y y z z z x z y z

y z N Q Q K M K

x z Q Q N Q M K K K

x y Q Q Q Q N K K M

 = 

 = = − = 

 = = = = = 

  

 

The actual values of the forces and moments are calculated by extrapolation of stresses from IPs 

into finite element nodes, (please refer to Section "Extrapolation of Stress and Strain to Element 

Nodes" in Chapter CONTINUUM GOVERNING EQUATIONS. The process is as follows: 

 

Let us take an example of 'xN  that is calculated by integration of ' 'x x  thru element's thickness. 

The stress ' 'x x  at element nodes is extrapolated from stresses in IPs ' '
ˆ

x x  by  

 

 ' ' ' '

, ' '
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e

e

inv

x x x x

xx i i x x e
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ij i j e
V

M P

P h dV
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



  (3.196) 

where eV  stands for element volume. Using  (3.195) and writing (3.196) for extrapolation within 

shell mid-plane e  , (i.e. integration over e instead of eV ) we can write 

 

 

( )
' ' ' '

/ 2

, ' ' ' '
/ 2
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e e

e e
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N MM PP
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 
 −



=

=  =

=  =

  

 

  (3.197) 



 where ( , )t t r s=  is element thickness at r,s. The integration for extrapolation is carried out over 

e , because the forces and moments are the same through shell thickness. Note that 

( , )k kh h r s= is interpolation function in the shell mid-plane and it is independent of t coordinate, 

(unlike ( , , )i ih h r s t= in (3.196)). Therefore, we can write, (see the last equation in (3.197): 
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Integrated forces for beams are computed as follows: 
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The forces and moments act on the plane (x'y'). They are calculated similar way to (3.197), 

however, 
1

e e
ij i j i j e

l V
MM h h dr h h dV

bh
= =  , where b h is area of the beam's cross section and 

el  is element length. 

 

 

Most element loads can be defined in global or local coordinate system. Global coordinate 

system is always available, hence using it is usually the safest way to input a desired element 

load. Nevertheless, some elements are internally defined in a local coordinate system and it can 

be employed for an element load definition, too. Location of such a local system, (if it exists) has 

been described together with description of the associated finite element. For example, local 

coordinate systems are defined for plane 3D isoparametric elements, shell, and beam elements 

etc. On the other hand, elements such as tetrahedrons, bricks and others are defined in directly in 



global coordinate system and therefore a local element load is treated as if it were input as a 

global element load. 

An exception to the above are truss elements. Although they are defined in global coordinate 

system, they do support local element load. Their local coordinate system (for element loading 

only) is defined as follows:  

• local X axis points in direction of the truss element,  

• local Y axis is normal to local X axis and lies in the global XY plane, 

• its positive orientation is chosen so that the local X and local Y forms a right-hand (2D) 

coordinate system in the plane defined by these local axes, 

• local Z axis is vector product of the local X and local Y axes, (for 3D case only). 

• if the truss is parallel to global z, then local X points in direction of global Z, local Y 

coincides with global Y and local Z has opposite direction of the global X, (for 3D case 

only). 

 

 

 

 

 

 

 

 

 

 

 

Specification of a boundary load deserves slightly more attention. Firstly, it is applied only to an 

element’s edge or an element’s surface, (see also the note below), as opposed to e.g. an element 

body load that is for the whole element. Local coordinate system is thus defined by location of 

the loaded edge or surface. Secondly, a boundary load definition must include a reference to a 

selection, which contains nodes to be loaded. Their order in the list is irrelevant, as what really 

matters is the order in which they appear in the element incidences. When processing a boundary 

load, ATENA loops thru all element’s surfaces and edges, (in the order specified in the table 

below) and checks appropriate incidental nodes. If the tested node is present in the list of loaded 

boundary nodes, it is picked up and put into incidences of a new planar or line element. This 

element is later used to process the boundary load. It is its local coordinate system, that is 

(possibly) used to deal with local/global load transformations.   

The table below defines the orders, in which element surfaces and edges are tested for a surface 

or edge element load. (It is assumed that element incidences are 1 2 _ _( , , ... )num elem nodesn n n ). It 

describes linear elements, but surfaces and edges of nonlinear elements are treated in the same 

order.   

 

N2 

N1 

YG 

ZG 

YL 

YG 

XL 
XG 

N2 

N1 

XG 

YG 

YL 

XL 

2D 
3D 



Element shape Type Surface/node incidences 

Truss Edge 
1 2( , )n n  

Triangle Surface 
1 2 3( , , )n n n  

Edge 
1 2 2 3 3 1( , ); ( , ); ( , )n n n n n n  

Quad Surface 
1 2 3 4( , , , )n n n n  

Edge 
1 2 2 3 3 1 4 1( , ); ( , ); ( , ); ( , )n n n n n n n n  

Hexahedron, 

(brick) 

Surface 
1 2 3 4 5 6 7 8 1 4 8 5 2 3 7 6

1 2 6 5 4 3 7 8

( , , , ); ( , , , ); ( , , , ); ( , , , );

( , , , ); ( , , , );

n n n n n n n n n n n n n n n n

n n n n n n n n
 

Edge 
1 2 2 3 3 4 4 1

5 6 6 7 7 8 8 5

1 5 2 6 3 7 4 8

( , ); ( , ); ( , ); ( , );

( , ); ( , ); ( , ); ( , );

( , ); ( , ); ( , ); ( , )

n n n n n n n n

n n n n n n n n

n n n n n n n n

 

Tetrahedron Surface 
1 2 3 1 2 4 1 3 4 2 3 4( , , ); ( , , ); ( , , ); ( , , )n n n n n n n n n n n n  

Edge 
1 2 2 3 3 1

4 1 4 2 4 3

( , ); ( , ); ( , );

( , ); ( , ); ( , )

n n n n n n

n n n n n n
 

Pyramid Surface 
1 2 3 4 1 2 5 2 3 5 3 4 5 4 1 5( , , , ); ( , , ); ( , , ); ( , , ); ( , , )n n n n n n n n n n n n n n n n  

Edge 
1 2 2 3 3 4 4 1

1 5 2 5 3 5 4 5

( , ); ( , ); ( , ); ( , );

( , ); ( , ); ( , ); ( , );

n n n n n n n n

n n n n n n n n
 

Wedge Surface 
1 2 3 4 5 6

1 2 5 4 6 5 2 3 4 6 3 1

( , , ); ( , , );

( , , , ); ( , , , ); ( , , , )

n n n n n n

n n n n n n n n n n n n
 

Edge 
1 2 2 3 3 1

4 5 5 6 6 4

1 4 2 5 3 6

( , ); ( , ); ( , );

( , ); ( , ); ( , );

( , ); ( , ); ( , );

n n n n n n

n n n n n n

n n n n n n

 

Note that only one surface or one edge of each element can be loaded in a single boundary load 

specification. If more element’s surfaces or edges are to be loaded, use more boundary load 

definitions. Violation of this rule causes an error report and skipping of the offending boundary 

load.  
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Transport analysis does not distinguish between local and global element loads. Hence, a local 

element “load” is treated as being a global load. The actual load value is always scalar, (unlike 

vectors in statics) and it is assumed positive for flow out of the element.  

 

 

Digital 3D printing of concrete and reinforced concrete structures seems to be an innovated, 

progressive, and economically effective method for building civil engineering structures in 

future. It has several advantages in comparison to the traditional methods in building industry. 

 

4 Not available in ATENA version 5.7.0 and older 



For example, it allows for miscellaneous shapes of the structures, so that they can be designed 

more favorably for their static and functional behavior, architectonic design etc. It enables better 

optimization of the structures resulting in reduced cost, less labor-intensity, less waste produced, 

greater integration of function and increased speed of the whole construction process. Although 

most printing methods have not yet showed their full potentials, most engineers agree that they 

are the right way for civil engineering in near future, because they contribute to better design of 

the structures and their higher industrialization. 

There exists a variety of 3D printing methods used at construction scale, name e.g. 3D extrusion, 

powder/particle bed printing, 3D block assembling, spraying etc. This Section presents ATENA 

support for analyses of printed structures using 3D extrusion and describes, how such a 

construction process can be modelled by this software. It is characterized by printing the 

structure by layers, i.e. pressing concrete mix thru the nuzzle moving alongside a stepwise linear 

polygon line that corresponds to individual walls of the structure. Often, some walls are too wide 

to be printed by one pass of the nuzzle and two or more (parallel) printing passes are needed. 

Once the current layer has been completed, the printing head returns to its origin, moves one 

layer upwards and starts printing next layer until full height walls of the structure is produced. 

 

 

This section brings preliminary considerations and requirements that should be addressed in 

design and fabrication of extruded concrete structures. Some derivations below are inspired by 

papers (Roussel 2018) and (Wolfs at.al. 2018). 

 

 

Material behavior used for digital fabrication of concrete structures can be modelled by 

viscoplastic and elastoplastic materials. The former model is suitable for times when the material 

is being pumped and is flowing to a place of its final position. This time period is not addressed 

here. We will rather concentrate on the later times, when the material is still fresh, but it is 

already in rest. At that time, the material features approximately elastoplastic behavior. 

There exist several kinds of yield surfaces that define threshold between elastic and fully plastic 

behavior. Using a few material parameters that are typically obtained from laboratory tests they 

define general 3D stress-strain conditions when the material start to yield. Uniaxial tensile 

strength, shear tensile strength etc. are examples of such parameters.  

Stress-strain conditions in printed walls are close to 1D conditions, (with self-weight body load 

only) and thus, throughout all the derivation here we assume 1D elastic behavior up to the 

material compression cf . Nevertheless, as some people prefer to measure and use the material 

shear strength shf  , we will show how to convert 1D material strength 1Df  to shf  and vice versa. 

Using e.g. Mises yield surface, https://en.wikipedia.org/wiki/Von_Mises_yield_criterion 

( ) ( ) ( ) ( )
2 2 2 2 2 2

2 11 22 22 33 33 11 23 31 12

1
3 6

2
v J         

  = = − + − + − + + +   
  (3.200) 

calculate equivalent von Mises stress v  ( 2J  is the second invariant of stress deviator tensor) for 

uniaxial test conditions 1 11 0, 0 for ( 1) ( 1)D ijf i j =  =     and pure shear test conditions 

https://en.wikipedia.org/wiki/Von_Mises_yield_criterion


12 21 0, otherwise 0sh ijf   = =  = . By comparing the corresponding equivalent von Mises 

stresses, we get the required strength conversion formula: 
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v D
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f f
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= =

= =

=

  (3.201) 

Another option is to use maximum shear stress theory, see 

http://thegateacademy.com/files/wppdf/Theories-of-failure.pdf. It defines yield surface by 

constraining maximum shear  

1 2 2 3 3 1
,max max abs( ), abs( ), abs( )

2 2 2
sh

     


− − − 
=  

 
    (3.202) 

where 1 2 3, ,    are principal stresses. Substituting the above two stress test conditions in 

(3.202) we get 
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12 12
1 2 12 3 12 ,max 12
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, 0
2 2
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D
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sh sh
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f f
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 
      

= = = → = =

− −
= = = − → = = =

=

  (3.203) 

 

Total strain theory postulates, see also the above reference:  

 ( )2 2 2

1 2 3 1 2 2 3 1 32tst          = + + − + +   (3.204) 

Then 
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1 11 2 3 11 1

1 2 12 3 12 12
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, 0

0, , 2 1 2 1
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tst sh

D sh

f

f

f f
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

= = = → = =

= = = − → = + = +

= +

 (3.205) 

 

Of course, a more elaborate and precise yield surface can be employed but we believe that for 

the preliminary assessment the above simple expressions serve enough accuracy. After all, in 

ATENA computer analyses one can use any material model suitable for cementitious material. It 

is more accurate but at the same time also computationally expensive. 

  

 

 

Let as assume a simplified time development of material yield stress ( )cf t   

 ,0 ,max( ) min( , )c c c cf t f f t f= +   (3.206) 

http://thegateacademy.com/files/wppdf/Theories-of-failure.pdf


where ,0cf  is yield stress at time 0t = , (i.e. initial value just after material depositing), ,maxcf is 

maximum cf  and  
cf  is structuration rate. The layer is loaded primarily by its gravity self-

weight and therefore 

 ,0cf h g   (3.207) 

Maximum height of one printed layer is     

  

 
,0cf

h
g

   (3.208) 

If surface tension   is considered, it produces stresses of order st
h


   . Comparing with 

(3.208) we get  

 

h g
h

h
g












  (3.209) 

 

 

For example, for 
Pa

0.1
m

 =  , (=water) we calculate 
0.1

0.002m
2300 10

h  . Therefore, for 

printed structures stability contribution of ,0cf  is more important than contribution of surface 

tension. 

   

 

 

If we consider the case of several printed layers, the lowest layer must resist vertical load H g , 

where H  is total height of the structure.  

 

11

,0

,0
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c v

H g f

f f f t H g v t g
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f v g

t

 
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

= 

= +  =

 −

  (3.210) 

where vv  is vertical printing speed. The last expression in (3.210) states minimum structuration 

rate f  for being able to print the top layer at time t. 

The total time tott  for printing height H of the structure is  

 



 l h
tot

v h

l

l
H

H H H t v H l
t

hv h h v h

t

= = = = =   (3.211) 

In the above lt  is time to print a single layer, i.e. time necessary for printing head’s move along 

the printing polygon that has total length l. 

 

 

 

This section describes steps that are executed to estimate plasticity-based criterion in ATENA. 

The procedure is inspired by (Suiker 2020) presentation at DC2020 conference in Eindhoven in 

2020.  

 

 

The stability criterion is similar to that presented in the previous section; however, it is expressed 

in slightly different form. It assumes linear material curing function, i.e.  

  

 ,0( ) (1 )p pt t  = +   (3.212) 

 

where ( )p t is material yield strength at time t, ,0p  is its initial value at 0t =   and  represents 

material linear curing rate of the yield stress.  

Vertical stress v  at the bottom of the wall is, (H  is the wall height,   is concrete density and g  

states for gravity acceleration) 

 v H g =   (3.213) 

and we require 

 p v    (3.214) 

For the following derivation, lets introduce dimensionless parameter  

 

 
,0p

vgv
 


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
=   (3.215) 

 Note that vertical printing speed vv  is in the (Suiker 2020) paper (and Atena) denoted as l  . 

Substituting vH v t=  into (3.213) we get 

 

 ,0 *(1 )p p vt v g   = +    (3.216) 

 



After some mathematical manipulation it yields  
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  (3.217) 

  

where pl  is the maximum wall height before the collapse.  

If ,0 0p =  , then the wall is stable for 
p

vv g
t








, i.e. the case, when time rate of increase of 

material strength is higher than the rate of increase of vertical stress during printing of the wall. 

This condition also indicates unlimited wall height.  

The paper (Suiker 2020) also discusses, how to calculate p  . For the case of pressure-

dependent shear failure, they recommend Mohr-Coulomb theory 

 

 
2 cos( )

1 (1 )sin( )
p

c

K K


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
=

− − +
  (3.218) 

 In the above   is material frictional angle, c states for material cohesion and min( , )y zK K K=  

is minimum of coefficient of lateral stresses / , /y y x z z xK K   = =  , (axis x is vertical, axes 

y,z are lateral, i.e. horizontal. 

Substituting (3.218) into (3.212) yields 
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 (3.219) 

 

From the above 
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where 
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  (3.221) 

 

 



 

This section describes a similar stability assessment; however, exponential decaying curing 

process is assumed now. This means that Eqn. (3.212) changes to 

 
,0( ) ( (1 )e )
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p p p pt     −
= + −  (3.222) 

where 
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p
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
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
=  and  is now coefficient of compression strength exponential curing rate. 

 

 

 

Substituting (3.222)  into (3.213) and (3.214) yields 

 
( ) 0

0

0

11
W e

p p

v
p p gv

collaps v p p

vv

et gv
v g gv

  

 





  
   

  

−  −
  = − +

  
  

 (3.223) 

 

W(z) states for Lambert W(z) function. The maximal wall height at collapse is  

 p collapse vl t v=  (3.224) 

 

 

Buckling stability of the printed structures may limit the structure even more that strength-base 

stability. It is computed using Euler Buckling Theory, see 

http://www.continuummechanics.org/columnbuckling.html. Let us start our derivation with 

classic beam bending equation that reads  

 E I u M=   (3.225) 

where E, I state for Young modulus and quadratic moment of inertia, x is longitudinal coordinate 

of the beam with its origin at the bottom, ( )u u x=  is deformation and 
2

2

d u
u

dx
=  is its second 

derivation with respect to x. M is loading moment. Let us assume 1m long section of the wall. It 

can be modelled by a vertical beam supported at the bottom and loaded by a vertical force P at 

its top, i.e.  M Pu= − . Solving differential equation (3.225) yields 

 sin cos
P P

u A x B x
E I E I

   
= +      

   
  (3.226) 

A, B  are two constants to be solved from the beam’s boundary conditions (0) ( ) 0u u H= =  and 

(0) ( ) 0u u H= −  . It yields 0B =  and when looking for a nontrivial solution, we get 

P
H

E I
= , from which we derive the well-known final expression for critical force 

 
2

2

E I
P

H


=   (3.227) 

http://www.continuummechanics.org/columnbuckling.html


The same applies for boundary conditions (0) (0) ( ) 0u u u H= = =  and ( ) 0u H   . For a general 

case 
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kH


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Substituting P H g A= , (A is cross section of the 1m long wall section), we get 
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  (3.229) 

Equation (3.229) states critical height of a printed wall to prevent its collapse due to losing 

stability. W states for the wall width. 

 

Finally, using (3.229) and (3.210) calculate a threshold H, below which the strength-based 

stability criterion (3.210) is dominant whilst above it the buckling limit is more restrictive. 
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  (3.230) 

 

 

  

The paper by (Suiker 2020), (Suiker 2018) also presents an estimation of elastic buckling 

stability of the printed walls. It is more accurate than the criterion from the previous section 

because it allows for clamp or simple support boundary conditions along the wall vertical edges. 

 

 

 

Like 3.23.1.4.1 the material linear curing rate is assumed  

 

 0  ( ) (1 )EE t E t= +   (3.231) 

  

where ( )E t  is material Young modulus at time t, 0E  is its initial value at 0t =   and 

E represents material linear curing rate of  elasticity modules.  



 

The employed method is in detail derived in (Suiker 2018). It presents a semi numerical-

analytical solution expressed in forms of easily useable plots. The recommended procedure is 

implemented in ATENA. 

 

The solution uses three dimensionless parameters 
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  (3.232) 

In the above equations , ,crl b h  is critical buckling height, horizontal length, (i.e. width), and 

thickness of the wall, respectively. Vertical printing speed is: 

 l
v

n l l

q t
v l

v hT T
= = =   (3.233) 

with n lq v h t=  being the material volume discharged from the printing nozzle per unit time, lT  is 

the period required for printing an individual layer and lt  is height, (i.e. thickness) of the printed 

layer, see the figure below 

 

 

0D  states for initial wall bending stiffness defined by 

 



 
3

0
0 212(1 )

E h
D


=

−
  (3.234) 

 

where  0E is initial Young modulus and  is Poisson ratio of the material. 

The procedure to calculate critical wall height crl  is as follows 

1. Calculate 0D  , (3.234). 

2. Calculate E , crb , (3.232). 

3. For the particular support conditions along vertical edges of the wall use 

Fig. 3-47 and find crl  that corresponds to the above   E  , crb . 

4.  Using inverse of the expression for crl calculate crl , (3.232). 

 

If the printed wall is not supported along its vertical edges, use the dash line for free wall in Fig. 

3-47, (i.e. for crb =  ). The dash lines for the case of clamped and simply supported wall yield 

the same the same crl . 

Alternatively, (Suiker 2020) recommends  0.7931.98635 0.996cr El = +  . 



 

 

This section provides solution for buckling stability subject to exponential material curing rate 

 0( ) ( (1 )e )E t

E EE t E   −
= + −  (3.235) 

Notation used is similar to the above, i.e. 
0

( )
E

E

E



=  and E  is now coefficient of exponential 

Young modulus curing rate. 



The overall solution is the same as it was for the case of linear curing, only instead of Fig. 3-47 

the solution with exponential curing rate requires to use plots Fig. 48 thru Fig. 50. These plots 

also comes from (Suiker 2018).  

 

 

 

Note that (Suiker 2018) provides the above plots only for {2..10}E = . It is sufficient for 

modelling some laboratory experiments, but practical analyses typically require values of P  

much higher. 



 



 



 

 

  

If we assume c pf = , then the previously presented strength stability criteria in Section 3.23.1.3 

and Section 3.23.1.4 yield the same results. However, the buckling stability criterion in Section 

3.23.1.6 is more sophisticated than that from Section 3.23.1.5. It is mainly improved in that it 

can account for additional boundary conditions along the printed wall’s vertical edges. 

Nevertheless, for the case of unsupported, (i.e. free) vertical edges the two models should yield 

similar results. This is checked here. 

  

Using Young modulus from (3.231) and vertical printing speed vv  from (3.233) we can write, 

(see Section 3.23.1.5) 
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where the wall width w h= , see Fig. 3-46. Solving the above equation for t yields critical wall 

height crl   
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Example:  substituting wall parameters 
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the expression (3.237) and (3.232) calculates critical wall height 0.188m an 0.1825m 

respectively. For the case of 0.1mh =  the expression (3.237) and (3.232) results in 0.305m and 

0.292 m.  

 

 

A typical analysis of a structure built by 3D extrusion slightly differs from usual analyses. All 

the required steps are now described: 

 

Step 1. Prepare a FE model of the structure neglecting the printing process: 

 

The analysis starts by creating a full FE models whereby the process of the printing is ignored. It 

means that we model the final geometry, properties, and conditions of the structure. Any 

available FE preprocessor can be used to achieve the goal. Use appropriate (time independent) 

material model and supply parameters that correspond to the final (long age) material properties.     

  

Step 2. Calculate time of construction 
constr

it   of each part of the structure, i.e. for each individual 

element: 

Use ATENA UPDATE_ELEMENT_CONSTRUCT_TIME command to accomplish this step. It 

requires the following data: 

• List of element groups that are printed. It is assumed that all elements of the groups are 

constructed in this way. Actual group’s ids are entered via an ATENA selection list.  

• Horizontal velocity of the printing head hv , about 1-10 cm/s. 



• Thickness of one printed layer h, usually 1-10 cm. 

• Width of the printed layer w, typically 5-25 cm 

• Vector of vertical move from one layer to the next layer n .  

• Track polygon of the printing head’s motion. It is specified as an ATENA selection 

containing ids of FE nodes thru which the printing head passes. The track consists of any 

number of linear segments. If some segments are not mutually connected, i.e. the track is 

broken, separate the corresponding segments by inserting id=0 between their adjacent 

end nodes.  

• Set start time startt  of the track polygon. Typically, 0startt = , however if the structure is 

printed using several track polygons (with e.g. different width), then startt  of the current 

polygon equals to time corresponding to the last point of the previous polygon.  

 

Having all the above it follows to calculate time constr

it  of each element. Let  
T

ECP x y z=  are 

coordinates of center of the element. The element is printed when the head is at the closest 

position. The track polygon of the moving head is input by setting location of its bottom right 

edge. Hence, in the following derivations we work with a point P, (instead of ECP ): 
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Element construction time is calculated as follows: 
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The element is printed as a part of a segment AB  , if point Q AB  and its distance 

/ 2PR h=  . It is printed in a layer id ( )int / 1l QR t= +  and has construction time  

 ( ) _ _1constr

i layer prev segs cur seg

AR
t l t t t

AB
= − + +   (3.241) 

where layert is total time to print one layer, i.e. its length divided by 
hv , _prev segst  is time to print 

element in the current layer up to point A and _cur segt is time to print the current segment AB . 

The symbol   and   stand for cross and dot product, respectively. The remaining symbols in 

the equations are depicted in Fig. 3-104.   

 

3. Account for construction time constr

it  during the analysis: 

ATENA calculates structures step by step. Each step has its time t and it stepwise increases. 

When executing an analysis step, its time is compared with constr

it  of each printed element. If 
constr

it t , then the element’s contribution is assembled as usually, i.e. at its full values. For 

elements with constr

it t ATENA offers two options: 

• The element is calculated as usually, i.e. neglecting its constr

it .  It yields unreduced stresses 

(corresponding to deformation), vector of element forces and matrix of element stiffness. 

However, before their assembly into global data structures, the vector and matrix is 

multiplied by a reduction coefficient 1 . This simulates that the element does not yet 

exist. The coefficient is defined by ATENA command 

NEGLIGIBLE_ELEMENT_CONTRIBUTION_COEFF  . If 0 = , the element does 

not contribute at all. 

Although this approach is simple, it has several disadvantages: it is computationally 

inefficient because it calculates at each time step all elements despite their contribution to 

the whole structure is possibly later minimized by the coefficient   . The next 

disadvantage is that it involves some element forces’ redistribution, (i.e. some additional 

iterations), when the element transfers from 
constr

it t  to 
constr

it t status. Note that it 

happens in spite of ATENA uses incremental solution technique.  

As discussed previously, the stresses are computed always in full value, i.e. neglecting  
constr

it . Now at constr

it t=  we calculate element forces by something like 

( )1

T T

i i i i i
i i

F dV dV  −= = +  B E B  . If the structures does not exhibit any 

deformation increment at the current step, then 
10

T

i i i
i

F dV  − = → =  B  , which is 

differs from what we used in the previous step, (=
1 1

T

i i
i

F dV − −=  B )!  

On the other hand, this solution approach simulates better the case, when we require print 

layers having a constant height, (although not quite exactly). 

• The second method is to mark all elements active only on condition 
constr

it t .  Use an 

ATENA command something like 

 SELECTION "SOLID_BOX_ELEMENTS" 

CONSTRUCT_TIME_DEPENDENT_ACTIVE GROUP 1  



It ensures that elements with constr

it t are skipped. They are not computed, not assembled, 

they don’t contribute the structure. They also do not deform, unless dictated by their 

adjacent elements. This solution is more effective because it calculates only “printed” 

parts of the structure. Also, no additional iterations are needed. It corresponds to the case 

when we keep constant top position of each layer, (while its height slightly increases). 

This method is preferable over the previous one. 

 

 

4. Account for time dependent material behavior 

For this kind of analysis, it is essential to use a material model whose properties vary in time.  

Mechanical properties of a fresh concrete are certainly significantly different from those for the 

mature material. For this purpose, ATENA offers CCMaterialWithVariableProperties material 

model. It builds up on any ATENA material model, but it updates its parameters using explicitly 

given time functions. Of course, CCMaterialWithVariableProperties  accounts for constr

it , i.e. the 

time functions receive ( )constr

it t−  argument. If creep and shrinkage analysis is required, one 

should use ATENA MATERIAL id  MAT_CONSTR_TIME t  command. The material model 

then calculates behavior of the material being by t  younger, i.e. current and load time , 't t  is 

replaced by , 't t t t−  −  .   

 

5. Loading 

A structure produced by digital 3D extrusion requires typically three kinds of boundary 

conditions: 

• Kinematic boundary condition, i.e. definitions of supports etc. They are much the same as 

for traditionally built structure. 

• Self-weight loading: This is modelled by element BODY LOAD option. Use its new 

“INSIDE_T_TDT_ONLY” flag to add the element’s weight only once and at the proper 

time.  For example, use the command something like  

LOAD BODY group 1 INSIDE_T_TDT_ONLY VALUE  Z -0.023  ; 

• Material shrinkage: This loading is input as element INITIAL STRAIN load, whereby we 

must consider element construction time  constr

it . It is achieved by using a new element 

load’s flag  CONSIDER_CONSTR_TIME VALUE. At a particular time, younger 

elements will exhibit a smaller shrinkage than the older ones. For example, use the 

command something like LOAD TOTAL FUNCTION 100 INITIAL STRAIN group 1 

CONSIDER_CONSTR_TIME VALUE  X 1.   Y 1.000   Z 1.000  ; 

Note that for the sake of convenience it is recommended to input the load as total load. 

Therefore, the loading function is defined as TOTAL. (By default, ATENA assumes 

incremental load, i.e. LOAD INCREMENTAL FUNCTION….). 

 

6. Visualization of printing process 

By default, ATENA draws only elements that are active and/or elements active on condition 

provided constr

it t . However, it can be overridden by checking a special switch, in which case 

ATENA draws active element only if 
constr

it t  and/or it draws conditionally active elements 



despite their constr

it t status. As such, it is always possible to view full or only printed part of the 

structure. 
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The main objective of this chapter is to review methods for the solution of a set of nonlinear 

equations. Several methods, which are implemented in ATENA are described later in this 

Chapter. However, all of them need to solve a set of linear algebraic equations in the form   

 x b=A  (4.1) 

where , ,x bA  stands for a global structural matrix and vectors of unknown variables and rhs of 

the problem, respectively. Hence, this problem is discussed first. 

 

Two types of solvers are supported: direct and iterative, each of them having some pros and 

cons. Without going into details, a direct solver is recommended for smaller problems or 

problems. It is more robust and manages better ill-posed equations systems. On the other hand, 

iterative solvers are typically more efficient to solve large (well-posed) 3D analyses. In addition, 

two sparse direct solvers are provided. They intend to borrow advantages from both direct and 

iterative solvers.  

The two approaches (i.e., direct and iterative) differ in the way they store the structural matrix 
A . It comes from the nature of FEM that the structural matrices have sparse character, with most 

of nonzero elements located near the diagonal. The matrix has banded pattern and ATENA 

works with band of variable width. 

If a direct solver is used, then each column of matrix A  stores all entries between the diagonal 

element and the last nonzero element in the column. This structure is sometimes called sky-line 

profile structure. The matrix A  
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A  (4.2) 

is thus stored in three vectors , ,d u l  with actual data and one vector p  with information about 

matrix’s profile: 
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 (4.3) 

For each column i  of the matrix A  the vector p  stores location of ( 1)i ia −  within the array u , 

resp. l . If A  is symmetric, then u l=  and only l  is stored. Note the a direct solver we have to 



store all elements within the bandwidth, even though some of them may be equal to zero, 

because that they can become nonzero in the process of solution, (i.e., matrix factorization).  

 Iterative solver can store only true nonzero elements, irrespective of whether they are located 

above or below the skyline. Suppose the matrix A  from (4.2) that stores some zero elements 

below the skyline 
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 All iterative solvers would store the matrix A  in three vectors. All the data are stored in a vector 

a  and location of the stored element is maintained in vectors ,r c . The above matrix is stored as 

follows: 
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1 3 5 2 3 4 3 1 2 3 ... 7 6
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 (4.5) 

 

The vector a  stores for each column of A  first diagonal element, followed by all nonzero 

elements, from the top to the bottom of the column. The vector c  stores row index of each entry 

in the vector a . r  stores location of all diagonal elements iia  within a  appended by an artificial 

pointer to 1 1n na + + , where dim( )n = A .   

 

The well-known Cholesky decomposition is used to solve the problem. The matrix A  is 

decomposed into 

 =A LDU  (4.6) 

where ,L U  is lower and upper matrix and D  is diagonal matrix. The method to compute the 

decomposition is described elsewhere, e.g. (Bathe 1982). Equation (4.1) is then solved in two 

steps: 
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Both of the above equations are computed easily, because the involved matrices have triangular 

pattern. Hence, the solution of (4.7) represents back substitution only. If A  is symmetric, (which 

is usually the case), then  



 T=U L  (4.8) 

 

Direct sparse solvers are similar to the above Direct solvers; however, they should work more 

economically both in terms of RAM and CPU requirements. They belong to a group of direct 

(i.e., non-iterative) solution methods. They are based on matrix decomposition similar to (4.6). 

The decomposition can be LU or LDU for non-symmetric matrices and/or LLT or LDLT 

decomposition for symmetric matrices.  

The main difference between these solvers and those from Section 4.1.3 is that they run the so-

called pre-factorization procedure before the actual factorization is executed. Such a pre-

factorization has two jobs: 

1. Find out, what initially zero ija  entries of the matrix A (that are stored below the skyline) 

become nonzero due to factorization of A. Such entries are called fill-in. 

2. Per mutate lines and columns of A so that the filling gets minimum. 

Once a map of fill-in is known, it is added to the originally nonzero data of A and only these data 

are to be stored and maintained in the next operations. Hence, as it is not necessary to store and 

work upon all data below the skyline of A (as it is he case of solvers in Section 4.1.1); we can 

use here a sparse matrix storage scheme. The incurred savings in both RAM and CPU resources 

is significant and it pays off well for a computation overhead caused by the pre-factorization 

phase and a bit more complicated storage scheme in use.  

It is beyond the scope of this document to describe all details about the implementation of this 

solver. It is based on (Vondracek, 2006) and (Davis et. al, 1995). A number of optimization 

techniques are used to speed up the solution procedure, such as the problem (4.6) can be solved 

using a block structure. This applies to pre-factorization, factorization as well as for 

backward/forward substitution phases. The typical size of such a block is 2x2 .. 6x6. The bigger 

block size, the smaller overhead for pre-factorization and mapping of the matrix and the faster 

the operation to actually factorize and solve the problem (4.6). Use of a bigger block, however, 

results also in a higher waste of RAM because all nonzero data and fill-in are rounded into a 

storage with block pattern.  

Direct sparse solvers are a compromise between Direct Solvers and Sparse Solvers. They 

typically need more RAM and CPU than Sparse solvers do (and less than Direct Solvers), 

however, they never diverge and bring uncertainties as what precoditioner to use, etc.  Therefore, 

they are recommended for middle size (may-be ill-conditioned) problems, the solution of which 

would not fit into RAM subject a Direct Solver is used, and for which Sparse solvers are not 

sufficiently robust.  

 

The table below lists all solvers in ATENA that can solve the problem (4.1) iteratively. Although 

the list is long, from the practical point of view only a few of them are recommended, see the 

column “Description”. In addition, only the methods DCG and ICCG are designed to take full 

advantage of symmetry of A (if present). The remaining solvers would store only the symmetric 

part of  A, however, they will operate on it in the same way as it is not symmetric. Therefore, for 

symmetric problems, the solvers DCG and ICCG are preferable.  

Each of the iterative solvers typically consists of two routines, one for “preparation” of the 

solution and the other for the solution itself, i.e., “execution” phase. The former routine is 



particularly important for the case of preconditioned iterative solvers. This is where a 

preconditioning matrix is created.  

The most efficient preconditioning routine are based on incomplete Cholesky decomposition 

(Rektorys 1995). The preconditioning matrix A'  is decomposed in the same way as (4.6), i.e. 

 =A' L'D'U'  (4.9) 

Comparing  A and A' , it can be written 

 
0 '

0 '

ij ij ij

ij ij ij

for a a a

for a a a

 =

= 
 (4.10) 

The incomplete Cholesky decomposition is carried out in the same way as complete Cholesky 

decomposition (4.6), however, entries in A , which were originally zero and became nonzero 

during the factorization are ignored, i.e., they stay zero even after the factorization. The incurred 

inaccuracy is the penalty for memory savings due to usage of the iterative solvers’ storage 

scheme. For symmetric problem, use ssics routine, for non-symmetric problems the ssilus is 

available to construct = T
A' L'D'(L')  or =A' L'D'U' .   

Last but not least, note that each solver needs some temporary memory. Such requirements are 

included in the table below. Typically, the more advanced the iterative solver, the more extra 

memory it needs and the fewer the number of iterations needed to achieve the same accuracy.  

 

Type D/I Prep. 

phase 

Exec. 

phase 

Sym/N

on-

sym 

Temporary memory 

required 

Description 

LU D --- --- S,NS ----- For smaller or ill-

posed probems 

JAC I ssds   sir S,NS 4*(11)+8*(1+4*n) Simple, not 

recommended 

GS I --- sir S,NS 4*(11+nel+n+1)+8*(1+3

*n+nel) 

 

ILUR I ssilus sir S,NS 4*(13+4*n+nu+nl)+8*(1

+4*n+nu+nl) 

 

DCG I ssds scg S 4*(11)+8*(1+5*n) For large symmetric 

well-posed problems 

ICCG I ssics scg S 4*(12+nel+n)+8*(1+5*n

+nel) 

For large symmetric 

problems, 

recommended 

DCGN I ssd2s scgn S,NS 4*(11)+8*(1+8*n) For large non-

symmetric well-

posed problems 

LUCN I ssilus scgn S,NS 4*(13+4*n+nl+nl)+8*(1

+8*n+nl+nu) 

For large non-

symmetric problems, 

recommended 



DBCG I ssds sbcg S,NS 4*(11)+8*(1+8*n)  

LUBC I ssilus sbcg S,NS 4*(13+4*n+nl+nu)+8*(1

+8*n+nu+nl) 

 

DCGS I ssds scgs S,NS 4*(11)+8*(1+8*n)  

LUCS I ssilus scgs S,NS 4*(13+4*n+nl+nu)+8*(1

+8*n+nu+nl) 

 

DOMN I ssds somn S,NS 4*(11)+8*(1+4*n+nsave

+3*n*(nsave+1)) 

 

LUOM I ssilus somn S,NS 4*(13+4*n+nu+nl)+8*(1

+nl+nu+4*n+nsave+3*n

*(nsave+1)) 

 

DGMR I ssds sgmres S,NS 4*(31)+8*(2+n+n*(nsav

e+6)+nsave*(nsave+3)) 

 

LUGM I ssilus sgmres S,NS 4*(33+4*n+nl+nu)+8*(2

+n+nu+nl+n*(nsave+6)+

nsave*(nsave+3)) 

 

In the above:  

n is the number of degree of freedom of the problem. nel is the number of nonzeros in the lower 

triangle of the problem matrix (including the diagonal). nl and nu is the number of nonzeros in 

the lower resp. upper triangle of the matrix (excluding the diagonal). 

 

Phase name Description 

sir Preconditioned Iterative Refinement sparse Ax = b solver. Routine to solve a 

general linear system  Ax = b  using iterative refinement with a matrix 

splitting. 

scg Preconditioned Conjugate Gradient iterative Ax=b solver. Routine to  solve a  

symmetric positive definite linear system    Ax = b    using the Preconditioned  

Conjugate Gradient method. 

scgn Preconditioned CG Sparse Ax=b Solver for Normal Equations. Routine  to 

solve a general linear system Ax = b using the Preconditioned Conjugate 

Gradient method  applied to the normal equations AA'y = b, x=A'y. 

sbcg Solve a Non-Symmetric system using Preconditioned BiConjugate Gradient. 

scgs Preconditioned BiConjugate Gradient Sparse Ax=b solver. Routine to solve a 

Non-Symmetric linear system Ax = b using the Preconditioned BiConjugate 

Gradient method. 

somn Preconditioned Orthomin Sparse Iterative Ax=b Solver. Routine to solve a 

general linear system  Ax = b  using the Preconditioned Orthomin method. 



sgmres Preconditioned GMRES iterative sparse Ax=b solver. This routine uses the 

generalized minimum residual (GMRES) method with preconditioning to 

solve non-symmetric linear systems of the form: A*x = b. 

 

Phase name Description 

ssds Diagonal Scaling Preconditioner SLAP Set Up. Routine to compute the 

inverse of the diagonal of a matrix stored in the SLAP Column format. 

ssilus Incomplete LU Decomposition Preconditioner SLAP Set Up.Routine to 

generate the incomplete LDU decomposition of a matrix.  The  unit lower 

triangular factor L is stored by rows and the  unit upper triangular factor U is 

stored by columns.  The inverse of the diagonal matrix D is stored. No fill in 

is allowed. 

ssics Incompl Cholesky Decomposition Preconditioner SLAP Set Up. Routine to 

generate the Incomplete Cholesky decomposition, L*D*L-trans, of  a 

symmetric positive definite  matrix, A, which  is stored  in  SLAP Column 

format.  The  unit lower triangular matrix L is  stored by rows, and the inverse 

of the diagonal matrix D is stored. 

ssd2s Diagonal Scaling Preconditioner SLAP Normal Eqns Set Up. Routine to 

compute the inverse of the diagonal of the matrix A*A'.  Where A is stored in 

SLAP-Column format. 

 

As for the solution procedure, i.e., the latter of the two solution phases, the most commonly used 

method is the Conjugate gradient method (with incomplete Cholesky preconditioner) (Rektorys 

1995). The flow of execution is as follows:   
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This solution procedure is implemented in scg routine. 

The iterative solvers in ATENA are based on SLAP package (Seager and Greenbaum 1988) that 

were modified to fit into ATENA framework. The authors of the package refer to (Hageman and 

Young 1981), where all of the implemented solution techniques are fully described.     

 

This solver uses PARDISO parallel direct sparse solver from the Math Kernel Library (MKL) 

provided by Intel together with Intel Composer XE 2011. The solver has been developed within 

the PARDISO Project, (see for example http://www.pardiso-project.org/).  It is aimed for large 

sparse symmetric and un-symmetric linear systems with shared memory. It offers direct or 

iterative solver algorithms. The solver is well established and used by many software packages. 

A lot of literature is related to the PARDISO project. For more information, refer to 

http://fgb.informatik.unibas.ch/people/oschenk/index.html. Also, basic information is given in 

the Intel Composer XE 2011 manuals. 

A simplified version of this solver is also included in Atena. For the sake of simplicity, most 

solution parameters are kept with their default value. The exception to that is the parameter 

"PARDISO_REQUIRED_ACCURACY". It is input via the Atena "SET" input command. It 

specifies, whether use of direct method with LU decomposition or iterative method with CGS 

preconditioning is preferred. In the latter case, it also set a required solution accuracy. (For more 

information refer to the Atena Input File Manual). 

The following solver description is taken from the MKL manual provided by with Intel 

Composer XE 2011, (also at http://software.intel.com/sites/products/documentation/hpc/ 

mkl/mklman/GUID-7E829836-0FEF-46B2-8943-86A022193462.htm. 

Symmetric Matrices:  

The solver first computes a symmetric fill-in reducing permutation P based on either the 

minimum degree algorithm (Liu, 1985) or the nested dissection algorithm from the METIS 

package (Karypis, 1998)  (both included with Intel MKL), followed by the parallel left-right 

looking numerical Cholesky factorization (Schenk, 2000)  of PAPT = LLT for symmetric 

 

5 Available starting from ATENA version 5. 



positive-definite matrices, or PAPT = LDLT for symmetric indefinite matrices. The solver uses 

diagonal pivoting, or 1x1 and 2x2 Bunch and Kaufman pivoting for symmetric indefinite 

matrices, and an approximation of X is found by forward and backward substitution and iterative 

refinements. 

Whenever numerically acceptable 1x1 and 2x2 pivots cannot be found within the diagonal super-

node block, the coefficient matrix is perturbed. One or two passes of iterative refinements may 

be required to correct the effect of the perturbations. This restricting notion of pivoting with 

iterative refinements is effective for highly indefinite symmetric systems. Furthermore, for a 

large set of matrices from different application areas, this method is as accurate as a direct 

factorization method that uses complete sparse pivoting techniques(Schenk, 2004). 

Another method of improving the pivoting accuracy is to use symmetric weighted matching 

algorithms. These algorithms identify large entries in the coefficient matrix A that, if permuted 

close to the diagonal, permit the factorization process to identify more acceptable pivots and 

proceed with fewer pivot perturbations. These algorithms are based on maximum weighted 

matchings and improve the quality of the factor in a complementary way to the alternative idea 

of using more complete pivoting techniques. 

The inertia is also computed for real symmetric indefinite matrices. 

Unsymmetric Matrices:  

The solver first computes a non-symmetric permutation PMPS and scaling matrices Dr and Dc 

with the aim of placing large entries on the diagonal to enhance reliability of the numerical 

factorization process (Duff and Koster 1999). In the next step the solver computes a fill-in 

reducing permutation P based on the matrix PMPSA + (PMPSA)T followed by the parallel 

numerical factorization 

QLUR = PPMPSDrADcP 

with super-node pivoting matrices Q and R. When the factorization algorithm reaches a point 

where it cannot factor the super-nodes with this pivoting strategy, it uses a pivoting perturbation 

strategy similar to (Li and Demmel 1999). The magnitude of the potential pivot is tested against 

a constant threshold of alpha = eps*||A2||inf , where eps is the machine precision, A2 = 

P*PMPS*Dr*A*Dc*P, and ||A2||inf is the infinity norm of the scaled and permuted matrix A. 

Any tiny pivots encountered during elimination are set to the sign (lII)*eps*||A2||inf, which 

trades off some numerical stability for the ability to keep pivots from getting too small. Although 

many failures could render the factorization well-defined but essentially useless, in practice the 

diagonal elements are rarely modified for a large class of matrices. The result of this pivoting 

approach is that the factorization is, in general, not exact and iterative refinement may be needed. 

Direct-Iterative Preconditioning. 

The solver enables to use a combination of direct and iterative methods (Sonneveld 1989) to 

accelerate the linear solution process for transient simulation. Most of the applications of sparse 

solvers require solutions of systems with gradually changing values of the nonzero coefficient 

matrix, but the same identical sparsity pattern. In these applications, the analysis phase of the 

solvers has to be performed only once and the numerical factorizations are the important time-

consuming steps during the simulation. PARDISO uses a numerical factorization A = LU for the 

first system and applies the factors L and U for the next steps in a preconditioned Krylow-

Subspace iteration. If the iteration does not converge, the solver automatically switches back to 

the numerical factorization. This method can be applied to un-symmetric and structurally 

symmetric matrices in PARDISO. For symmetric matrices, Conjugate-Gradients method is 

applied. You can select the method using only one input parameter.  

 



Separate Forward and Backward Substitution. 

The solver execution step can be divided into two or three separate substitutions: forward, 

backward, and possible diagonal. This separation can be explained by the examples of solving 

systems with different matrix types. 

A real symmetric positive definite matrix A  is factored by PARDISO as A = L*LT . In this case 

the solution of the system A*x=b can be found as a sequence of substitutions: L*y=b (forward 

substitution) andLT*x=y (backward substitution). 

A real unsymmetric matrix A is factored by PARDISO as A = L*U . In this case the solution of 

the system A*x=b can be found by the following sequence: L*y=b (forward substitution) and 

U*x=y (backward substitution). 

Note that different pivoting (1x1, 2x2...) produces different LDLT factorization. Therefore results 

of forward, diagonal and backward substitutions with diagonal pivoting can differ from results of 

the same steps with Bunch and Kaufman pivoting. Of course, the final results of sequential 

execution of forward, diagonal and backward substitution are equal to the results of the full 

solving step regardless of the pivoting used. 

Sparse Data Storage. 

Sparse data storage in PARDISO follows the scheme described above.  

 

Using the concept of incremental step by step analysis, we obtain the following set of nonlinear 

equations: 

 ( ) ( )p p q f p = −K  (4.12) 

where: 

q  is the vector of total applied joint loads, 

( )f p is the vector of internal joint forces, 

p is the deformation increment due to loading increment, 

p are the deformations of the structure prior to load increment, 

 ( )pK is the stiffness matrix, relating loading increments to deformation increments. 

The R.H.S. of (4.12) represents out-of-balance forces during a load increment, i.e., the total load 

level after applying the loading increment minus internal forces at the end of the previous load 

step. Generally, the stiffness matrix is deformation dependent, i.e., a function of p , but this is 

usually neglected within a load increment in order to preserve linearity. In this case, the stiffness 

matrix is calculated based on the value of p  pertaining to the level prior to the load increment. 

The set of equations (4.12) is nonlinear because of the nonlinear properties of the internal forces: 

 ( ) ( )f kp kf p  (4.13) 

and nonlinearity in the stiffness matrix 

 ( ) ( )p p p + K K  (4.14) 

where k is an arbitrary constant. 



The set of equations represents the mathematical description of structural behavior during one 

step of the solution. Re-writing equations (4.12) for the i-th iteration within a distinct loading 

increment we obtain: 

 1 1( ) ( )i i ip p q f p− − = −K  (4.15) 

All the quantities for the (i-1)-th iteration have already been calculated during previous solution 

steps. Now we solve for 
i

p at load level q  using: 

 1i i ip p p−= +   (4.16) 

As pointed out earlier, equation (4.15) is nonlinear, and therefore it is necessary to iterate until 

some convergence criterion is satisfied. The following possibilities are supported in ATENA 

( k marks k -th component of the specified vector):  
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The first one checks the norm of deformation changes during the last iteration whereas the 

second one checks the norm of the out-of-balance forces. The third one checks out-of-balance 

energy, and the fourth condition checks out-of-balanced forces in terms of maximum 

components (rather than Euclid norms). The values of the convergence limits   are set by 

default to 0.01 or can be changed by the input command SET. 

The concept of solving nonlinear equation set by Full Newton-Raphson method is depicted in 

Fig. 4-1: 
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The most time-consuming part of solution (4.15) is the re-calculation of the stiffness matrix 

1( )ip −K  at each iteration. In many cases this is not necessary and we can use matrix 0( )pK  from 

the first iteration of the step. This is the basic idea of the so-called Modified Newton-Raphson 

method. It produces very significant time saving, but on the other hand, it also exhibits worse 

convergence of the solution procedure. 

The simplification adopted in the Modified Newton-Raphson method can be mathematically 

expressed by: 

 1 0( ) ( )ip p−K K  (4.18) 

The modified Newton-Raphson method is shown in Fig. 4-2. Comparing Fig. 4-1 and Fig. 4-2 it 

is apparent that the Modified Newton-Raphson method converges more slowly than the original 

Full Newton-Raphson method. On the other hand, a single iteration costs less computing time, 

because it is necessary to assemble and eliminate the stiffness matrix only once. In practice, a 

careful balance of the two methods is usually adopted in order to produce the best performance 

for a particular case. Usually, it is recommended to start a solution with the original Newton-

Raphson method and later, i.e., near extreme points, switch to the modified procedure to avoid 

divergence.  
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Next to the Modified Newton-Raphson method, the most widely used method is the Arc-length 

method. This method was first employed about fifteen years ago to solve geometrically nonlinear 

structures. Because of its excellent performance, it is now quite well established for geometric 

nonlinearity and for material nonlinearity as well. Many workers have been interested in using 

and improving Arc-length procedures. In Atena, it can be used within CCStructures module, i.e. 

for static analysis. 

The main reason for the popularity of this method is its robustness and computational efficiency 

which assures good results even in cases where traditional Newton-Raphson methods fail. Using 

an Arc-length method stability problems such as snap back and snap through phenomena can be 

studied as well as materially nonlinear problems with non-smooth or discontinuous stress-strain 

diagrams. This is possible due to the changing load conditions during iterations within an 

increment. 

The main idea of this method is well explained by its name, arc-length. The primary task is to 

observe complete load-displacement relationship rather than applying a constant loading 

increment as it is in the Newton-Raphson method. Hence this method fixes not only the loading 

but also the displacement conditions at the end of a step. There are many ways of fixing these, 

but one of the most common is to establish the length of the loading vector and displacement 

changes within the step.  

From the mathematical point of view, it means that we must introduce an additional degree of 

freedom associated with the loading level (i.e., a problem has n displacement degrees of freedom 

and one for loading) and in addition, a constraint for the new unknown variable must be 

introduced. The new degree of freedom is usually named . There are many possibilities for 

defining constraints on  and those implemented in ATENA are briefly reviewed in the 

following sections.  

To derive the Arc-length method, we re-write the set of equations (4.12) in the form of (4.19), 

where  defines the new loading factor: 

 ( ) ( )p p q f p = −K  (4.19) 

Now re-writing (4.19) in a form suitable for iterative solution: 

 1 1 1( ) ( )i i i ip p q f p q f − − − = − = −K  (4.20) 

 

 1 1 1 1i i i i i ip p p p  − − − −= +  = +  (4.21) 

  

 1 1 1i i i ip p  − − − =  +  (4.22) 

 

 1 1i i i  − −= +   (4.23) 

The notation is explained in Fig. 4-3. The matrix K  can be recomputed for every iteration 

(similar to the Full Newton-Raphson method) or it can be fixed based on the 1st iteration for all 

subsequent iterations (Modified Newton Raphson method). The vector q  does not mean in this 

case the total loading at the end of the step but only a reference loading "type". The actual 

loading level is a multiple of this. 



The scalar   is an additional variable introduced by the Line-search method, which will be 

discussed later. The scalar   is used to accelerate solutions in cases of well-behaved load-

deformation relationships or to damp possible oscillations if some convergence problems arose, 

e.g., near bifurcation and extreme points. 
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Additional notation is defined as follows: 

Out-of-balance forces in i-th iteration: 

 1 1( ) ( )i i i i i i ig p g f q f q  − −= = − = − +   (4.24) 

R.H.S vector in i-th iteration: 

 1 1 1i i i i iRHS q f q g − − −= − =  −  (4.25) 

Substituting (4.21) through (4.25) into (4.20), the deformation increment 1i −  can be calculated 

from: 

 11 1 1ii i iRHS q g −− − −= =  −K  (4.26) 

 Hence: 

 11 1ii i T   −− −= +   (4.27) 

where 
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                                                            (4.28) 

It remains only to set the additional constraint for 1i −  and 1i − and the whole algorithm is 

defined. Thus compared to the Newton-Raphson methods in which we solve n dimensional 

nonlinear problem, the Arc-length method need to solve a (n + 2) dimensional problem, where 

the first n unknowns correspond to deformations and the last two are 1i −  and 1i − . 



If we set 1 1i − = , then we deal with an (n + 1) dimensional problem that corresponds to the pure 

Arc-length method, otherwise, a combination of Arc-length and Line search must be employed. 

The Line search method is discussed later in this chapter. Note that all vectors including 1i − , 

T are of order (n + 1). Their (n + 1)-th coordinate corresponds to the loading dimension   and 

it is set to zero.  

Now, introduce two new vectors 1it− and 1in − as shown in Fig. 4-4. There are defined by: 

 1 1 1( )i i i startt p   − − −=  + −  (4.29) 

 1 1 1i i in   − − −= +   (4.30) 

where: 

 is scalar that relates dimensions of  to size of deformation space, 

1i − is a (n + 1) dimensional vector with its firth n coordinates set to zero (deformation 

space) and its      (n + 1)-th coordinate equal to 1i − .  

start is a (n+1) dimensional vector similar to 1i − , however its (n + 1)-th coordinate equal 

to start . 
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It is then obvious that    

 1 1i i nt t n− −= +  (4.31) 

Defining the residual R : 

 1 1 1i i iR t n− − −=  (4.32) 

equations (4.20) through (4.32) lead to the final expression for the unknown 1i −  (noting that 

1 1 1 1 0T T

i i i ip p − − − −  = = ): 
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To obtain 1i −  by (4.33) the residual 1iR −  must be defined. In fact, it also defines the type of 

Arc-length constrain being used. The types supported in ATENA are described below. 

 

Vector 1it −  and 1in −  are normals in this case, hence residual 1 0iR − = , see Fig. 4.4-3. 
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The main advantage of this method is its simplicity. The Normal update plane is relatively 

reliable, but it can fail if the l-p diagram suddenly changes its slope or turns back or down (snap 

back and snap through). Nevertheless, if these special conditions are treated by this method, then 

a very significant reduction in step length is unavoidable. 

 

The residual 1iR −  is defined in this case by 

 1 1 1 1 1 1 1cos( ) ( )T

i i i i i i iR t n t n t t s− − − − − − −= = = − −  (4.34) 

The step length s  and angle  are depicted in Fig. 4.3-4. The norm of the vector 1it− is 

calculated using (4.29): 
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Substituting (4.34) and (4.35) in (4.33) we obtain the final expression for 1i − . It should be 

noted that the scalar s  is set 'a priori' and governs the actual step length. Of course, the proper 

choice of this parameter is essential for the solution and therefore it will be discussed later in 

more detail. 

This method is especially suitable for solutions that embrace p −  diagrams with sudden breaks 

and discontinuities, e.g. for materially nonlinear problems.   

 

The basic constraint for 1i −  in this case is that 1i it t s− = = , where s is some distinct 'a priori' 

set step length. Similar to the previous method, we also have to evaluate the residual 1iR − : 

 1 1 1 1 1 1 1cos( )T

i i i i i i iR t n t n t r− − − − − − −= = = −  (4.36) 

Based on the similar triangles (see Fig. 4.4-), the following can be derived: 
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The vector '

1it−  is calculated using (4.35). By substituting the above equations into (4.33) the 

final expression for 1i −  is obtained. 

From the above derivation, it is clear that in practice we at first employ Normal Update Method 

(Chapter 4.4.1) to solve for '

it  and '

1in −  and thereafter, we correct the 1i −  in order to satisfy 

the constraint 1i it t s− = = . 
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 This method is usually utilized to analyze geometrically nonlinear structures, particularly 

stability problems. Its main feature is robustness and compared with the "classical" Crisfield 

cylinder method (see below) it avoids the problem of the choice of the proper 1i − root (the 

condition 1i it t s− = =  while expressing vector length analytically). As for convergence, the 

method is comparable to the method 4.4.3, but has the advantage that it preserves the step length. 

 

The Crisfield method is derived directly from the constraint of constant step length 

1i it t s− = =  The residual 1iR −  is not used in this case and we substitute equations (4.20) 

through (4.31) straight into the above constraint. It leads to the following equation for 1i − : 

 2

1 1 2 1 3 0i ia a a − − +  + =  (4.41) 

 where: 
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 (4.42) 

Equation (4.41) has generally two roots 1i −  and hence we must decide which of them to use. 

There exist several strategies but ATENA chooses that root 1i − , for which 1cos( , ) 0i it t−   (or 

higher of them), i.e., direction of new increment as close as possible to direction of the previous 

increment (within the same step). 

 

 

 



 

The proper step length is of essential importance for good execution performance. It directly 

influences the convergence radius on the one hand and the number of required steps on the other. 

ATENA uses the following procedure to set (or optimize) s : 

(1) Set loading vector q  and thus define a reference loading level (within one load 

increment). 

(2) Structural response to this load in the 1st execution step, the 1st iteration defines step 

length 
1s  in the 1st step. In the subsequent steps, the step length is kept fixed or optimized 

(based on SET ATENA input command, subcommand 

&ARC_LENGTH_OPTIMISATION: 
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where  

is  and 1is −  is Arc length step length in the current and the previous load increment, 

respectively. 

 n  and 1in − is desired number of iterations and number of iterations in the previous step. 

n is typically 5-6. 

 

The objective of this method is to calculate the parameter   that was already introduced in the 

Chapter 4.4 Arc-Length Method The method can be used either independently or in combination 

with Arc length method. The primary reason for introducing a new parameter (i.e. a new degree 

of freedom to the set of equations) is to accelerate or to damp the speed of analysis of the load-

displacement relationship.  

The basic idea behind   is to minimize work of current out-of-balance forces on displacement 

increment.  

Let us assume that we have already solved already two points 0p  and 0 'p  + p and thus we 

have also calculated out-of-balance forces 0( )g p  and 0( ' )g p  + at these points. The aim of 

this method is to set the parameter   so that the work being done by out-of-balance forces at 

point 0p + is minimum. 

The work of out-of-balance forces is: 

 0( ) ( ) ( )
o

p
T

p
p p g p dp minimum =  + =  (4.46) 

Hence: 
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Interpolating linearly out-of-balance forces between points 0p  and 0 'p  +  
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and using : 
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The final expression for ' can be derived: 
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Thus, the Line search method can be summarized: 

Use any method to calculate displacement increment  , (see Fig. 4-3 and (4.28)). The 

parameter '  can be set from the last load increment or simply to unity. 

Calculate out-of-balance forces for both 0( )g p  and 0( ' )g p  + .  

Use (4.50) to calculate new value for  . 

As all the above equations are nonlinear, the parameter   must be solved by iterations until 

0

0

(

( )

g p

g p

+
  a specified energy drop, typically < 0.6 – 0.8 >. 

Practical experience suggests that the value of parameter   should be kept in interval < 0.1 – 5>. 

 

The parameter   scales the deformation space p to the loading dimension  . If 0 = , the 

solution for 1i − is searched on an area of a cylindrical shape of radius equal to step length 

s (Crisfield method) and the axis normal to the p (deformation) space. The solution is the point 

of intersection of this area and the line, defined by the energy gradients of structure and by the 

applied load at point p . If 0  , the solution is carried out in the same way on ellipsoidal or 

spherical space. 

The higher value of  , the higher "weight factor" for changes in loading space compared to 

displacement increments.  

ATENA currently supports the following formulae for setting and optimization of   (for current 

step j ). They are reviewed below.  

  



The first strategy requires the “load to displacement” increment ratio (4.51) is constant 

throughout all steps, (e.g., input value req ) 
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 (4.51) 

 Then, at the end step j-1 we can calculate 
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This value (due to nonlinearities) will not match req . Therefore, for step j we will modify j   

as follows: 
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 (4.53) 

The above optimization process is initialized in the first step by assuming that 

0 0 11, 1, ( )j Tp  −=  =  =  , where T  is displacement corresponding to master Arc-length 

load increment defined earlier in this chapter.  Hence 
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 (4.54) 

The parameters j  in all subsequent steps are calculated using (4.53). If the ratio of 

displacements changes ( )j p  to load changes ( )j  in the last load step increase, then the 

equation (4.54)(4.55) increases  in the current step, thereby puts higher „weight factor“ on 

loads compared to displacements. Hence, the equation (4.54) tends to keep constant importance 

of loading space irrespective of displacements. Note that the equation (4.54) corresponds to 

BETA_FORCES_DISPLS_RATIO_CONSTANT. 

The second supported strategy is different. In ATENA, it is referred to as 

BETA_RATIO_CONSTANT method and it tries to keep constant   coefficients, whilst 

managing the coefficients  . Thus, it works in the opposite way as compared to the first strategy 

described above. 

From (4.52) we can write for steps (j-1) and j  
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Now requiring 1j j − = we have 
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and if we assume 
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If 
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 in subsequent steps changes, the procedure is trying to compensate for that by re-

adjusting the coefficients  . In other words, this strategy is trying to keep 
( )p






 constant, 

(i.e., the relative importance of load vs. displacement spaces).  

 

The way in which individual structural degrees of freedom (dofs) are mapped into the global 

structural matrices has a significant impact on their size and cost of the solution in terms of 

required CPU and RAM resources.  

Let us assume the 2D example of the 3 bars element from Fig. 4-5. The structure consists of 

three beam elements 1,2,3. It has four global nodes with three degrees of freedom in each of 

them, i.e., two displacements and one rotation. Suppose the structure is solved by a direct solver, 

i.e., we use half-band skyline storage scheme (4.4).  

By default, i.e., without any optimization, the structural degrees of freedom are allocated 

sequentially starting from the node 1 up to the last node n, i.e., 4. Hence, the jth degree of 

freedom at the node i  has number ( 1)ndof i j− + , where ndof is number of dofs per node. 



If the structural nodes are numbered as indicated, then the beam 1,2 and 3 have nodal incidences 

1-3,  3-4 and 4-2, respectively and the final stiffness matrix K has the pattern from the left-

bottom part of Fig. 4-5. Note that the matrix K must also store the entries depicted as circles 

without filling. Although they are initially zero, they may turn nonzero during the matrix 

decomposition needed to solve the problem, i.e., we must store the matrix with 69 entries and 

maximum half-band width 9. 

On the other hand, if nodal degrees of freedom are numbered as shown in the right-bottom part 

of Fig. 4-5, then the matrix K must store only 51 entries and has maximum half bandwidth only 

6.   

The two examples document, how important efficient numbering of the degrees of freedom of 

the structure is. If the structure (to be solved) is simple, then a suitable dofs' numbering can be 

done manually by appropriate numbering of the structural nodes. However, in the more complex 

cases (and in particular if a model of the structure is generated automatically), an optimal dofs 

mapping must be calculated. 

There are number of algorithms that deliver more or less efficient dofs mapping.  Probably the 

best established algorithm of that kind is Cuthill-McKee algorithm (Cuthill, McKee 1969). This 

is not due to its superior property, but due it has been developed as first. The algorithm produces 

an ordered n-tuple R of vertices which is the new order of the structural vertices. It numbers the 

vertices according to a particular breadth-first traversal, where neighboring vertices are visited in 

order from lowest to highest vertex order. 

The reverse Cuthill–McKee algorithm (RCM) is the alternative of the Cuthill-McKee algorithm, 

in which the vertices are visited in reverse order, i.e. form the highest to the lowest vertex.   

ATENA implements Gibbs and Sloan dofs optimization algorithms:  

   

http://en.wikipedia.org/wiki/Breadth-first_search


 

 

The Sloan algorithm (Sloan, Randolf (1983) 

In an effort to obtain an optimum elimination order, the algorithm first renumbers the nodes, and 

then uses this result to resequence the elements. This intermediate step is necessary because of 

the nature of the frontal solution procedure, which assembles variables on an element-by-

element basis but eliminates them node by node. To renumber the nodes, a modified version of 

the King’ algorithm is used. In order to minimize the number of nodal numbering schemes that 

need to be considered, the starting nodes are selected automatically by using some concepts from 

graph theory. Once the optimum numbering sequence has been ascertained, the elements are 

then reordered in an ascending sequence of their lowest-numbered nodes. This ensures that the 

new elimination order is preserved as closely as possible. For meshes that are composed of a 

single type of high-order element, it is only necessary to consider the vertex nodes in the 

renumbering process. This follows from the fact that mesh numberings which are optimal for 

low-order elements are also optimal for high-order elements. Significant economies in the 

reordering strategy may thus be achieved. 



    

The Gibbs et. al. algorithm (Gibbs et. al. 1976)  

This algorithm typically produces bandwidth and profile, which are comparable to those of the 

commonly-used reverse Cuthill–McKee algorithm, yet it requires significantly less computation 

time.  Nevertheless, it delivers dofs mapping that is usually slightly less efficient than that by the 

Sloan algorithm and therefore, it is less preferred option the optimization. 

Note that the above algorithms optimize dofs numbering by reordering the structural nodes. They 

do not account for possible different number of dofs within a particular node. Note also that in 

order to minimize cost of the dofs remapping, the optimization is carried out before assembling 

the structural global matrices and vectors. Thus, they are assembled directly into their final, 

optimized location. 

Iterative solvers use data storage scheme (4.3). As the storage scheme stores only nonzero 

elements, the solution is less sensitive to a bad dofs mapping. For huge analyses it is nevertheless 

suggested to carry out a dofs mapping optimization, as it typically yields individual elements 

entries stored closer to each other with positive effect on solution convergence and RAM data 

management.  

A detailed description of the above algorithms is above scope of the publication. For more 

information the reader is suggested to study the given references. 
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Creep and shrinkage are undoubtedly features that have a significant influence on concrete 

behaviour. Although creep and shrinkage analysis can be neglected in the design of most civil 

structures, there exist cases when these phenomena have to be accounted for. The Ref. (Bazant 

and Baweja 1999) provides a five levels classification of structures that can serve as simple 

guidelines for making a decision, when creep and shrinkage analysis is needed and when it is not 

needed. The recognized levels of structures are as follows:  

Level 1: Reinforced concrete beams, frames, and slabs with span under 20m and heights of up to 

30m, plain concrete footings, retaining walls. 

Level 2. Prestressed beams or slabs of spans up to 20m, high-rise building frames up to 100m 

high. 

Level 3. Medium-span box girder, cable-stayed or arch bridges with spans of up to 80m, 

ordinary tanks, silos, pavements. 

Level 4. Long-span prestressed box-girder, cable-stayed or arched bridges; large bridges built 

sequentially in stages by joining parts, large gravity, arch or buttress dams, cooling towers, large 

roof shells, very tall buildings. 

Level 5. Record span bridges, nuclear containments and vessels, large offshore structures, large 

cooling towers, record-span thin roof shells, record-span slender arch bridges.  

Full creep and shrinkage analysis is mandatory for the design of structures level 4 and 5 and it is 

recommended also for the level 3 structures.  

 

ATENA software provides a powerful method for creep and shrinkage analysis for most 

problems from engineering practice. It is based on the so-called cross-sectional approach, 

meaning that the analysis builds upon creep and shrinkage behavior of the whole cross-section 

rather than the behavior of individual material points only. The reason for choosing this method 

is that at this moment, there are available numerous models for predicting creep and shrinkage 

behavior of a concrete cross-section, whereas there is very low evidence about the same behavior 

at the material point level. The second reason is that its accuracy suffices for most analyses from 

engineering practice, and it is much less expansive in terms of computational cost.  

 

The implemented creep and shrinkage analysis is based on the assumption of linear creep, which 

in other words means that the material compliance function ( , ')t t  and accompanying function 

for shrinkage 0( )t  depends only on material composition, temperature, shape, and time at 

observation t  and at loading 't . It does not depend on stress-strain conditions. In spite of the 

simplifications, the provided analysis is sufficiently accurate in most practical cases and it is fast 

and efficient. On the other hand, it is applicable only for structures, where the stress value does 

not exceed about 60% of the ultimate strength of concrete. For higher load levels, the material 



nonlinearity becomes significant and a more elaborate solution has to be employed. The above 

simplification applies to time-dependent (i.e., long-term) material behavior only. For short-term 

behavior of the material, model retains its nonlinearity, i.e., it accounts for phenomena such as 

cracks, plasticity. 

 The creep and shrinkage analysis is based on the assumption of Stieltjes integral, which is 

written for the case of 1D analysis in the following form:   

 0
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t
t t t d t
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where: 

t = observation time, 

't = loading time, 

( )t =stress at the time t , 

0( )t = initial stress-independent strain such as concrete shrinkage, 

( , ')t t = compliance function of concrete. 

 

The sense of Stieltjes integral is given in the above figure.  

Equation  (4.58) has to be modified for the case of 2 and 3D analyses for practical analyses. This 

is done below. It is important to note that (4.58) applies to any stress and strain history, and it is 

defined in incremental form. It means that at a particular time t  , stress at t t+   depends only 

on the current material state at time t and stress increment at a time t t+  , i.e. d


 



 =


. 

The final form of the above equations reads:    
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where: 

( )t = is stress vector at a time t , (note the bar atop of a symbol indicates vector), 

0( )t = vector of initial strains, such as shrinkage, 

( ( )) B = matrix accounting for multiaxial stress-strain conditions, including all material 

short-term nonlinearities. 



Notice the way the equation (4.59) is written. Long-term and short-term material behavior is 

separated. The former is encapsulated in the compliance function ( , ')t t , whereas the short-

term behavior is comprised in the matrix ( ( )) B . This assumption brings significant 

simplification of the creep and shrinkage analysis, and it is believed that for most practical 

analysis, the induced inaccuracy is acceptable. 

Substituting ' , 0t t t t = + →  into (4.59)  and applying load increment  ( ') ( ')t t  =  (i.e., 

loading from the zero level) at a time 't , it can be derived  

 0( ' ) ( ' , ') ( ( ')) ( ') ( ' )t t t t t t t t t      + =  + + +B  (4.60) 

Comparison of (4.60) with similar equations for constitutive relations for short-term loading 

conditions, i.e. ' 't t t+ , yields instantaneous secant material rigidity matrix: 

  ( )
1

( ') ( ( ')) ( ', ')t t t t
−

D  = B  (4.61) 

The matrix ( ')tD  corresponds to the reciprocal value of the well-known secant Young modulus 

( ')E t  in the case of 1D stress-strain conditions. In the case of plane stress conditions, the matrix  

( ( )) B reads (4.62), etc. 

 

1 0

1 0

. 2(1 )sym





− 
 
 
 + 

B =  (4.62) 

 ( , ')t t

Ref. (Bazant and Spencer 1973) and others show that significant improvement of computational 

efficiency can be obtained if the original material compliance function ( , ')t t  is during the 

creep solution approximated by Dirichlet series '( , ')t t  as follows: 

 

'

1

1 1
'( , ') 1

( ') ( ')

t t
n

t t e
E t E t



 

 −
− 

 
 

=

 
  = + −
 
 

  (4.63) 

where : 

 = are so-called retardation times, 

n = number of approximation functions, i.e., this parameter is related to the input parameter 

number of retardation times. 

( ')E t = instant Young modulus at the time 't , 

( ')E t =coefficients for the approximation functions.  



 

The effect of the use of Dirichlet series approximation is depicted in the above figure. A single 

approximation exponential is drawn in sub-figure (a), while the whole process of decomposition 

of compliance and retardation curves is depicted in the sub-figures (b), (c), respectively. 

The incorporation of the Dirichlet series '( , ')t t  brings the following benefits: 

- Creep analysis is independent of the material creep prediction model. 

- Time integration is exact; hence, fewer temporal increments are necessary.  

- Less demand of computer storage needed for storing data from the previous temporal 

steps of the analysis. It suffices to store data from the previous analysis step only, rather 

than the complete stresses-strain history of the analyzed structure.  

 

Equation (4.59) (upon substitution (4.63) is solved numerically. The structure is discretized in 

space by the finite element method (described elsewhere in this document). As for time, the 

solution is carried out by the Step-by-step method (SBS) (Bazant 1988).  The structural behavior 

is analyzed in several time steps, i.e. in time increments, as it corresponds to (4.59). After some 

mathematical manipulations (Jendele and Phillips 1992), the final solution equations read: 

 ( )
1

1/ 2 -1/ 2 (r rr r rE  
−

− =  B - )  (4.64) 

 1( )r r r rt   −= = +   (4.65) 

 1( )r r r rt   −= = +   (4.66) 

 ( ),
1/ 2 11/2 , 1/2

1 1 1
1

n

r
r r rE EE


 


− =− −

= + −  (4.67) 
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 1( )r r r rt   −= = +   (4.70) 
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In the above the following notation is used: 

r  = identification of temporal increments,  1..r N , where N is number of time 

increments for the analysis, 

1r r rt t t − = − = time increment, 

1r r r   − = − = stress increment in time rt , 

* *( )r rt  = =internal variables at time  rt , 

0 0

( )r rt = = shrinkage at time rt , 

( )1/ 2 1

1
( ) ( )

2
r r rE E t E t− −= + = constant average secant Young modulus at time incremenent 

rt , 

( ) ( )
11/ 2 1

1 1
( ) ( )

2 2 r rr r rE E t E t E E     −− −= + = +  = constant average value of Dirichlet 

coefficient E  at  rt , 

( )1/ 2 1

1
( ) ( )

2
r r rt t− −= +B B B = average value of the matrix B  at rt . 

Equation (4.64) thru (4.71) defines all necessary relations to complete the creep and shrinkage 

analysis in ATENA. Of course, they are supplemented by relations used by the short-term 

material constitutive model, i.e., equations for calculating the matrix B.  

At each time increment, a typical short-term alike analysis is carried. The difference between the 

short-term analysis and the described analysis of one step of the creep and shrinkage is that the 

latter one uses especially adjusted Young modulus 1/2rE −  and initial strain increments r  to 

account for creep and shrinkage. After each step, these have to be updated. It involves mainly 

update of  
r and  r . With these values, a new 1/2rE −  is calculated and the next temporal 

analysis step is carried out.      

 

Appropriate selection of retardation and integration times is of crucial importance for accurate 

and efficient creep and shrinkage analysis. The choice of retardation times has a direct impact on 

the accuracy of approximation of an original compliance function by Dirichlet series, see 



Equation (4.63) and Fig. 5-2, whilst the choice of integration times affects the accuracy of the 

approximation of loading function of the structure, see Equation (4.58) and Fig. 5-1. If the 

number of times is too low, some important features of concrete behavior can be disregarded. 

The opposite extreme, i.e., using too many retardation or integration times results in worthless 

lengthy solution of  the problem.   

The ATENA software respects recommendation in (Bazant and Whittman 1982).  Retardation 

times are spread uniformly in log( )t  space and they are automatically calculated as follows: 
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 (4.72) 

In the above m  is the number of retardation times per log( )t  unit, 1m  .  By default, this 

constant is in ATENA set to 1. If required, a more detailed approximation is possible, i.e., any 

value 1m   can be used. In the program, this parameter is input as a number of retardation times 

per time unit in logarithmic scale. For a typical concrete creep law, a certain optimal value can 

be determined, and it is independent of a structure being analyzed. Note, however, that the value 

depends on the choice of time units. 

Example: If the retardation times parameter is set to 2, the creep law will be approximated by 

two approximation points for the time interval between 0 - 1 day, two points for the interval 1 - 

10 days, then two points for 10 - 100 days, etc. 

Therefore, the proper values will depend on the choice of time units. If the time unit is a day, the 

recommended value is 1 - 2. 

 Start time 1  must be chosen sufficiently low, so that Dirichlet series can account for processes 

in very young concrete right after its loading has been applied. As a default, ATENA uses the 

expression 1 0.1 't = .  

As for the upper limit for   , it is required: 

 
2

n

t
   (4.73) 

The above limits are applicable for the case when the coefficients ( ')E t  of the Dirichlet series 

in (4.63) are calculated by the Least-square method (Jendele and Phillips 1992). 

ATENA also supports an alternative way of calculation of the coefficients ( ')E t  of the Dirichlet 

series in (4.63). In this case, Inverse Laplace transformation (Bazant and Xi 1995) is used 

instead. This method requires 1 0 → , typically 1E-3 and  

 n t   (4.74) 

Comparing the above two approaches, it can be said that the Least-square method yields 

approximation of the compliance function at discrete times, whereby Inverse transformation is 

based on continuous approach. In some cases, the Least-square method results in better 

convergence behavior; however it sometimes suffers from numerical problems during 



calculation due to an ill-posed problem for solution of ( ')E t . It is left to experience and 

engineering judgment to decide, which of the method is more appropriate for a particular 

solution. 

Integration times or sample times 
rt  are calculated in a similar way. In this case, the times are 

uniformly spread in log( ')t t−  time scale. They are generated starting from the 1st loading time 

't . Hence, we can write  

 ( )
1

110 , '
r i

l
r i i i it t t t t t

− −

+= + − =  (4.75) 

where  2l  is the number of time increments per unit of log( ')t t−  and 1 ' 0.1 0.1i it t t+ + = +  

days. Each new major load increment or decrement causes the generation procedure (4.75) must 

start again from small time increments. This parameter defines the number of time steps that the 

program will use to integrate the structural behavior. Creep or other nonlinear effects will cause 

a redistribution of stresses inside the structure. In order to properly capture such processes, a 

sufficiently small time steps are needed. Its definition depends on the type of the analyzed 

structure as well as on the choice of time units. For typical reinforced concrete structures and for 

the time unit being a day,  it is recommended to set this parameter to 2. This will mean that for 

each load interval longer then 1 day, two sub-steps will be added. For a load that is interval 

longer than 10 days, 4 sub-steps will be added. For an interval longer than 100 days, it will be 6 

sub-steps, etc. 

The creep and shrinkage analysis in ATENA requires that the user set number of retardation 

times m  and the number of time increments l  per unit of log time, (unless the default values are 

OK). He/she also specifies time span, i.e., 1  and n . Then, retardation times are generated, i.e., 

an appropriate command is issued. It follows to set stop time of the analysis.  Usual input data 

describing structural shape, material etc. are given thereafter; however, there are three important 

differences from the time-independent analysis: 

1. Material model for concrete contains data for long-term as well as for short-term material 

model. 

2. Step data must include information about the time at which the step is applied. 

3. It is recommended to input data for all intended load time steps prior to the steps are executed. 

It helps the generation of integration (intermediate) times 

Intermediate time steps, i.e., times rt  as well retardation times are generated automatically. The 

analysis proceeds until the stop time is reached. If no stop time is specified, it is assumed to be 

the time of the last load step.  If the time span for retardation times does not cover step load 

times, the solution is aborted, giving an appropriate error message. 

 

In the above sections, it was silently assumed that the long-term part of the material model, i.e., 

compliance function ( , ')t t  and shrinkage function 
0

r  for concrete, is known and it was shown 

how it is utilized within creep and shrinkage analysis. It is the primary intention of this section to 



describe what long-term creep and shrinkage prediction models are implemented in ATENA and 

how they should be used.  

Generally speaking, ATENA applies no restriction on the kind and shape of both ( , ')t t  and 

0

r , as it adopts the SBS method solution algorithm, in which compliance function is 

approximated by Dirichlet series. Hence, the most widely recognized creep prediction models 

could be implemented.  

The CCStructureCreep module currently supports the following models:  

1.  CCModelACI78 (ACI_Committee_209 1978), recommended by ACI, 

2. CCModelACI209R2, (update of the above materiál model), 

3.  CCModelCEB_FIP78 (Beton 1984), recommended by CEB committee, by now already 

obsolete, 

4.  CCModelB3 (Bazant and Baweja 1999), developed by Bazant and Al Manaseer in 1996,  

very efficient model recognized world-wide, 

5.  CCModelB3Improved, same as the above, improved to account for temperature history,  

6. CCModelB4, update of the above B3 model. It features better prediction of drying and 

autogenous shrinkage and it also provides limited support for concrete with the following 

admixtures: RETARDER, FLY_ASH, SUPER_PLASTICIZER, SILICA_FUME, 

AIR_ENTRAINING_AGENT, WATER_REDUCER. It is probably the best model 

available in ATENA, 

7.  CCModelCSN731202, model developed by CSN 731202 Code of practice in Czech 

Republic, 

8.  CCModelBP1_DATA (Bazant and Panula 1978; Bazant and Panula 1978; Bazant and 

Panula 1978; Bazant and Panula 1978),  relatively efficient and complex model; now it is 

superseded by CCModelBP_KX or CCModelB3, 

9.  CCModelBP2_DATA (Bazant and Panula 1978), simplified version of the above model, 

10.  CCModelBP_KX (Bazant and Kim 1991; Bazant and Kim 1991; Bazant and Kim 1991; 

Bazant and Kim 1991), a powerful model with accounts for humidity and temperature 

history etc., for practical use it may-be too advanced,   

11.  CCModelGeneral general model into which experimentally obtained ( , ')t t  and 0

r  

function can be input.  

12. CCModelEN1992- Eurocode model for creep, (EN1992), 

13. CCModelFIB_MC2010- creep model based on CEB-FIP FIB Model Code 2010. 

14. WAN-WENDER, R. and HUBLER, M. and BAZANT, Z. (2013). The B4 Model for 

Multi-decade Creep and Shrinkage Prediction. 429-436. 10.1061/9780784413111.051. It 

is successor of the B3 model by Bazant. 

 

The following data summarized input parameters for the supported models.  Note that some 

models allow improved prediction based on laboratory data. If it is the case, the model input the 

corresponding experimentally measured values. Also, some models can account for material 

point history of humidity ( )h t  and temperature ( )T t . Again, a model supports this feature if it 

can input adequate data. 



 

 

 

 

Parameter name Description Units Default 

Concrete. type Type of concrete according to ACI. Type 1 

is Portland cement etc. Types 1,3 accepted 

for static analysis, types 1-4 accepted for 

transport analysis. 

 1 

Cement class Type of cement, see e.g. 

http://www.cis.org.rs/en/cms/about-

cement/standardization-of-cement :  

Strength classes of cement 

Cements are according to standard strength 

grouped into three classes, they being:  

 • Class 32,5 

 • Class 42,5 

 • Class 52,5  

Three classes of early strength are defined 

for each class of standard strength: 

 • Class with ordinary early strength – 

N 

 • Class with high early strength – R  

 • Class with low early strength – L  

Class L can be applied only on CEM III 

cements. 

 42,5 

Aggregate Type of aggregate. One of 

BASALTDENSELIMESTONE, 

QUARTZITE, LIMESTONE, 

SANDSTONE , 

LIGHTWEIGHTSANDSTONE 

 QUART

ZITE 

Thickness /V S  Cross section thickness defined as ration of 

section's volume to surface 

length 0.0767m 

Strength 28cylf  Material cylindrical strength in compression 

at time 28 days 

stress 35.1MPa 



Strength 0,28cylf  Strength at onset of nonlinear behaviour in 

compression at time 28 days 

stress Constant 

from the 

base 

material 

Fracture energy ,28fG  Fracture energy at time 28 days stress Constant 

from the 

base 

material 

Strength 28tf  Material tensile strength at time 28 days stress Constant 

from the 

base 

material 

Young m. 28E  Short-term material Young modulus at 28 

days, i.e. inverse compliance at 28.01 days 

loaded at 28 days 

stress 
28( )cylF f  

Ambient humid. h Ambient relative humidity. Accepted range 

(0.4..1). 

 0.78 

Ratio ca  Total aggregate/cement weight ratio.   7.04 

Ratio cw  Water/cement weight ratio.  0.63 

Ratio sa  Total aggregate/find sand weight ratio. 
1

s aa s −= . 

 2.8 

Ratio as  Fine/total aggregate weight ratio. 1

a ss a −=   0.4 

Ratio sg  Coarse gravel/fine aggregate weight ratio. 

 

 1.3 

Ratio cs  Fine aggregate/cement weight ratio.  1.8 

Shape factor Cross section shape factor. It should be 1, 

1.15, 1.25, 1.3, 1.55 for slab, cylinder, 

square prism, sphere, cube, respectively. 

 1.25 

Slump Result of material slump test. length 0.1 m 

Air content Material volumetric air content.  % 5 

Cement mass Weight of cement per volume of concrete mass/ 

length3 

320kg/ 

m3 

Concr. density Material density used to evaluate strength 

and Young modulus at 28 days.. 

mass/ 

length3 

2125kg/ 

m3 



Curing type Curing conditions. It can be either in water 

(i.e. WATER) or air under normal 

temperature (i.e. WATER) or steamed 

curing (i.e. STEAM). 

 AIR 

 

Thermal expansion 

coefficient T  

Thermal expansion coefficient T  1/temp

erature 

Constant 

from he 

base 

material 

End of curing Time at beginning of drying, i.e. end of 

curing. 

days 7 

,a   Autogenous shrinkage at infinity time, 

(typically negative!) 

, ,(0.99 min(0.99, ) tanh s
a a a

a

t t
h 


 

 −
= −  

 
 

- 0 

a  Half-time of autogenous shrinkage. days 30 

st  Time of final set of cement days 5 

,ah   Final self-desiccation relatibe humidity - 0.8 

I/
D

 Current time t Current time days 0 

Load time t' Load time days 0 

Tot.water loss w Total water loss (up to zero humidity and 

infinite time). It is measured in an oven in a 

laboratory and it is used to enhance 

prediction of shrinkage infinite 2sht   

(Bazant and Baweja 1999). This value is in 

turn used to elaborate drying creep and 

shrinkage prediction of the model.  If it is 

not specified, the model prediction 

enhancement is not activated. It can be used, 

if  water loss w(t) are input as well.  

kg N/A 

Im
p

ro
v
em

. 

Water loss w(t) Water losses at time t; measured at a 

laboratory. It is used to enhance 

drying creep and shrinkage 

prediction. See also description of 

total water loss w. 

kg N/A 

Shrink. 
0 ( )t  Measured shrinkage at time t. It is used to 

enhance drying creep and shrinkage 

prediction. See also description of total 

water loss w. 

 N/A 



Compl. ( , ')t t  Measured material compliance at time t. It is 

used to improve overall creep and shrinkage 

prediction of the model. 

1 

/stress 

N/A 
H

is
t.

 

Humidity ( )h t  History of humidity in a material point. 

Value at time t.  Some material models can 

use these values to account for real temporal 

humidity and temperature conditions.  

Although the data can be input manually, 

i.e. to group material points with similar 

humidity and temperature history into a 

group and dedicate a distinct material for 

that group, it is prepared for full automatic 

processing being currently in development. 

It will automatically link heat and humidity 

transport analysis with the static analysis 

using one of available creep and shrinkage 

prediction model. Applicable range (0.4..1).   

 N/A 

Temperat. ( )T t  History of temperature in a material point. 

See also description of  ( )h t  

Celsia  

D
ir

ec
t 

Compl. ( , ')t t  Measured compliance at time t loaded at 

time t'. This and the next two parameters 

should be used, if known (measured) 

compliance functions are to be employed 

in ATENA creep and shrinkage analysis. 

Hence, no prediction is done and the given 

data are only used to calculate the 

parameters of Dirichlet series 

approximation. 

1/ 

stress 

 

Shrink. 0 ( )t  Measured shrinkage at time t . See the 

parameter above. 

 N/A 

Strength ( )cylf t  Measured shrinkage at time t . See the 

parameter above 

  

 



Model name B3 

 

B3-

impr 

BP-

KX 

CEB ACI CSN BP1 BP2 Gen

eral 

EN 

1992 

MC 

2010 

Model No. 3 4 8 2 1 5 6 7 9 10 11 

Concrete. Type x x x  x x x x    

Cement class          x x 

Aggregate          x x 

Thickness 

/S V  

x x x x x x x x  x x 

Strength 28cylf  x x x x x x x x  x x 

Strength 

0,28cylf  

 x        x x 

Fracture 

energy ,28fG  

 x        x x 

Strength 28tf   x        x x 

Young m. 28E  x x x x  x    x x 

Ambient  

humid. h 

x x x x x x x x  x x 

Ratio ca  x x x  x  x x    

Ratio cw  x x x  x  x x    

Ratio sa             

Ratio as        x x    

Ratio sg        x x    

Ratio cs        x x    

Shape factor x x x    x x    

Slump     x       

Air content     x       

Cement mass       x     

Concr. density x x x  x     x x 



Curing type x x x  x  x x    

End of curing x x x x x x x x  x x 

Thermal 

expansion 

coefficient 
T  

 x        x x 

,a    x          

a   x          

st   x          

,ah    x          

I/
D

 Current 

time t 

x x x x x x x x x xx x 

Load time t’ x x x x x x x x x xx x 

Tot.water loss 

w 

x x   x       

Im
p
ro

v
em

. 

Water loss 

w(t) 

x x          

Shrink. 
0 ( )t  

x x x x x x x x  xx x 

Compl. 

( , ')t t  

x x x         

H
is

t.
 

Humidity 

( )h t  

 x x   x    xx x 

Temperat. 

( )T t  

 x x   x    xx x 

D
ir

ec
t 

Compl. 

( , ')t t  

        x   

Shrink. 
0 ( )t  

        x   

Strength 

( )cylf t  

        x   

The above parameter "Concrete type" actually referes to a cement type according to the ACI 

classification. It used in the creep analysis. The following table brings description of widely 

recognized cement types. Note that only types 1,3 are supported in Atena static analysis. The 



transport analysis in Atena recognizes types 1-4. The remaining types are described just for 

information. 

ATENA 

Concrete 

type 

Cement type Description 

1 I and Type IA6 
General purpose cements suitable for all uses where the 

special properties of other types are not required. 

2 II and Type IIA6 

Type II cements contain no more than 8% tricalcium 

aluminate (C3A) for moderate sulfate resistance. Some 

Type II cements meet the moderate heat of hydration 

option of ASTM C 150. 

3 III and Type IIIA6 

Chemically and physically similar to Type I cements 

except they are ground finer to produce higher early 

strengths. 

4 IV 

Used in massive concrete structures where the rate and 

amount of heat generated from hydration must be 

minimized. It develops strength slower than other cement 

types. 

5 V 
Contains no more than 5% C3A for high sulfate 

resistance. 

6 IS (X)7 Portland blast furnace slag cement 

7 IP (X)7 Portland-pozzolan cement. 

8 
GU8  

 
General use 

9 HE8 High early strength 

10 MS8 Moderate sulfate resistance 

11 HS8 High sulfate resistance 

12 MH8 Moderate heat of hydration 

 

6 Air-entraining cements 

7 Blended hydraulic cements produced by intimately and uniformly intergrinding or blending two or more types of 

fine materials. The primary materials are portland cement, ground granulated blast furnace slag, fly ash, silica fume, 

calcined clay, other pozzolans, hydrated lime, and pre-blended combinations of these materials. The letter “X” 

stands for the percentage of supplementary cementitious material included in the blended cement. Type IS(X), can 

include up to 95% ground granulated blast-furnace slag. Type IP(X) can include up to 40% pozzolans. 

8 All portland and blended cements are hydraulic cements. "Hydraulic cement" is merely a broader term. ASTM C 

1157, Performance Specification for Hydraulic Cements, is a performance specification that includes portland 

cement, modified portland cement, and blended cements. ASTM C 1157 recognizes six types of hydraulic cements. 



13 LH8 low heat of hydration 
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The durability analysis in ATENA can currently assess the deterioration of structures due to 

carbonation and chlorides ingress. It is available for static and creep analyses. At each time step, 

an appropriate 1D transport analysis is carried out to investigate how far the pollution (i.e., 

carbonation and/or chlorides) penetrate from loaded surfaces inside the structure.  The main 

results of the analyses are induction times, i.e., times at which the pollution concentration 

reaches critical values that are already for the structure unacceptable (e.g., the reinforcement 

corrosion begins etc.).  They are always given with respect to time 0 0t = . In addition, pollution 

concentration at times (corresponding to the individual steps) is also computed.  

Note that static analysis in ATENA typically does not care about time (or more precisely, each 

analysis step increments the structural age by unit time). At each step, it yields a sort of artificial 

age of the structure. Hence, if the durability analysis is carried out, this artificial age must be 

somehow mapped onto real structural age. It is done in ATENA with the help of a multilinear 

function. Such a function corresponds to loading functions used to define variable BCs and it is 

input in exactly the same way. 

The following text describes the theory behind the 1D transport analysis of the carbonation and 

chlorides pollution, and, in the end, some information regarding the transport parameters is 

given. 

The service life of a structure tl usually has the form of 

 l c i p rt t t t t= + + +   (4.76) 

where tc is the construction phase, ti initiation (induction) period, tp propagation period, and tr 

post-repair period.  

We aim at predicting the initiation period without going into propagation or post-repair phases. 

Carbonation and chloride ingress are two leading mechanisms contributing to reinforcement 

corrosion. Both of them are described further. The initiation phase ends with the beginning of 

reinforcement corrosion. Fig. 6-1 brings a more detailed description of initiation and propagation 

phases and their relationship to concrete events. Prediction of the initiation period represents a 

preventive measure that is affected above all by concrete cover thickness, concrete composition, 

and environment. It makes sense to change the design at the beginning rather than mitigating 

reinforcement corrosion later. Acceleration of carbonation and chloride ingress on crack 

appearance is taken into account. 

 

 

 

9 Not available in ATENA version 5.1 and older. Development/testing implementation of CARBONATION, 

CHLORIDES, and ASR in version 5.3. 
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Carbonation depth of a sound (uncracked) concrete reads (Papadakis and Tsimas 2002) 
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  (4.77) 

where xc is the carbonation depth, De,CO2 is the effective diffusivity for CO2, C is the Portland 

cement content in kgm-3, k<0.3,1.0> is the efficiency factor of supplementary cementitious 

material (SCM-slag, silica, fly ash), P is the amount of SCM in kgm-3, CO2 is the volume 

fraction of CO2 in the atmosphere taken as 3.6e-4 and t is the time of exposure. The effective 

diffusivity in m2s-1 is given by the empirical equation (Papadakis and Tsimas 2002) 
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  (4.78) 

where W is the water content in concrete in kgm-3, c is the cement density in kgm-3 assumed as 

3150 kgm-3 and RH is the relative humidity of ambient air. Eqs. (4.77)(4.78) allow predicting 

either carbonation depth or induction time of uncracked concrete. Relative humidity must be 

higher than 0.50 for carbonation to proceed. 

Cracked concrete leads to faster carbonation. This acceleration is given in the form (Kwon and 

Na 2011) 

 
1( ) (2.816 1)cx t w A t= +   (4.79) 

where w is the crack width in mm, A1 is the carbonation velocity according to Eq.(4.77).  

Eq. (4.79) allows computing carbonation depth and induction time. Note that crack 0.3 mm 

increases carbonation depth by a factor of 2.54. This also means that induction time is 6.46 times 

shorter compared to a sound concrete. 
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In reality, cracks may grow during any service time. Thus, Eq. (4.79) needs to be recast to 

incremental form. An increment of carbonation depth in a given time step t is evaluated from 

the total derivative by differentiating Eq. (4.79) 

 ( )
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0.5 0.5

2.816 1 2.816
 

2 2
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i i

w A A t
x t t w

t w

+

+ +

+
 =  +    (4.80) 

where wi+1 is the crack width at the end of the time step, ti+0.5 is the mid-time. It is assumed that 

nonzero w at a frozen time t has no effect on carbonation depth; thus the term w can be left 

out. Eq. (4.80) allows predicting either carbonation depth or induction time of gradually cracking 

concrete. 

 

Let us consider first a regular concrete made from ordinary Portland cement, w/b=0.45, C=400 

kgm-3, W=202.5 kgm-3, P=50 kgm-3. The supplementary cementitious material is fly ash with 

almost zero calcium content hence k=0.5. Concrete is exposed to relative humidity 0.60. 

Consider a concrete cover of 30 mm. A crack is always introduced at the beginning of the 

exposure. 

The second concrete is made from ordinary Portland cement, w/b=0.45, C=200 kgm-3, 

W=90 kgm-3, P=0 kgm-3. Table 6.1-1 compares both concretes in terms of induction time. 

Crack width 

(mm) 

Induction time for concrete 

w/b=0.45, C=400 kgm-3, 

P=50 kgm-3 (years) 

Induction time for concrete 

w/b=0.45, C=200 kgm-3, P=0 kgm-3 

(years) 

0 246 157 

0.1 69.9 44.5 

0.2 49.2 31.4 

0.3 39.1 24.9 

 

Implemented model for chloride ingress is based on (Kwon, Na et al. 2009). Let us consider 1D 

transient problem of chloride ingress in concrete with initially free chloride content 

 ( )
( )

, 1
2 ( )

S

m

x
C x t C erf

D t f w t

  
  = −

  
  

  (4.81) 

where CS is the chloride content at surface in kgm-3, Dm is the averaged diffusion coefficient at 

time t in mm2 s-1, x is the position from the surface in mm, and f(w) gives acceleration by 

cracking and equals to one for a crack-free concrete. Cs and C can be related to concrete volume 

or to binder volume; however, the units must be kept consistently through the computation. 

The diffusion coefficient D(t) is assumed to decrease over time t according to the power-law 
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where m is a decay rate (sometimes called an age factor). If m=0, a constant value of D(t)=Dref is 

recovered. This model was proposed by (Collepardi, Marcialis, et al. 1972). Nowadays, it 

became clear that this assumption is too conservative and is not generally recommended. The 

mean diffusion coefficient Dm is obtained by averaging D(t) over time of interest 
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where tR is the time when diffusion coefficient is assumed to be constant and is generally taken 

as 30 years. tref corresponds to the time when the diffusion coefficient was measured. Fig. 6-2 

shows the characteristic evolution of diffusion coefficients over time. 

The mean diffusion coefficient increases when cracks are present in the concrete. Based on 

recent results, the following scaling function is proposed (Kwon, Na et al. 2009) 

 2( ) 31.61 4.73 1f w w w= + +   (4.85) 

where w stands for crack width in mm. The crack width 0.3 mm increases the mean diffusion 

coefficient by a factor of 5.26. In reality, crack width evolves, and incremental solution needs to 

be formulated. The mean coefficient Dm,w(t) incorporating crack width is evaluated from a crack 

increment 
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If last values of f(w) and w are stored, Eq. (4.86) can be evaluated only in the actual time step. 

This speeds up the solution. 
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Proper determination of diffusion coefficient is not a trivial subject, considering various 

concretes, cement types, models, and exposure conditions. (Papadakis 2000) presented a model 

for estimating intrinsic effective diffusivity for concretes made from blended cements; however, 

recalculation to Da is not straightforward. DuraCrete model (III 2000) provides useful data for 

estimating apparent diffusion coefficient in the form 

 ( ) 0
0t ( )

m

a e c Cl Da

t
D k k D t

t


 
=  

 
  (4.87) 

where ke<0.27,3.88> is the environment factor, kc<0.79,2.08> is the curing factor, Dcl(t0) is 

the measured diffusion coefficient determined at time t0, m<0.2,0.93> is the age factor and 

Da<1.25,3.25> is the partial factor. In our notation, Da(t)=Dm(t) and t0=tref. 

To our opinion, the most relevant and well-documented field data come from 10 years exposure 

tests (Luping, Tang et al. 2007). Fig. 6-3 shows the apparent diffusion coefficient in dependence 

of water-binder ratio. In this particular case, tref=10 years, m is unknown, Dref=(1-m)Da, tR can be 

assumed as 30 years. 
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The next figure shows the apparent diffusivity coefficient at 10 years from Fig. 6-3. They can be 

used as a starting point for estimating Dref. 
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3.2. Example of chloride ingress 

Let us consider regular concrete made from ordinary Portland cement, w/b=0.45. According to 

Fig. 6-3, Da is about 2e-12 m2s-1 at tref=10 years. According to the Duracrete model, the age 

factor for concrete submerged in salt water corresponds to m=0.30 (Table 8.6 in DuraCrete). In 

such case, Dref=(1-m)Da=1.4e-12 m2s-1. Fig. 6-5 shows the evolution of diffusion coefficients for 

this particular case. 
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Let us assume characteristic value Cs 10.3% of chlorides per binder for submerged concrete 

without further reductions (Table 8.5 in DuraCrete). The critical level for corrosion is 1.85 % per 

binder (Table 8.7 in DuraCrete). The concrete cover is taken as 100 mm. Computed induction 

time according to Eq. (4.81) is summarized in Table 6.3-1. Crack width is considered since the 

beginning of the exposure. 

 

Crack width 

(mm) 

Induction time (years) 

0 74.58 

0.1 36.02 

0.2 15.70 

0.3 7.76 

 

 
 

The corrosion rate for the carbonation depends on the corrosion current density icorr [µA/cm2], 

which ranges between 0.1-10 (passive corrosion-high corrosion) and depends on the quality and 

the relative humidity of the concrete (Page CL, 1992). This model predicts the amount of 

corroded steel during the whole propagation period tp. The corrosion rate is based on Faraday's 

law (Rodriguez, 1996), determined as follows: 

 ( )corr corr  ( ) 0.0116  x t i t=  (4.88) 
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where corrx is the average corrosion rate in the radial direction [m/year], icorr is corrosion current 

density [µA/cm2], and t is the calculated time after the end of the induction period [years]. 

By integration of Eq. (1), it is obtained the corroded depth for 1D propagation: 

 ( )corr corr corr( ) 0.0116  d

ini

t

t

x t i t R t=   (4.89) 

where xcorr is the total amount of corroded steel in radial direction [mm] and Rcorr is parameter, 

depends on the type of corrosion [-]. For uniform corrosion (carbonation) Rcorr = 1, for pitting 

corrosion (chlorides) Rcorr = <2; 4> according to (Gonzales at.al., 1995) or Rcorr = <4; 5.5> 

according to ( Darmawan &, 2007). 

Effective bar diameter for both types of corrosion is obtained from: 

 ( ) 2 ( ) ini corrd t d x t= −  (4.90) 

where d(t) is the evolution of bar diameter in time t, d ini is initial bar diameter [mm], ψ is 

uncertainty factor of the model [-], mean value ψ = 1 and xcorr is the total amount of corroded 

steel according to (2). 

 
 

The corrosion rate for chlorides is more complicated because it is affected by the concentration 

of chlorides in the concrete. Calculation of corrosion current density was formulated by Liu and 

Weyer's model (Liu, Weyers, 1998): 

 ( ) 0.2153006
0.926*exp 7.98 0.7771ln 1.69 0.000116 2.24corr t Ci C R t

T

− 
= + − − + 

 
 (4.91) 

where icorr is corrosion current density [µA/cm2], Ct is total chloride content [kg/m3 of concrete] 

on reinforcement which is determined from 1D nonstationary transport, T is temperature at the 

depth of reinforcement [K] and Rc is ohmic resistance of the cover concrete [Ω] (Liu, 1996) and t 

is time after initiation [years]: 

 ( )exp 8.03 0.549ln 1 1.69C tR C= − +      (4.92) 

The average corrosion rate in radial direction is determined further when plugging(4.93),(4.94) 

to (1). The total amount of corroded steel in radial direction stems from (2) and the effective bar 

diameter from (3). 

 

 

The cracking of concrete cover for both carbonation and chlorides can be estimated from 

DuraCrete model, which provides realistic results (DuraCrete, 2000). The critical penetration 

depth of corroded steel xcorr,cr is formulated as: 

 , 1 2 3 ,corr cr t ch

ini

C
x a a a f

d
= + +  (4.95) 
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where parameter a1 is equal 7.44e-5 [m], parameter a2 is equal 7.30e-6 [m], a3 is 

[-1.74e-5 m/MPa], C is cover thickness of concrete [m], dini initial bar diameter [m], ft,ch is 

characteristic splitting tensile strength of concrete [MPa]. 

 
 
The critical penetration depth of corroded steel xcorr,sp for both carbonation and chlorides is 

calculated from (DueaCrete, 2000) as: 

 0
, , 

d

corr sp corr cr

w w
x x

b

−
= +  (4.96) 

where parameter b depends on the position of the bar (for top reinforcement 8.6 µm/µm and 

bottom 10.4 µm/ µm), wd is critical crack width for spalling (characteristic value 1 mm), w0 is 

the width of initial crack (known from previous ATENA computation) and xcorr,cr depth of 

corroded steel at the time of cracking [m]. 

After spalling of concrete cover, corrosion of reinforcement takes place in direct contact with the 

environment. To determine the rate of corrosion of reinforcement after spalling, (Spec-net, 2015) 

gives rates of reinforcement corrosion.  

 

Table 2: Corrosion rates of steel under atmospheric exposition 

 

Corrosivity zone (ISO 9223) Typical environment Corrosion rate for first year (µm/yr) 

Category Description Mild steel Zinc 

C1 Very low Dry indoors ≤1,3 ≤0,1 

C2 Low Arid/Urban inland >1,3 a ≤25 >0,1 a ≤0,7 

C3 Medium Coastal and 

industrial 

>25 a ≤50 >0,7 a ≤2,1 

C4 High Calm sea-shore >50 a ≤80 >2,1 a ≤4,2 

C5 Very High Surf sea-shore >80 a ≤200 >4,2 a ≤8,4 

CX Extreme Ocean/Off-shore >200 a ≤700 >8,4 a ≤25 
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In most concrete, aggregates are more or less chemically inert. However, some aggregates react 

with the alkali hydroxides in concrete, causing expansion and cracking over a period of many 

years. This alkali-aggregate reaction has two forms: alkali-silica reaction (ASR) and alkali-

carbonate reaction (ACR).  

Alkali–silica reaction (ASR), one of those common deleterious mechanisms, consists of a 

chemical reaction between "unstable" silica mineral forms within the aggregate materials and the 

alkali hydroxides (Na, K–OH) dissolved in the concrete pore solution. It generates a secondary 

alkali-silica gel that induces expansive pressures within the reacting aggregate material(s) and 

the adjacent cement paste upon moisture uptake from its surrounding environment, thus causing 

micro cracking, loss of material's integrity (mechanical/durability), and, in some cases, 

functionality in the affected structure. 

Several aggregate types in common use, particularly those with a siliceous composition, may be 

attacked by the alkaline pore fluid in concrete. This attack, essentially a dissolution reaction, 

requires a certain level of moisture and alkalis (leading to high pH) within the concrete to take 

place. During the reaction, a hygroscopic gel is produced. When imbibing water, the gel will 

swell and thus cause expansion, cracking, and in the worst case, disruption of the concrete 

(Lindgart 2012). 

Thus, the degree of reaction of an aggregate is a function of the alkalinity of the pore solution. 

For a given aggregate, a critical lower pH-value exists below which the aggregate will not react. 

Consequently, ASR will be prevented by lowering pH of the pore solution beneath this critical 

level where the dissolution of alkali-reactive constituents (silica) in the aggregates will be 

strongly reduced or even prevented, as discussed in (Rodriguez at.al, 1996). No "absolute" limit 

is defined because the critical alkali content largely depends on the aggregate reactivity [3], but 

from many experimental tests we can estimate threshold value (Lindgart 2012), (Poyet , 2003).  

Many studies carried out over the past few decades have shown that ASR can affect the 

mechanical properties of concrete as a "material." Usually, ASR generates a significant reduction 

in tensile strength and modulus of elasticity of concrete. These two properties are much more 

affected than compressive strength, which begins to decrease significantly only at high levels of 

expansion. 

Several ASR models were developed over the years to predict expansion and damage on both 

ASR affected materials (microscopic models) (Multon  at.al., 2009), (Bazant, Steffens, 2009), 

(Comby-Perot, 2009) and ASR affected structures/structural elements (macroscopic models) 

(Ulm at.al., 1999), (Saouma, Perotti,2006), (Comi, Fedele, Perego, 2009). The first group has a 

goal of modeling both the chemical reactions and the mechanical distress caused by ASR or even 

the coupling of the two phenomena. The second group aims at understanding the overall distress 

of structures/structural concrete elements in a real context, simulating their likely in situ behavior 

(Farage et al.,2000) seems to have finally bridged the gap between scientific rigor and practical 

applicability to real structures. 

In terms of mechanical effects, it is known that ASR expansions occur over long time periods. 

During this process, ASR-affected concretes are subjected to a progressive stress built up that is 

very likely to cause creep on the distressed materials.  
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AAR depends on the availability of three factors: alkalis liberated from cement during hydration, 

siliceous minerals present in certain kinds of aggregates, and water. Several microscopic and 

random factors are involved in AAR expansion, such as concrete porosity, amount and location 

of reactive regions in the material, and permeability (Farage et al.,2000). These parameters, 

added to concrete's intrinsic heterogeneity, turn simulating the AAR expansion into a rather 

complex task. 

Even though the AAR process has not been well explained so far, the commonly accepted theory 

for describing it is two distinct phases that need to be considered: gel formation and water 

absorption by the gel, causing expansion. According to this mechanism, the reaction does not 

always lead to expansion. As long as there is enough void space to be filled by the gel, i.e., pores 

and cracks, concrete volume remains unchanged. 

Due to the lack of a model, which is able to incorporate effects of relative humidity, alkali/silica 

content in the mixture, ambient temperature, authors suggest to combine ASR kinetics proposed 

by (Ulm et. al., 1999) with the influence of moisture, published by (Léger et al., 1996) and 

influence of alkali/silica content proposed by Multon et al. 

Implementation of modeling expansion due to ASR consists of modeling engeinstrains in time-

steps t on the entire structure. Function for volumetric eigenstrain reads 

 ( ) ( ) MFcalASR t t =   (4.97) 

where cal    is the volumetric strain of ASR swelling at infinity time, ( ) 0,1t   is the chemical 

extent of ASR, and FM is the coefficient reflecting moisture influence. It is described later in the 

text. In the case of varying the relative humidity, eq. (4.97) changes to the incremental form, for 

time it  
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For the complete 3D constitutive model, we consider the first-order reaction 

 ( )c1  ξ ,ξ ξt − =   (4.99) 

where ( )c 0,ξ /dt k A =   is the characteristic time. It has been found that tc depends on 

temperature [ ]K   and the ASR extent ξ . Referring to (4.99) the implementation of the 

chemoelastic material law in the constitutive laws is relatively straightforward and a suitable 

integration scheme is given in (Ulm ea., 1999). 

Consider an isothermal stress-free ASR expansion test carried out at constant temperature 

0 = . In this test, the volumetric strain ASR  is recorded as a function of time that and ASR 

extent is calculated as 

 ( )
( )

( )
ξ

ASR

ASR

t
t




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
  (4.100) 
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For macroscopically stress-free sample, (4.99) in (4.100) yields 
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  (4.101) 

 

With ( )ASR t   and ( )ASR t  being measurable functions of time, the characteristic time tc can be 

determined from a stress-free expansion test. In a recent extensive series of stress-free expansion 

tests carried out at different constant temperatures( Larive, 1998), tc has been found to depend on 

both temperature [ ]K and reaction extent ξ [-] in the form 

 ( ) ( )c , ct     =   (4.102) 
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  (4.103) 

In this experimentally determined kinetics function, ( )c  is a characteristic time [day] and 

( )L   is a latency time [day]. The use of (4.103),(4.102) in (4.101) yields after integration 
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− −
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For variable temperature, cracking etc., it is difficult to solve for ( )ξ t  analytically and numerical 

integration is needed.  A suitable solution scheme is derived in (Ulm at.al., 2006), which is 

implemented in in ATENA. Fig. 6-6 shows the shape of (4.100), together with the time 

constants, c  C and L , which stand for the characteristic time and the latency time of ASR 

swelling, respectively. Furthermore, proceeding as in physical chemistry (Atkins, 1994), we 

explore the temperature dependence of the time constants c  C and L  from stress-free 

expansion tests carried out at different constant temperatures. The plots of ln( )c  C nd ln( )L  

against 1/   C are given in Fig. 6-7. It is remarkable that the experimental values align (almost) 

perfectly along a straight line, matching the Arrhenius concept. 

 ( ) ( )C C 0 c

0

1 1
exp U   

 

  
= −  

   
  (4.105) 

 ( ) ( )L L 0 L

0

1 1
exp U   

 

  
= −  

   
  (4.106) 

where  

 C L5400 500  ;   9400 500 U K U K=  =    (4.107) 
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It is explored (Atkins, 1994) that the temperature dependence of the time constants c  C nd 

L carried out at different constant temperatures (23, 33, 38, and 58 °C), see Fig. 6-6. Default 

values are ( )C τ 311,15K ays and (311.15 C) 145L  =  days [20], see Fig. 6-8. , Fig. 6-9. 

According to Larive's experimental data from water-saturated tests [14] ( )Cτ 288,15K days and 

( )Lτ 288,15K ays, ( )Cτ 281,15K ys and ( )Lτ 288,15K ays. Under drying conditions, the values for 

LτL  roughly increase by a factor of 4; and 
C by 2.5 (Larive , 1998), (Ulm at.al, 1999)  

 

Cτ Lτ



277

 Lτ    Cτ

ξ ( ) ( )/ t

Cτ

 

Lτ

 

 cal 

cal 
  [-] is the predicted volumetric expansion at infinity time obtained by model proposed by 

(Multon et al., 2008). It is calculated based on reactive aggregates, amount of reactive silica in 

the aggregates, and value of measured stress-free expansion test done in Poyet's study (Lindgart , 

2012) on samples containing reactive particles only. cal 
 is defined as follows 
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 ( ) C
cal F

R

A
t s p AC

A
  =      (4.108) 

where F  [m3/kg] is measured ASR strain expansion per kg of aggregate in m3 of the concrete 

mixture on samples containing reactive particles only with enough sufficiency of alkali. 

Typically   it ranges in 8.93e-7 ... 1.34e-5 [m3/kg]. See Table 3 for more details. CA kg/m3 

Na2Oeq] and RA kg/m3 Na2Oeq] are amounts of consumed and required alkali, respectively. AC is 

total aggregate content in [kg/m3]. One of the main assumptions of the model is that the 

maximum expansion of mortar is achieved if there is enough alkali to react with all the reactive 

silica of the mixture. This amount of required alkali content RA kg/m3 Na2Oeq] is defined as 

  RA r s p AC=      (4.109) 

where s is the proportion of quantity of soluble silica [-], p is the proportion of reactive aggregate 

[-]. r states for the amount of required alkali per kg of reactive silica, and it is a constant value r 

= 15.4 %. Value CA s defined as min RA (, AA s the available amount of alkali for ASR reaction. 

AA s defined as the difference between the initial amount of available alkali TA kg/m3 Na2Oeq] 

and alkali content threshold 0A kg/m3 Na2Oeq] when ASR reaction starts. 

 0A TA A A= −   (4.110) 

It should be noted that this model does not consider any alkali flow through boundaries inside 

the structure during the service life. By default, 0A s equal to 3.7 kg/m3 Na2Oeq (Poyet, 2003), but 

other values in the range of 3 – 5 kg/m3 Na2Oeq can be found in the literature (Lindgart, 2012) 

 

.  

Value of p depends on the mix ratio of reactive aggregate. Value s depends on amount of 

reactive silica in aggregates, moreover common values are: p = 11,1% (Multon, 2008) 0or 9,4% 

and 12,4% (Multon, 2009). 

6.5.4 Influence of moisture FM 

Approximately 75% relative humidity (RH) within concrete is necessary to initiate significant 

expansion, which is assumed to vary linearly between 75% RH and 100% RH as shown in Fig. 

6-10. 
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The coefficient MF eflects influence of moisture h. The function for FM is approximated as 

 min

min

1
( )

1
( )M h

h
F hh = −

−
  (4.111) 

 

where hmin is relative humidity threshold where ASR begins to appear, 0.75 by default. Other 

variables will be explained in further text. 

 

 

 

Expansion of free concrete specimens due to ASR has been summarized in (Červenka, Jendele,  

Šmilauer, 2016). It predicts ASR under unrestrained conditions, i.e., under free expansion. The 

expansion model takes into account reaction kinetics, alkali content, reactive amount of 

aggregates, relative humidity, and temperature. The model has been validated on 4 examples 

found in the literature. 

Degradation of material due to ASR reaction (Saouma, 2016, eqs. 18,19) 

  

 ( ) ( ) ( )0, 1- 1- ,EE t E t    =    (4.112) 

 ( ) ( ) ( ),0, 1- 1- ,t t ff t f t    =
 

 (4.113) 

 ( ) ( ) ( ),0, 1- 1- ,f f GG t G t    =     (4.114) 
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where βE,f,G are residual values of E/E0, f/f0, Gf/Gf0. Default values are 0.1E = , 

0.6f = (Esposito, Hendriks, 2012) and 0.6G =  is estimated. 

The general equation for the incremental volumetric AAR strain is given by (Saouma, 2016, (5)) 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
Only considered in implementation

, , , , , ,

V I II III

t c c M cal t c c M cal t c M

t t t t

f F h t f F h t f F

   

       

= + + =

    +  +   (4.115) 

 

where c  reflects the effect of compressive stresses (Saouma, 2016, eq. 10), t accounts for the 

influence of tensile cracking ( assumed here as 1), MF  is the effect of relative humidity, which is 

already accounted for in (4.111) and equals to one. (4.115) considers further only the most 

relevant first term and is rewritten in incremental form as 

 

 
( ) ( ) ( ) ( ) ( )( )

1
1 1,

( ( 1)) / 2

i
iV i t c c M cal i ii

t f F h t t

i i i

    
−


− −

 =       −

= + −
  (4.116) 

 

Reduction c due to compressive stress is considered as follows: 

 ( )

1 0

1 <0
1 1

3

c

I II III

c

if Tension

e
if Compresion

e

f












  


 


 =  +
 + −


+ +
=



  (4.117) 

  

where the shape factor    is -2 by default (Saouma, 2016, Tab.2) and '

cf  is the compressive strength. 

Under constrained conditions, ASR expansion develops depending on the stress state. It is 

known that compressive stress beyond approximately -10 MPa stops ASR expansions, which 

needs to be reflected for strain redistribution into the principal directions. Similarly to (Saouma, 

2016, Fig. 5), weight factors are assigned to three directions. Let us assume that directions of 

principal stresses σI, σII, σIII are known. Expansion is then assigned to each principal stress 

direction according to the weight factors W1
 ', W2

 ', W3
 '. When compressive stress reaches -0.3 

MPa, the weight factor decreases until maximum stress -10 MPa is reached in that direction. 

This situation is depicted in Fig. 6-11. 
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For compressive stress σi under -0.3 MPa, the following decay function is used, according to 

(Leger, Coté, Tinawi, 1995), where σL ≈ -0.3 MPa and σu ≈ -10 MPa, see Fig. 6-11. : 

 ( )
( )

1
1 log / 0.3

log

1 0.3

i L i

i i u

L

i

for MPa
W

for MPa

  
 





 
 
 −  − =  

  
   

  −

 (4.118) 

 

Weight factors need to be normalized as  

 
'

3 '

1

i
i

ii

W
W

W
=

=


  (4.119) 

Three principal strains from ASR are assigned as 

 ( ),ASR i i V iW t  =     (4.120) 

  

This new approach simplifies the procedure outlined by (Saouma, 2016, Fig. 5) where several stress 
state cases were treated individually. 

 

 

The following Fig. 2-12 and Fig. 6-13 validate experimental data for free expansion. The 

following material parameters were used, summarized in Table 6.5-4. 

 

Variable Symbol Value Source 

REQUIRED ALKALI PER REACTIVE 

SILICA 
r 15.4 % 

(Multon, Cyr, 

Sellier, 

Leklou, & 

Petit, 2008) 
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PROPORTION REACTIVE SILICA s 21.8 % 

(Multon, Cyr, 

Sellier, 

Leklou, & 

Petit, 2008) 

PROPORTION REACTIVE PARTICLES 

IN SAND 
p 30 % 

(Multon, Cyr, 

Sellier, 

Leklou, & 

Petit, 2008) 

SAND MASS AC 833 kg/m3 

(Kagimoto, 

Yasuda, & 

Kawamura, 

2014) 

ASR MEASSURED ASR STRAIN ƐF 0.0525 %/kg (Poyet, 2003) 

AMOUNT OF REQUIRED ALKALI AR 8.39 kg/m3 (Poyet, 2003) 

TOTAL ALKALI IN MORTAR for Ca-5.4 

(for Ca-9.0) 
AT 5.4 (9) kg/m3 

(Kagimoto, 

Yasuda, & 

Kawamura, 

2014) 

THRESHOLD ALKALI IN CONCRETE A0 3.7 kg/m3 (Poyet, 2003) 

CHARACTERISTIC TIME τC 20 day  

LATENCY TIME for Ca-5.4 (for Ca-9.0) τL 55 (45) day  

ELASTIC MODULUS E 

27 GPa 

(Kagimoto, 

Yasuda, & 

Kawamura, 

2014) 

COMPRESSIVE STRENGTH fc 

26 MPa 

(Kagimoto, 

Yasuda, & 

Kawamura, 

2014) 
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Table 6.5-4. Summarized parameters for validation.

Fig. 6-12. Validation of free expansion (Kagimoto, Yasuda, & Kawamura, 2014) 

Fig. 6-13. Validation of free expansion, (Kagimoto, Yasuda, & Kawamura, 2014) 

 

 

Differential Equation (4.99) represents kinetics of development of ASR extent ξ . In the case of 

constant temperature   in the structure, it can be solved analytically, see (4.104). Otherwise, it 

must be solved numerically. The following lines and equations describe the procedure to solve ξ  

that is implemented in ATENA.   

Let's start from (4.99) and rewrite the equation into its differential form. We expect to now all at 

the time i  and solve for time 1i + . We do it in an iterative manner, i.e., we know all at iteration 

k  and compute ξ at iteration  1k + : 
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 ( )
1

11
, 1 1

1

ξ ξ
  1 ξ = 0

k
k ki i
c i i

i i

t
t t

+
++

+ +

+

−
− −

−
  (4.121) 

 

The unknown 1

1ξk

i

+

+  ASR extent is searched for in the form 1

1 1ξ ξ ξk k

i i +

+ += + , where ξ is the 

correction of ξ  resulting from the k  -th iteration. Denoting 1i it t t+ − =  and 1ξ ξ ξk

i i+ − =  the 

above equation can be written 

 ( ) ( ), 1 1  ξ ξ 1 ξ ξ = 0k k

c i it t + ++  −  − −   (4.122) 

from which, after some mathematical manipulation, we can calculate ξ  

 
( ), 1 1

, 1

ξ 1 ξ
ξ

k

c i i

k

c i

t t

t t


+ +

+

 −  −
= −

+ 
  (4.123) 

and 1

1 1ξ ξ ξk k

i i +

+ += + . Note that in (4.121) thru (4.123) we used 
, 1

k

c it +
although 1

, 1

k

c it +

+
should be 

employed, as ( , )c ct t  =  is a nonlinear function. Therefore, after each iteration, 1k +  we update  

, 1

k

c it +
to 1

, 1

k

c it +

+
and recalculate (4.122) 

 ( ) ( )1 1

, 1 1  ξ ξ 1 ξ ξ =k k k

c i it t E + +

+ ++  −  − −   (4.124) 

It yields an error 1kE +  that is further compared against some maximum acceptable error. If it is 

too high, the next iteration is carried out; otherwise, the iteration process is finshed. 

Note, however, that for the sake of convergency speed, the third and further iterations are in 

ATENA computed in a different way. Using linear interpolation between iteration k  and 1k +  

requiring error 
2 0kE + =  in iteration 2k +  value 2

1ξk

i

+

+  is calculated by 

 

( ) ( )

( ) ( )

2 1 2 2 1

1 1 1 11

1 1

1 2 2 1

1 1 1 1

1 1
2 1 1

1 1

1
ξ ξ ξ ξ 0

ξ ξ

ξ ξ ξ ξ 0

ξ ξ
ξ

k k k k k k k

i i i ik k

i i

k k k k k k

i i i i

k k k k
k i i
i k k

E E E

E E

E E

E E

+ + + + +

+ + + ++

+ +

+ + + +

+ + + +

+ +
+ + +
+ +

 = − + − →
 −

− + − =

+
=

+

  (4.125) 

and checked by (4.124) written for iteration 2k + . The iterating process continues this (latter) 

way  until a sufficient accuracy is obtained.  

The time step t  is input by the user, but it is automatically limited by 0.01 ct t    requirement 

to ensure reasonable accuracy and convergence of the solution. 

 

 

 

ASR loading results in the development of ASR strain and deterioration of material properties 

like Young modulus E, tension strength ft, and fracture energy Gf. For each step i, we can write 

 1 1 1 1 1( ) ( )i i i i i i i iE E E    − − − − −= + − + −   (4.126) 
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The above equation calculates stress i  at (current) time step i based on stress 
1i −
from the 

previous time step and current changes of Young modulus E and strains  . The strains   

represents "mechanical strains," i.e., strains producing stresses in an unrestrained material. They 

are total geometrical strains minus initial strain that corresponds to ASR expansion strains ,ASR i . 

The differential formulation corresponds to the incremental solution used in Atena and the case 

of linear elastic material law. (More advanced materials are treated in a similar way). Using 

0 ( )ASR

k E kE E cf = ,  (4.126) can be written  

 

ASR ASR

1 0 E 1 1 0 E 1

ASR ASR ASR

1 0 E 1 1 1 0 E E 1

ASR
ASR ASR E

1 0 E 1 1 1 0 E 1 ASR

E 1

1

cf ( ) cf ( , )

cf ( )( ) (cf ( ) cf ( ))

cf ( )
cf ( )( ) cf ( ) 1

cf ( )

i i i i i i i

i i i i i i i i

i
i i i i i i i

i

i i

E E

E E

E E

E

      

       


      



 

− − − −

− − − − −

− − − − −

−

−

+  + 

+ − + −

 
+ − + − 

 

+
ASR

ASR E
0 E 1 1 1 ASR

E 1

cf ( )
cf ( )( ) 1

cf ( )

i
i i i i

i


   


− − −

−

 
− + − 

 

  (4.127) 

Note that strains   are strains that are facilitated in material law, i.e., geometrical strains after 

subtracting ASR swelling strains.  The ASR strains are implemented by initial element strains, 

and the term 
1

1

1i
i

i





−

−

 
− 

 
 is incorporated in the solution in the form of element initial stresses. 

Also, at each step, we update ft and Gf. 

An alternative solution to (4.127) is 

 

ASR ASR ASR

1 0 E 1 1 1 0 E E 1

ASR
ASR ASR E

1 0 E 1 1 1 0 E 1 ASR

E 1

ASR
ASR E

1 0 E 1 1 1 ASR

E

cf ( )( ) (cf ( ) cf ( ))

cf ( )
cf ( )( ) cf ( ) 1

cf ( )
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cf ( ) ( 1
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i i i i i i i i
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i i i i i i i

i

i
i i i i i i
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E E
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       


      




     
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−
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−

= + − + −

 
= + − + − 

 

= + − − −
1)

  
  
   

  (4.128) 

The term 
ASR

E
1 ASR

E 1

cf ( )
1

cf ( )

i
i

i





−

−

 
− 

 
 is then added to ASR swelling initial element strains (4.120)  

calculated earlier. For linear material law, both equations (4.127) and (4.128) are equivalent. For 

the case of nonlinear law, they can slightly differ. By default, Atena prefers approach according 

to (4.128).  

For the sake of simplicity, the above derivation has been presented for uniaxial stress-strain 

conditions. Its extension to 3D conditions is obvious.   

 

 

The proposed model is derived from free expansion tests. The model works in 2D and 3D stress 

state by limiting expansion when a compressive load is present in a principal direction. In the 
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case of hydrostatic compression above -10 MPa, no ASR expansion occurs, and no reduction of 

mechanical properties happens (E, ft, Gf). This is justified by the fact that ASR gel grows into 

cracks and no macroscopic cracks occur. 

The majority of structures are exposed to the thermal field; hence ASR usually proceeds faster 

close to the surface due to higher average temperature. Since the surface is often unloaded, the 

main expansion happens perpendicular to the surface, which induces a small compressive load 

and delamination of layers. 
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As pointed out in the previous section, creep material behavior of concrete strongly depends on 

moisture and temperature conditions. Some constitutive models for creep in ATENA can pay 

regards to these factors and based on previously computed moisture and temperature histories 

within the structure they can predict concrete behavior more accurately. This section describes a 

module called CCStructuresTransport that is used to calculate the histories. A more accurate 

creep analysis then typically consists of two steps:  firstly execute CCStructuresTransport 

module and calculate the moisture and humidity histories of the structure and secondly execute 

CCStructuresCreep module to carry out the actual static analysis. Of course, for both analyses, 

we have to prepare an appropriate model. Export/Import of the results between the modules is 

already done by ATENA automatically. 

To be exact, both the transport and static analysis should be executed simultaneously, but as 

moisture and temperature transport does not depend significantly on structural deformations, i.e., 

coupling of the analyses is low, the implemented “staggered” solution yields sufficiently 

accurate results. 

The governing equations for moisture transport read (for representative volume REV] : 

 
( )

( )e n
w

w ww
div J

t t

 +
= = −

 
 (5.1) 

where: 

w  is total water content defined as a ratio of weight of water at current time t to weight of 

water and cement at time 0 0t =  in REV, [mass/mass], e.g. [kg/kg] 

,e nw w = stands for the amounts of free and fixed (i.e. bound) water contents, [mass/mass], 

wJ  = moisture flux, [length*mass/ (time*mass)]. e.g. [m/day], 

t  =time, [time], e.g., [day]. 

The moisture flux is computed by 

 w w eJ D w= −   (5.2) 

where  

wD  is moisture diffusivity tensor of concrete [m2/day], 

  is gradient operator. 

Note that in (5.2) only diffusion of water vapor is considered. Moisture advection is negligible. 

The equations (5.1) and (5.2) can also be written as being dependent on w or relative moisture h .  

A relationship between h and w is given by 

 ( )w w h=  (5.3) 

 Using (5.3) Equation (5.2) can be written as follows  

 w hJ D h= −   (5.4) 
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A special attention must be paid to the calculation of the above time derivatives and integration 

of the governing equations. For example, in the case of usual Gauss integration and use of exact 

time derivatives the solution may suffer from mass losses. To remedy the problem the 

CCStructuresTransport module integrates the structure, i.e., all the individual finite elements in 

nodes and time derivatives are calculated numerically (Jendele 2001). This integration is similar 

to use of finite volume method, which is also known to be robust against the mass losses. 

Heat transfer is governed by similar equation 

 ( )( ) ( )T ref T T

Q T
C T T C div J

t t t

  
= − = = −

  
 (5.5) 

where  

Q is total amount of energy in a unit volume [J/m3] 

TC  is heat capacity [J/(K.m3)], 

      
TJ  is heat flux [J/(day.m2)]. 

If hydration we want to add heat ( )hQ t , which expr
t



 t



 t



 t




esses amount of hydration heat 

within unit volume i.e 
3

,h

J
Q

m

 
 
 

, Equation (5.5) changes to 

 ( )( ) ( )h
T ref h T T

QT
C T T Q C div J

t t t

 
− + = + = −

  
 (5.6) 

Heat flux 
2

,T

J
J

m s

 
 
 

 is calculated by 

 ( )T TJ K grad T= −  (5.7) 

and 
TK  stands for heat conductivity, e.g. [J/(day.m.K)]. 

Note that Equation (5.5) accounts for heat transport due to conduction only. Heat advection is 

negligible. In (5.5) we can also neglect hydration heat because in large times, its impact for heat 

transfer is small. On the other hand, we cannot neglect concrete moisture consumption due to the 

hydration process. According to (Bazant and Thonguthai 1978; Bazant 1986) hydration water 

content hw  can be calculated by: 

 

1

3

0.21 e
n h

e e

t
w w c

t

 
=   

+ 
 (5.8) 

where  

e  = 23 days, et  is equivalent hydration time in water at temperature 25 0C  that corresponds to 

the same degree of hydration subject to real age, moisture and temperature conditions of the 

material. The parameter c relates to the amount of cement and is calculated by(5.53). If 

temperature ranges from 0 to 100 0C ,  et  is computed by 
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 e h Tt dt =   (5.9) 

where dt is time increment after the mold has been removed and coefficients ,T h   are 

calculated by  

 
4

1

1 (3.5 3.5 )
h

h
 =

+ −
 (5.10) 

 

 

0

1 1
exp h

T

U

R T T


  
= −   

   

 (5.11) 

In the fraction hU

R
 the symbol hU  stands for the activation energy of hydration and R is gas 

constant. According to (Bazant 1986)  02700hU
K

R
= . 0,T T  are real and reference concrete 

temperature is expressed in 0K . The reference temperature is given by 

 0 273.15 25T = +  (5.12) 

The following figure depicts the relationship between real t  and equivalent time et  for the case 

of constant temperature  015T C=  and moisture 0.8h = . In practice, this relationship is rarely 

linear because with increase of time the amount of fixed water (due to hydration) hw  is 

increasing as well and it involves a gradual decrease of relative moisture h .   
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The amount of water that was needed for hydration of concrete according to Equation (5.8) for 

the case of 300c = kg is shown below: 

 

 

The transport governing equations for a typical engineering problem are too complex for 

analytical solution. Hence, similar to other ATENA engineering modules, the finite element 

method is also used for the CCStructuresTransport module. The transport problem gets spatially 

and temporarily discretized and then the resulting set of nonlinear algebraic equations is solved 

by a special iterative solver. This section is dedicated to the detailed description of the former 

type of discretization.  

The solution is based on Equations (5.1) thru(5.7). Note that the unknown variables are 

 ( ); ( ); ( , ); ( , , )h hh h t T T t w w h T w w h T t= = = =  (5.13) 

and they are to be discretized. Let the left-hand side part of (5.1) and (5.4) is denoted 

,h TLHS LHS , respectively. The subscript h and T indicates moisture and temperature fluxes. 

Similar subscripts are also used for the right-hand-side of the equations, ,h TRHS RHS . Notice 

that RHS expressions do not include the divergence operator!  

 ( )h hLHS w w
t


= +


 (5.14) 

 

 h
T T

QT
LHS C

t t


= +

 
 (5.15) 
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 h w hRHS J J= − = −  (5.16) 

 

 T TRHS J= −  (5.17) 

 The strip over an entity in the above equations means that the entity is vector. (Scalar entities do 

not have the strip). The fluxes w hJ J=  are identical, i.e., the subscript w indicates also moisture 

phase. Using the above notation Equations (5.1) and (5.5) can be written as follows 

 

( )

( )

h h

T T

LHS div RHS

LHS div RHS

=

=

 (5.18) 

The hLHS  includes time derivative of moisture. It is computed using the following expressions: 

 

( )h h e

e
h T

h h e h
h T

e e

w w t

t

t

w w t w

t t t t

 

 

=


=



   
= =

   

 (5.19) 

For the next derivation, let us write Equations(5.14), (5.15) in a general form: 

 

0

0

h hh hw hT h

T Th Tw TT T

h w T
LHS c c c c

t t t

h w T
LHS c c c c

t t t

  
= + + +

  

  
= + + +

  

 (5.20) 

 and equations(5.16), (5.17)  

 

 

     

     

0

0

h hh hw hT h

T Th Tw TT T

RHS k h k w k T k

RHS k h k w k T k

=  +  +  +

=  +  +  +

 (5.21) 

where square bracket indicates that the enclosed entity is a matrix [ ].  

Comparing (5.20) with (5.1) and (5.5) we find that 

 

0

0

0; 1; 0

0; 0; 0

hh hT hw h

h
Th Tw TT T

c c c c

Q
c c c c

t

= = = 


= =  = 



 (5.22) 
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The parameter 
TTc  is in ATENA an input material parameter, 0hc  is computed from(5.19), i.e. 

0
h

h h T

e

w
c

t
 


=


. The solution also includes expressions 0;

w w

h T

 


 
.  Their values depend on a 

constitutive model being used in the solution. For more information, please refer to Section 

Material Constitutive Model.  

For right-hand sides, we can write in a similar manner: 

 

       

       

0

0

0 ; 0; 0

0 ; 0; 0

hw hT hh h

Th Tw TT T

k k k k

k k k k

= =  =

= =  =

 (5.23) 

The parameter  TTk  is a material input parameter,  hhk  is calculated from a constitutive model, 

see the next section. 

For the next derivation, let us assume discretization of the unknown variables as follows. 

Remind that these are in the governing equations integrated in finite nodes, (Celia, Bouloutas et 

al. 1990; Celia and Binning 1992).  

 

;

;

;

TT

TT

TT

h N h h N h

w N w w N w

T N T T N T

 =  =  

 =  =  

 =  =  

 (5.24) 

where 

      , ,h w T  stands for vectors of the corresponding entities. The vectors have dimension n equal 

to number of finite nodes of the problem. 

 N  is vector of interpolation, (i.e., shape) functions,  

 

1 2

1 2

1 2

...

...

...

n

T
n

n

NN N

x x x

NN N
N

y y y

NN N

z z z

  
 

  
 

  
  =     

 
  

    

 

 

Using (5.24) Equations (5.20) and (5.21) can be written in the form 
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0

0

T T T

h hh hw hT h

T T T

T Th Tw TT T

h w T
LHS c N c N c N c

t t t

h w T
LHS c N c N c N c

t t t

  
= + + +

  

  
= + + +

  

 (5.25) 

 and 

 

     

     

0

0

T T T

h hh hw hT h

T T T

T Th Tw TT T

RHS k N h k N w k N T k

RHS k N h k N w k N T k

     =  +  +  +     

     =  +  +  +     

 (5.26) 

 The resulting set of equations are solved iteratively using finite element method, see 

(Zienkiewicz and Taylor 1989), (weak formulation, in which the shape functions N  are used as 

weight function): 

 

( )

( )

( ) 0

( ) 0

h h

V

T T

V

N LHS div RHS dV

N LHS div RHS dV

− =

− =





 (5.27) 

where V is volume of the analyzed structure. Each of the above equations represents a set of 

equations with dimension equal to number of finite nodes n. Note that ( )hdiv RHS  and 

( )Tdiv RHS  are scalars !  

In the next derivation, the two parts of (5.27) are dealt with separately. 

 

( )

   

0

0

0

...

...

T T T

h hh hw hT h

V V

T T

hh hw h

V V V

hhh hw

h w T
N LHS dV N c N c N c N c dV

t t t

h w
c NN dV c NN dV c NdV

t t

h w
cc cc cc

t t

   
= + + + = 

   

 
+ + =

 

 
+ +

 

 

    (5.28) 

 

( )

   

0

0...

T T T

T Th Tw TT T

V V

TTh Tw

h w T
N LHS dV N c N c N c N c dV

t t t

h w
cc cc cc

t t

   
= + + + = 

   

 
+ +

 

 

 (5.29) 

and the matrices   cc  are calculated by 
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   

   

0 0

0 0

; ; ...

; ; ...

T T
hhh hh hw hw h

V V V

T T
TTh Th Tw Tw T

V V V

cc c NN dV cc c NN dV cc c NdV

cc c NN dV cc c NN dV cc c NdV

= = =

= = =

  

  

 (5.30) 

The second part of (5.27) are calculated using Green theorem (5.36): 

 

( ) ( )

     ( )

     ( )

0

0

( ) T

h s h h

V S V

T T TT

s hh hw hT h

S

T T T

hh hw hT h

V

N div RHS dV N n RHS dS N RHS dV

N n k N h k N w k N T k dS

N k N h k N w k N T k dV

 − = − +  = 

     = −  +  +  + +     

       +   +  +  +       

  





 (5.31) 

where S  is the structural surface (with possibly defined boundary conditions). 

In the case of heat transfer, we can derive all the equations in a similar way. In analogy to (5.30) 

let us introduce matrices  kk   

 

   

   

   

0 0

0 0

...

T

hh hh

V

T

hw hw

V

h h

V

T

TT TT

V

T T

V

kk N k N dV

kk N k N dV

kk N k dV

kk N k N dV

kk N k dV

   =     

   =     

 =  

   =     

 =  











 (5.32) 

and also 
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   

   

   

0 0

0 0

...

TT

hh s hh

S

TT

hw s hw

S

TT

TT s TT

S

T

h s h

S

T

T s T

S

J N n k N dS

J N n k N dS

J N n k N dS

J N n k dS

J N n k dS

 =  

 =  

 =  

=

=









  (5.33) 

Using  (5.28) to (5.33) the original governing equations  (5.27) can be written as follows: 

 

           

     

           

     

0 0

0

0 0

0

h hhh hw hT hh hw hT

hhh hw hT

T TTh Tw TT Th Tw TT

TTh Tw TT

h w T
cc cc cc cc kk h kk w kk T kk

t t t

J h J w J T J

h w T
cc cc cc cc kk h kk w kk T kk

t t t

J h J w J T J

  
+ + + + + + + =

  

= + + +

  
+ + + + + + + =

  

= + + +

 (5.34) 

After sorting the unknown variables ,h T  by finite nodes into a single vector , Equation (5.34)  

will read  

    0 0 0cc kk cc kk J J
t


 


+ + + = +


 (5.35) 

The right-hand side (5.35) is non-zero only for non-zero prescribed boundary conditions and 

hence it has character of “load” vector in a static analysis. 

In (5.31) we used Green theorem. It states: 

 

( )

( )

T

s

V S V

T

s

V S V

u div v dV u n v dS u v dV

u div v dV u n v dS u v dV

 = −  

 = −  

  

  

 (5.36) 

 where 
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1 1 1

2 2 2

... ... ...

n n n

u u u
u

x y z

u u u

x y z

u u u

x y zu

u u u

x y z

   
  =       

   
   
 
   

     =   
 
 
   

      (5.37) 

 

The heat and moisture transfer governing equations (5.35) can be written in the form: 

 ( )t t t t t J
t

 + + + + +
=



t t t t t
K + C  (5.38) 

 

where t+t
K , t+t

C = are unsymmetrical problem matrices defined in the previous section, 
t J+t =vector of concentrated nodal fluxes (both moisture and heat) and t +t  is the vector of 

unknown variables. All of these apply for time t t+  . Equation (5.38) is solved iteratively. i.e., 

the vector 
t t+

 is searched for in the incremental form: 

 
( ) ( 1) ( )t t t t i t t i t t i   + + + − += = +   (5.39) 

where index ( )i indicates the number of iteration and 
( )t t i +   is the increment of the unknowns 

for time t t+   and iteration ( )i : 

 
( ) ( 1) ( )t t i t t i t t i J+ + − + = -1K  (5.40) 

The matrix and vector ( 1)t t i+ − -1
K  and ( )t t i J+  is derived from ( 1) ( 1),t t i t t i+ − + −-1 -1K C  and t  based 

on temporal integration method being used: 

CCStructureTransport module currently supports   Crank Nicholson (Wood. 1990) and Adams-

Bashforth  (Diersch and Perrochet 1998) integration scheme. The former scheme is linear, i.e., 

it’s a first-order integration procedure. The latter scheme is a second-order integration procedure. 

It is supposed to be more accurate; however, it is also more CPU and RAM expensive and it is 

more difficult to predict its real behavior. Hence, the   Crank Nicholson scheme is typically 

preferred. It has been more tested and verified in the CCStructureTransport module, and thereby 

it is more recommended.  
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 

This scheme comprises a number of well established integration procedures. It depends, what 

value of the parameter   is used. The set of equations (5.38) is solved for time t t +  , 

whereby the vector of unknown variables is calculated as a linear combination of the 

corresponding vectors at a time t  and t t+  . Hence  

   (1 )t t t t t   + += − +       (5.41) 

 Depending on a particular value of the parameter   we get the well known Euler implicit 

integration (for  =1), trapezoidal Crank Nicholson scheme (for  =0.5), Galerkin integration 

method (for  =2/3) or even Euler explicit scheme (for  =0), which is only conditionally stable. 

Solution predictor: 

 
t

t t t t
t


 + 

= + 


 (5.42) 

Solution corrector: 

 ( )
1t t

t t t

t t


 

+
+

= −
 

 (5.43) 

Using the above, after some mathematical manipulation, we derive final expressions for JK, . 

These read: 

 ( )( ) ( )

( )
1

1

1
1t t t t t t

t

J J
t

J



     



+ +

−

 
+ 

 

= − + − − −


 =

K = K C

K C

K

 (5.44) 

 

Solution predictor: 

 2
2

tt
prevt t t

prev prev

t t t

t t t t


 +

      
= + + −         

 (5.45) 

where 

index prev indicates that the entity comes from time preceding time t Note that we assume that all 

entities from time t  are already known and we solve for their values at time t t+  . 

Solution corrector: 

 ( )
2t t t

t t t

t t t

 
 

+
+ 

= − −
  

 (5.46) 
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t tt t t t
prev prev

prev prev prev

t t

t t t t t t t

   +   −  − 
= +       +    +     

 (5.47) 

Similar to (5.44) we have here for JK, : 

 

( ) ( )( )

( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

( ) ( )( )

( )

1 1 1

2 2

1 1

2 2 2 2

1 1 1 1

2 2

1 1

1

2

2 2

n n n n n n

t t

n n n n

t t t t t

n n n n n n n n

n n n n

t t t t t t

J t t t t

t t t t t t t t

J t t t t

J



  



− − −

+

− −

+ −

− − − −

− −

−

   +  +  + 

= −   +   +

+ −   +  +   +  +  − 

+   +  

 =

K = K C

K

C

K

 (5.48) 

 

The transport governing equations are prone to suffer from oscillations. As reported in (Jendele 

2001) this can be improved by introducing a sort of Line Search method damping  . The basic 

idea is that Equation (5.39) gets replaced by 

 
( ) ( 1) ( )t t t t i t t i t t i    + + + − += = +   (5.49) 

where   is a new damping factor. The factor is typically set to something in range 0.3...1   

depending on the current convergence behavior of the problem. 

 

The previous section referred to a material constitutive model, i.e., it was assumed that we know 

how to compute material diffusivity matrix hD , (see(5.4)), and material capacity ( )w w h= , 

(see(5.1). Calculation of these entities is described here. 

Currently, ATENA has only two constitutive models available for transport analysis. The first 

one, i.e., CCModelBaXi94 is characterized as follows and the second one, i.e., 

CCTransportMaterial is briefly described later in this section. 

CCModelBaXi94 

For heat transport, a simple constant linear model is implemented. For moisture transport, a 

nonlinear model based on the model (Xi, Bazant et al. 1993; Xi, Bazant et al. 1994) has been 

developed.  

It can be used for temperatures in range 05 ...75T C=   and moisture 0 ...1H =  . It is 

important to note that the model was originally written only for mortar; hence, it is inaccurate for 

concrete with an aggregate having higher permeability (i.e., diffusivity) and/or absorption. The 

model has the following main parameters  
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• Type of cement 

• Water-cement ratio 
w

wc
c

=  

As already pointed out, the model does not account for aggregate, i.e., it predicts moisture move 

only in pores filled by water-cement paste.   

The main entity of the model is water content ( , , , )
w

w w h t T
c

= . It is defined as follows: 

 
,0

w

w c

G
w

G G
=

+
 (5.50) 

 where  

wG  is the water content in mortar at time t ,
3

kg

m of morter

 
 
 

, 

,0wG  is the water content at time zero,
3

kg

m of morter

 
 
 

, 

cG  is the amount of cement at time zero,
3

kg

m of morter

 
 
 

. 

Mortar here stands for a mixture of water and cement. If concrete material is to be considered, 

then w  can be calculated by 

 
,0

,0

concrete
w

wmortar

w cconcrete concrete
w c

mortar mortar

V
G

V G
w

V V G GG G
V V

=
++

 (5.51) 

where concrete

mortar

V

V
 is the ratio of total volume to (only) volume of mortar (i.e., water and cement) and 

G  are corresponding amounts of water and cements in concrete, (i.e., not only in 

mortar!)
3

kg

m of concrete

 
 
 

. 

The model itself already accounts for moisture used by the hydration process. i.e., 0
w

t





. As a 

result, hw  according to (5.19)  need not be implemented.  

On the other hand, if moisture losses due to hydration are to be computed by the model based on 

(5.19), it is important to fix 0
w

t


=


 and to modify hw , so that it predicts “relative” moisture 

content w  used throughout whole derivation CCStructuresTransport. The original function for 

hw  was written for absolute weight of water and hence, for “relative” content of water Equations 

(5.8) must be rewritten into 
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1

3

1 1

3 3

,0 ,0 ,0

0.21

0.21 0.21

e
c

ce e e c e
h

w c w c e e w c e e

t
G

t t G tG
w

t G G tG G G G



 

 
 

+     = = =   
+ + ++ +    

 (5.52) 

and the constant c from (5.8) becomes equal to 

 
,0,0

cc

w cw c

G G
c

G G G G
= =

+ +
 (5.53) 

More detailed description of the model is beyond the scope of this document and the reader is 

referred to in (Xi, Bazant et al. 1993; Xi, Bazant et al. 1994).  

CCTransportMaterial 

CCTransport material is a simple constitutive law that allows users to enter laboratory-measured 

moisture and heat characteristics. Referring to Equations (5.1) and (5.5) heat and moisture flow 

governing equations can be written in the following general form: 

 

( )

( )

:

( ) ( ) ( )

:

( ) ( ) ( )

Th TT Tw Tt Th TT Tw Tgrav

wh wT ww wt wh wT ww wgrav

Heat

Q h T w
C C C C K grad h K grad T K grad w K

t t t t x

Moisture

w h T w
C C C C D grad h D grad T D grad w D

t t t t x

    
= + + + = − + + +

    

    
= + + + = − + + +

    

 (5.54) 

The parameters ThC , TTC  … wgravK  are calculated as: 
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0

0

0

0

0

0

0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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( ) ( ) ( )

Th Th Th

TT TT TT
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Tt Tt Tt
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wT wT wT

h T t

Th Th C C C

h T t

TT TT C C C

h T t
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h T t

Tt Tt C C C

h T t
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h T t

wT wT C C C

ww ww

C C f h f T f t

C C f h f T f t

C C f h f T f t

C C f h f T f t

C C f h f T f t

C C f h f T f t

C C

=

=

=

=

=

=

=

0

0

0

0

0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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Th Th Th

TT TT TT

Tw Tw Tw

Tgrav Tgrav Tgrav

h T t

C C C

h T t

wt wt C C C

h T t

Th Th K K K

h T t

TT TT K K K

h T t

Tw Tw K K K

h T t

Tgrav Tgrav K K K

f h f T f t

C C f h f T f T

K K f h f T f t

K K f h f T f t

K K f h f T f t

K K f h f T f t

D

=

=

=

=

=

0

0

0

0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

wh wh wh

wT wT wT

ww ww ww

wgrav wgrav wgrav

h T t

wh wh D D D

h T t

wT wT D D D

h T t

ww ww D D D

h T t

wgrav wgrav D D D

D f h f T f t

D D f h f T f t

D D f h f T f t

D D f h f T f t

=

=

=

=

 (5.55) 

and the constant parameters 0

ThC  thru 
0

wgravD  and functions ( )
Th

h

Cf h thru ( )
wgrav

T

Df T are input 

parameters, (to be possibly obtained from some experiments). The functions are defined as 

multilinear functions and only their ids are input into CCTransportMaterial model definition.  

Note that gravity terms in RHS of (5.54) have a little physical justification in heat and moisture 

diffusion gathered transports; nevertheless, they are included to allow using this material law for 

the solution of other kinds of transport problems.   

 

CCTransportMaterialLevel7 material 

CCTransport materialLevel7 is an extension of the above CCMaterialTransport material in the 

way it automatically computes moisture and temperature capacity and conductivity/diffusivity 

incl. "sink" terms regarding hydration (i.e., rate of hydration heat and moisture consumption 

during concrete hydration). In terms of the above nomenclature, this upper material level 

calculates ,, , , ,TT TT Tt wh wh wtC K C C D C . As already mentioned, the presented material adds on its 

bottom level, i.e., CCMaterialTransport. All parameters and characteristics from the bottom 

level, (i.e., those from CCMaterialTransport) can still be input and used. They typically serve for 

a refinement/addition of parameters generated by the upper material level. The result from the 

bottom and upper levels are simply added to form the final characteristics of the material model 

CCTransportMaterialLevel7. Note that default values of ,, , , ,TT TT Tt wh wh wtC K C C D C in the bottom 

level are by default set to zero.   

Hydration heat and affinity hydration model  
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The most important part of the presented model is the computation of the concrete hydration maturity 

factor. It is accompanied by the calculation of generated hydration heat and consumed hydration 

moisture. The analysis is based on the affinity hydration model, which provides a framework for 

accommodating all stages of cement hydration.  

Consider hydrating cement under isothermal temperature 25oC a relative humidity 1h = . At this 

temperature, the rate of hydration maturity factor , 0...1   can be expressed by chemical affinity 

25 25( )A A = : 

 25A
t


=


 (5.56) 

where A  stands for the chemical affinity, [ 1s− ], The expression already includes coefficient 

exp aE

RT

 
− 

 
. Hence 

25A  is not normalized and refers to temperature 25oC.  For different 

temperatures it is replaced by A , see (5.60).  R is gas constant 
J

8314.41
kmolK

, T is 

temperature,  [K] and aE  is 40 kJ/mol. It is worthy to note the incorporation of the maturity 

method into (5.56). A characteristic time might be introduced to express an affinity A  (Bernard, 

Ulm et al. 2003). 

 The affinity property can be obtained experimentally or analytically. Using experimental 

approach, heat flow ( )q t  that corresponds to the hydration heat ( )h hQ Q t=  is measured by 

isothermal calorimetry.   

Alternatively, the hydration material parameters are computed by an analytical micro-scale 

model that accounts for the majority of underlying chemical reactions as well as the topology of 

cement grains (with the consequence to hydration kinetics). The solution stems from (Smilauer 

and Bittnar 2006), and it employs discrete hydration model CEMHYD3D (Bentz 2005), allowing 

to account for the particle size distribution of cement, the chemical composition of cement, 

temperature and moisture history in concrete, etc. 

  

Having history of hQ  (for 273.15 25, 1T = + = ), the approximation of  parameter is given by 

 
,

h

h pot

Q

Q
  (5.57) 

 25

,

1 h

h pot

Q
A

Q t t

 
 =

 
 (5.58) 

where ,h potQ  is potential hydration heat, [J/kg].  Hence the normalized heat flow 
,

h

h pot

Q

Q
under 

isothermal 25oC  equals to chemical affinity 
25A . 

Cervera et al.  (Cervera, Oliver et al. 1999) developed an analytical form of the affinity which 

was refined in (Gawin, Pesavento et al. 2006). A slightly modified formulation is proposed here 
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 ( )2
25 1 exp

B
A B


   

 


 

   
= + − −   

   
 (5.59) 

where 1

1 2,[ ],B s B− , [-] are coefficients to be calibrated, 
 is the ultimate hydration degree, [-],  

and   represents microdiffusion of free water through formed hydrates, [-]. The parameters in 

(5.59) express isothermal hydration at 25◦C.   

When hydration proceeds under varying temperature, maturity principle expressed via Arrhenius 

equation scales the affinity to arbitrary temperature T 

 

25

1 1
exp

273.15 25

a
r

T r

E
A

R T

A A A

  
= −  

+  

=

 (5.60) 

For example,  simulating isothermal hydration at 35oC means scaling 
25A with a factor of 1.651 

at a given time.  This means that hydrating concrete for 10 hours at 35oC 35◦C releases the same 

amount of heat as concrete hydrating for 16.51 hours under 25◦C.  Note that setting 0aE =  

ignores the effect of temperature and proceeds the hydration under 25◦C. 

Gawin et al. (Gawin, Pesavento et al. 2006), among others, added the effect of relative humidity.  

The extension of (5.58) leads to 

 
,

1 h
T h

h pot

Q
A

Q t t




 
 =

 
 (5.61) 

 

 
( )

4

1

1
h

a ah
 =

+ −
 (5.62) 

where ( )h h h =  accounts for the reduction of capillary moisture. h  is relative humidity r, 

(Bazant and Najjar 1972). a is material parameter, typically 7.5a = . Depending on curing 

conditions   is calculated as follows:  

Sealed curing: 

 
/

, 1
0.42

w c
  =   (5.63) 

Saturated curing: 

 
/

, 1
0.36

w c
  =   (5.64) 

/w c  is the water-cement ratio. 

Substituting (5.59) and (5.62) into (5.61) yields final equation to predict the development of 

hydration heat. As it is difficult to express   function analytically (from (5.59), (5.61)),  the 

above equations are integrated numerically. 
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25 25

25 25

( )
( )

( ) ( ) ( )
end

start

r h

t

end start r h
t

t
A t A

t

t t A A d




    


=



= + 

 (5.65) 

Substituting 25 r hd A d  =  

 
25,

25
25 25 25( ) ( ) ( )

end

start

t

end start
t

t t A d   = +   (5.66) 

If the function 25 25( ) ( )DoH t t=  at reference temperature is known, (e.g. it was meassured in a 

calorimeter),  r hA   is constant within 25 25...start endt t   and it is acceptable to use linear (Taylor) 

approximation of 25 25 25 25 25 25

25

( ) ( ) ( )start startt t t t
t


 


= + −


 within 25 25...start endt t  , we can write: 

 

 
25,

25

25 25
25 25

25

25 25
25 25 25 25 25

25

( )
( )

( )
( ) ( ) ( ) ( )

end

start
start

t

end start t end start
t

t
A t

t

t t d t t



 
     




=




= + = + −



 (5.67) 

In the above 1

25 25 25 25( ), ( )start start end start end start r ht t t t t A  −= = + −  are equivalent time for the case 

of reference temperature. 1

25 (...) − is inverse function to 25(...) so that 1

25 25( ( ))   − = . 

 

 

  

Note that hQ  is calculated in the same unit as is entered the parameter ,h potQ . If the governing 

equations are written for unit volume and ,h potQ  is given per cement unit weight, then hQ  must 

be multiplied by fraction of cement mass cementm  and total volume of concrete totV . 

Heat capacity  

The model assumes the following components of concrete: aggregate, filler, water, and cement. 

The total mass of concrete in one cubic meter results from individual masses of components: 

 
concr aggregate filler paste

paste cement water

m m m m

m m m

= + +

= +
 (5.68) 

where concrm  is the mass of concrete per a unit volume. Similarly, for the mass of aggregate 

aggregatem , the mass of filler fillerm , the mass of water waterm , and mass of cement cementm . 

Corresponding volumes are /aggregate aggregate aggregateV m = , /filler filler fillerV m =  etc. i  stands for 

the mass density of the phase i. Having total volume concr aggregate filler water cementV V V V V= + + + , we 

can calculate phase fractions /aggregate aggregate concrf V V=  and similarly for the remaining phases.  

Heat capacity and its evolution of cement paste (cement+water) were studied in (Bentz 2007) at 

230C for w/c between 0.3 and 0.5. The capacity of fresh cement paste yields 
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 ˆ
concrete aggregate aggregate filler filler pasteC f C f C C= + +  (5.69) 

where concreteC is the concrete capacity (per unit volume) and akin for aggregate, filler, and cement 

paste. The last term, i.e.,  pasteC  also depends on the degree of hydration   and is calculated by 

 ( )ˆ ( ) 1 0.26(1 exp( 2.9 ))paste cement cement water waterC f C f C = + − − −  (5.70) 

where cementC  is cement capacity at time zero. 

The heat capacity of structural concrete spans the range between 0.8 and 1.17 Jg-1K-1.  A former 

Czech standard  CSN 731208 declares 840 and 870 Jkg-1K-1
 for dry and saturated mature concrete, 

respectively. aggregateC  is approximately  840 Jkg-1K-1
  for basalt and limestone, 790 Jkg-1K-1

  for 

granite, 800 Jkg-1K-1
  for sand. cementC  is about 750 Jkg-1K-1

  and waterC is 4180 Jkg-1K-1
  . 

 

Heat conductivity  

The thermal conductivity of cement paste was found to remain in the range 0.9-1.05 Wm-1K-1
 for 

an arbitrary degree of hydration, for both sealed and saturated curing conditions, and for w/c 

from 0:3 to 0.4 (Bentz 2007). Water in the capillaries has a thermal conductivity 0.604 Wm-1K-1 

(Bentz 2007). The thermal conductivity of hardened concrete varies between 0.85 and 3.5 Wm-

1K-1  (Neville 1997) p.375, depending strongly on an aggregate type. 

Thermal conductivity also depends on the saturation state of concrete. For example, a structural 

concrete made from normal-weight aggregate with a unit mass of 2240 kg/m3
  yields   = 1.696 

Wm-1K-1   for protected and 1.904 for weather-exposed conditions (Neville 1997), p. 376. 

 

Figure 7-1 summarizes thermal conductivities for ordinary concrete depending on concrete unit 

mass and saturation conditions, according to (Neville 1997) and a former Czech standard  CSN 
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731208.  The latter considers 1.5 for a dry concrete and 1.7 Wm-1K-1   for a water-saturated 

concrete. 

Faria et al. (Faria, Azenha et al. 2006) applied the evolution of concrete conductivity with 

regards to    

 ( )0 1.0 0.248  = −   

where   is the conductivity of fully hardened concrete, i.e., in infinite time. 

The model implemented in Atena, i.e., CCTransportMaterialLevel3 stems from homogenization 

theories. Consider conductivity of cement paste paste  and aggregates aggregate such that  

paste aggregate  . Corresponding volume fractions are ,paste aggregatef f . Hashin-Shtrikman lower 

,concrete low and upper bounds ,concrete upper  are (Bentz 2007) 

 

 

( )
( )

( )
( )

, ,

, ,

3

3

3

3

aggregate paste aggregate paste

concrete low paste

paste paste aggregate paste

paste aggregate paste aggregate

concrete upper aggregate

aggregate aggregate paste aggregate

f

f

f

f

  
 

  

  
 

  





−
= +

+ −

−
= +

+ −

 (5.71) 

The presented model uses average conductivity, i.e. 

 ( ). , , ,
1.33 0.33

2

concrete low concrete upper

concrete

 
 

 +
= −  (5.72) 

Figure 7-2 considers paste =1.0 Wm-1K-1    and aggregate  = 2.0 Wm-1K-1   . Volume fraction of 

aggregates varies from 0 to 1. Important thermal conductivities: limestone 1.26 - 1.33, sandstone 

1.7, granite 1.7 - 4.0 Wm-1K-1   . 

The above equations for homogenization are written for phases paste-aggregates. In ATENA, the 

homogenization is carried out as follows: 

1. homogenize phases cement - water -> phase paste. 

2. homogenize phases paste - filler -> phase paste with filler 

3. homogenize phases  paste with filler - air -> phase paste with filler and air 

4. homogenize phase paste with filler and air - aggregates -> concrete 

Note that filler and aggregate are in this case treated as one component, and the same applies for 

water and cement (being the component paste). The volume averaging technique is used to 

calculate the corresponding properties of paste and mixed aggregate.  
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thermal conductivities of concrete from bounds.

Moisture consumption due to hydration 

It is assumed that 1 kg of cement (in concrete) approximately consumes during the full hydration 

process about ,w potQ  of water. Typically ,w potQ =0.42 kg of water per 1 kg of cement. Thus, e.g. 

concrete mixture with 300kg cement per 1m3 of concrete needs 300*0.42=126kg o water per 1m3 of 

concrete. Assuming linear dependence of water hydration consumption hw  on concrete hydration 

level  , ( 0 = for fresh concrete and 1 = for fully hydrated concrete) the water sink term due to 

hydration is 

 ,
h h

h t

w w
C

t t





  
= =

  
 (5.73) 

 , ,[kg]h w potw Q c=  (5.74) 

where c stands for weight of cement in 1m3 of concrete. 

 

Moisture capacity 

The moisture content at unit volume -3,[kgm ]w is calculated a simple expression 

 
( )1

f

b h
w w

b h

−
=

−
 (5.75) 

where 
-3,[kgm ]fw  is the free water saturation and b is the dimensionless approximation factor, 

which must always be greater than one. It can be determined from the equilibrium water content 

80w  at relative humidity 0.8h = by substituting the corresponding numerical values in equation 

(5.75): 

 
80

80

( )f

f

h w w
b

w h w

−
=

−
 (5.76) 
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Moisture capacity -3, kgmC     is calculated as derivative of moisture content with respect to h : 

 
( )

( )
2

1f

h

w b bw
C

h b h

−
= =

 −
 (5.77) 

The above expression is applicable for analyses using reference unit volume. If reference unit  

weight of the structure is preferred, then we employ moisture capacity  / , kg/kgC C = , where 

 is concrete density, 3kg/m   . 

Moisture diffusion 

The present model accounts for the diffusivity mechanism of moisture transport. It is valid for 

dense concrete, which has not mutually connected pores and moisture convection thru pores 

(being driven by water pressure) can be neglected.  Hence, moisture flux
2

,h

kg
q

m s

 
 
 

 is calculated 

by the equation h hq h= − D , where total moisture diffusivity ,h

kg
D

m s

 
 
 

 is calculated as sum of 

water w

hD  and water vapor  wv

hD diffusivity: 

 w wv

h h hD D D= +  (5.78) 

Water liquid diffusivity w

hD is calculated  

 

 w w

h w

w
D D

h


=


 (5.79) 

where water diffusivity 2, /w

wD m s    is  

 

( )

1
2

2

3.8 1000 f

w

w

w

w

f

A
D

w

 
 − 
 
 

=  (5.80) 

and A  is the water absorption coefficient 
2 0.5

kg

m s

 
 
 

 . 

Water vapor permeability  is computed from water vapor pressure-driven diffusivity 

kg
,

ms Pa

wv

pD
 
 
 

:  

 wv

pD



=  (5.81) 

 where    is the water vapor diffusion resistance factor and   is the vapor diffusion coefficient 

in air 
kg

ms Pa

 
 
 
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( )

1.81
0.00002306 273.15

273.15
273.15

a

a

w

p T

R
T p

M


+ 

=  
 +

 (5.82) 

Atmospheric pressure 101325Paap = ,  gas constant -1 -18314.41Jkmol KR = and molar mass of 

water is -118.01528kgkmolwM =  

 As in the presented model, relative humidity h is the primary variable used to analyze moisture 

transport,  wv

pD  must be transformed to wv

hD  . This is done by: 

 
( )wv wv wv wvsat

h p p p sat

p hp
D D D D p

h h


= = =

 
 (5.83) 

Any expression to calculate the pressure of saturated water vapor can be used. The presented 

model uses 

  0611 , Pa

aT

T T

satp e

 
 

+ =  (5.84) 

In the above T is temperature [ o C ] and the remaining parameters  are 

0 00 : 234.18 , 17.08; 0 : 272.44 , 22.44o oT T C a T T C a = =  = =   

Some guidelines towards the model's parameters 

Fitted parameters for cement paste hydration need to be considered for each concrete separately. 

Due to high cement variability, it is impossible to assign one particular cement to one concrete 

grade.  The user needs first to select the cement parameters from the following table: 

 

The above table is based on fitting predicted results from CEMHYD3D analysis by (5.59), see 

Table 7.3-5 and Figure 7-3. The simulations were carried out on CEMHYD3D’s microstructures 

50 × 50 × 50 µm and with the activation energy 38.3 kJ/mol. Saturated curing conditions were 
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assumed since sealed conditions will be obtained from coupling with moisture transport. Table 

7.3-5 specifies input data for selected Portland cements. 

   

The  majority  of  concretes  is  produced  from  blended  cements (CEM II - CEM V); hence it is 

necessary to scale down Q pot by approximately 30 %. This is a common Portland clinker 

substitution in the majority of blended cements in Europe. 

There are other default parameters, which are not specified here: QW POT= 0.42, TH INIT = 0, 

ALPHA INIT = 0, TEMPERATURE INCR MAX =0.1, H80 = 0.8, TEMP0 = 234.18, A WV = 

17.08, TEMP0 ICE = 272.44 ,A WV ICE = 22.44 

The parameter A ≈ 7.5 expresses hydration slow-down with regards to relative humidity.   The 

hydration practically stops at  ≈ 0.8.  

Parameters in Figure 7-1 are computed for saturated state.  When   = 1, the hydration proceeds 

as there is saturated water environment around concrete. Under standard circumstamces, 

hydration consumes water, which decreases relative humidity in the calculation. Three 

parameters are related to moisture transport and are given for ordinary structural concrete: 

• W80 expresses total mass of free water at  =80%. Standard value is 50 kg/m 3 for 

structural concrete. 

• A W is water absorption coefficient, whose value spans the range 0.25-0.846 kgm− 2 h 

0.5 ]. 

• MI WV is the water vapor diffusion resistance factor, spanning 210-260 [-] for structural 

concrete. 
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Parameters specifying specific heat capacity for concrete components are summarized in Table 

7.3-2. Values are obtained from http://www.engineeringtoolbox.com/density-solids-

d_1265.html, http://www.engineeringtoolbox.com/specific-heat-solids-d_154.html 

Parameters specifying specific heat conductivity for concrete components are summarized in 

Table 7.3-3.   Sources from http://www-odp.tamu.edu/publications/192_SR/109/109_5.htm 

Concrete strength classes strongly depend on the amount of cement in concrete.   Table 7.3-4 

specifies approximate compositions for major concrete classes used in EN 206-1.  The 

calculation assumes 5 % of entrained air in the concrete, cement density 3220 kg/m 3 and 

aggregate density 2800 kg/m 3 . 

 

 

 

 

Ready-mix concrete is assumed,  which requires rather higher w/c due to workability and 

pumping issues. The parameters CEMENT DENSITY, WATER DENSITY, AGGREGATE 

DENSITY, FILLER DENSITY are provided in Table 7.3-2 in the units [kg/m 3 ].  
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When undertaking heat transfer calculations, it is important that relevant thermal properties of 

materials and heat transfer coefficients at the boundaries are defined for the entire temperature 

interval of the load. 

 

Hydrocarbon fires are those sustained by hydrocarbon-based products, such as chemicals, gas, 

and petroleum. Depending on the heat load, different HC-curves can be derived in accordance 

with Equation (5.85). The magnitude of the maximum temperature of the radiation source ( 1T ) is 

crucial for the time temperature development. The nominal HC-curve is represented by the heat 

load 200 kW/m2 and reaches maximum temperature of 1100 °C. The curve representing 345 

kW/m2 is called the "modified" or "increased" HC-curve for tunnel applications. It reaches at 

maximum 1300 °C. 

 0.167 1.417 15.833

1( ) (1 0.325 0.204 0.471 )t t tT t T e e e− − −= − − −  (5.85) 

where: 

( )T t = temperature of radiation source as function of time [°C], 

1T = maximum temperature of radiation source [°C] according to (5.85) 

t = time [minutes] 

Time development of temperature of the radiation source is depicted in the figure below. For 

time 0t →  Equation (5.85) yields (0) 0T =  and hence, it is necessary to supplement (5.85) by 

requirement ,( ) ambiant iniT t T , where ,ambiant iniT is initial ambient temperature prior the fire broke 

up, (typically something about 20 °C). 
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The nature of the structural ambient conditions is essential for the determination of the 

temperature fields. Depending on the geometry, view factors, and ambient conditions, various 

types of boundary conditions may be considered. 

Fire exposed boundary 

The heat is transferred from the fire gas to the exposed structure through radiation and 

convection. At high temperatures, the radiation dominates. The radiation is expressed by the 

resulting emissivity factor, which takes into account the emissivity of the fire source  , and 

absorptivity of the heated surface  . The convection is calculated from the temperature 

difference between the structure and ambient gas, depending on the gas velocity. Emissivity and 

convection factors used for exposed surfaces are shown below  

 
2

0.56, [ ]

50,

r

c

W
h

m K

 = −

 
=  

 

 (5.86) 

The convection and emissivity heat flux on a boundary exposed to fire is calculated as follows: 

 
4 4( ) ( )n c g b r g bq h T T T T = − + −  (5.87) 

where 

 = Stefan-Boltzmann constant [5.67x10-8 W/m2 K4], 

gT = absolute temperature of radiation source [K], 

bT =boundary temperature of the structure, 

r = resulting emissivity factor of the radiation source and the heated surface [-], 

nq = heat flow at the fire exposed boundary [W/m2],  

ch  = convection heat transfer coefficient [W/m2K].  

Adiabatic boundary 

Adiabatic boundary surface refers to a boundary surface, where no heat can pass in (and/or out) 

the structure. Structural symmetry lines and areas are good examples of this boundary 

conditions. 

 

The described fire boundary load conditions are ATENA modeled by 

CCFireElementBoundaryLoad load. It is essentially an element boundary load that applies the 

heat flow nq  at the element boundary, i.e., at a surface exposed to fire. Unlike other loads in 

ATENA (that are of incremental nature and constant within one load step), this load is 

considered variable and has kind of a total load. 

Four types of heat source definitions are implemented: 
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• Nominal HV fire – Temperature of the heat source is calculated by (5.85) and 1T  (unless 

it is manually inputted as temp_g_ref)  is set to 1100 [°C].  

• Modified HC fire – This definition is much the same as the above with the only 

difference that default value for 1T  is 1300 [°C]. 

• Generic fire (also refered to as User curve fire) - Temperature of the heat source is 

assumed constant and is set value of temp_g_ref . If temp_g_ref  is not inputted, then 

1100 [°C] is used. 

In any case, the generated (or directly inputted) curve for ( )T t  can be additionally modified in 

time by a user-supplied function time_id. The function takes one parameter, which is time of the 

fire and it specifies a coefficient by which the generated initially (or inputted) boundary 

conditions should be multiplied. Of course, load variation in space can be modified by coeff_x, 

coeff_y coefficients etc. in the same way as for any other generated element load, (for more 

details see Atena Input file manual). 

 

This type of boundary load is used for modeling heat and moisture fluxes from the structure to 

the ambient environment. Hence, it is typically applied as a boundary element load on the 

external surfaces of the structure.  It resembles the fire boundary load described above and is 

implemented in a similar way. Although the moisture-heat boundary condition allows the 

prescription of both moisture and heat boundary fluxes, it can be reduced to prescribe only one 

of them. 

The heat flux consists of two parts. 

 

4 4

1

2

1 2

( ) ( )T cT g b rT Kg Kb

T h we

T T T

q h T T T T

q q h

q q q

 = − + −

=

= +

 (5.88) 

The first part of the heat flux Tq  represents the usual flux due to heat convection and radiation. 

Its computation resembles (5.87). cTh  stands for heat convection coefficient of the concrete-air 

interface 
2

W

m K

 
 
 

 , rT  is heat emissivity coefficient [-],  ,Kg KbT T  are ambient and surface 

temperatures in Kelvins,  and    is the Stephan-Boltzmann constant , 
2 4

5.67 8,
W

E
m K


 

= −  
 

.  

The second part in (5.88) accounts for the heat flux due to the evaporation/condensation based 

on the moisture flux hq  and thus can be accounted for this component only if there is a moisture 

boundary flux included in the analysis (see below). By default 2270,we

kJ
h

kg

 
=  

 
is assumed for 

the heat of water vaporization.  
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The moisture flux consists of three parts.    

 
( )
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2.5 2.5
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
+

   
         

= +

= + − +

+

 (5.89) 

Although the numerical implementation sums up the three fluxes in (5.89), in practical 

applications, only one component is typically used; however, for specific applications, one main 

moisture flux can be selected for the calculation and the remaining fluxes can be used as 

correction terms.  

The first part ,1hq  represents a moisture boundary flux between concrete and the external 

environment driven by the gradient of relative humidity on the solid surface bh  and the ambient 

relative humidity gh . cwh stands for the moisture convection coefficient of the concrete-air 

interface. The second part ,2hq  can be used for the calculation of water evaporation from an open 

water surface. It is driven by the gradient between the maximum humidity ratio of saturated air 

gx and the humidity ratio in the ambient air bx . The evaporation coefficient  is given by 

2
(25 19 ),

kg
v

m s

 
 = +  

 
, where v is ambient air velocity, [m/s].  For more information, see 

http://www.engineeringtoolbox.com/evaporation-water-surface-d_690.html. 

The humidity air ratio, [-] is calculated as follows (i reflects conditions in ambient air, i.e., i=g, 

or in the surface of the structure i.e., i=b): 

 
, ,wv i wv i

i

a a

m
x

m




= =  (5.90) 

It is calculated at state variables ,i ih T , i.e., relative humidity and temperature at i conditions. 

In the above , ,, , ,wv i wv i a am m   are the mass and density of water vapor in REV corresponding to 

i conditions and mass and density of dry air, [kg/m3], respectively. 

 

( 273.15)

a
a

i

a

p

R
T

M

 =

+

 (5.91) 

where aM  is the weight of 1 kmol of dry air (assumed 28.96aM kg/kmol). R  is gas constant, 

(R=8313JK-1), Ti  is the temperature in oC. ap is the partial pressure of dry air, [Pa] 

 .a i vw satp p h p= −  (5.92) 
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Here p stands for total air pressure (typically normal air pressure p=101325Pa), hi is relative 

humidity and .vw satp is the partial pressure of saturated water vapor at Ti, (see 

http://en.wikipedia.org/wiki/Density_of_air) 

 

7.5

237.3

, 610.78 10

i

i

T

T

wv satp

 
 

+ =  (5.93) 

The density of water vapor at i th conditions is calculated similar to (5.91): 

 ,

,

( 273.15)

wv sat

wv sat

i

wv

p

R
T

M

 =

+

 (5.94) 

In the above 
wvM  is the weight of 1kmol of saturated water vapor, assumed 18.06aM kg/km. 

The third part in (5.89) is moisture flux evaporated from concrete calculated by CEMSTONE. It should be 
noted that this method is applicable for fresh concrete (Uno 1998). The implementation in ATENA yields 
nearly the same values as provided by ACPA calculator; see 

http://www.apps.acpa.org/apps/EvaporationCalculator.aspx. In (5.89) ,Cg CbT T  are the ambient and 

surface temperatures in Celsia.  

Both moisture and heat fluxes are typically computed using only their first or second part. Therefore, 
the related ATENA input commands allow reading some boolean flags that specify, which parts of the 
above fluxes should be accounted for and which should be skipped. For more information, refer to the 
ATENA input file manual.  

 

BAZANT, Z. P. (1986). Mathematical Modelling of Moisture Diffusion and Pore Pressure, 

Chapter 10. Concrete at High Temperature. Z. P. Bazant: 198-237. 

BAZANT, Z. P. and W. THONGUTHAI (1978). Pore Pressure and Drying of Concrete at High 

Temperature. Proceedings of the ASCE. 

CELIA, M. A. and P. BINNING (1992). "A Mass Conservative Numerical Solution for Two-

Phase Flow in Porous Media with Application to Unsaturated Flow." Water Resour. Res 

28(10): 2819-2828. 

CELIA, M. A., T. BOULOUTAS, et al. (1990). "A General Mass-Conservative Numerical 

Solution for the Unsaturated Flow Equations." Water Resour. Res 27(7): 1438-1496. 

DIERSCH, H. J. G. and P. PERROCHET (1998). On the primary variable switching technique 

for simulating unsaturated-saturated flows, http://www.wasy.de/eng/prodinfo/flow/ 

swpool/swpool.htm#fef_manuals. 

HUGHES, J. R. (1983). Analysis of Transient Algorithms with Particular Reference to Stability 

Behaviour. Computational Methods for Transient Analysis, Elsevier Science Publishers 

B.V. 

JENDELE, L. (2001). ATENA Pollutant Transport Module - Theory. Prague, Edited PIT, ISBN 

80-902722-4-X. 

JENDELE, L. and D. V. PHILLIPS (1992). "Finite Element Software for Creep and Shrinkage 

in Concrete." Computer and Structures 45 (1): 113-126. 

http://www.apps.acpa.org/apps/EvaporationCalculator.aspx


321

REKTORYS, K. (1995). Přehled užité matematiky. Prague, Prometheus. 

SEAGER, M. K. and A. GREENBAUM (1988). A SLAP for the Masses, Lawrence Livermore 

National Laboratory. 

UNO, P. J. (1998). Plastic shrinkage cracking and evaporation formulas. ACI Materials Journal 

95: 365-375. 

WOOD., W. L. (1990). Practical-Time Stepping Schemes. Oxford, Clarenton Press. 

XI, Y., Z. P. BAZANT, et al. (1993). "Moisture Diffusion in Cementitious Materials, Adsorbtion 

Isotherms." Advn. Cem. Bas. Mat. 1: 248-257. 

XI, Y., Z. P. BAZANT, et al. (1994). "Moisture Diffusion in Cementitious Materials, Moisture 

Capacity and Diffusivity." Advn. Cem. Bas. Mat. 1: 258-266. 

ZIENKIEWICZ, O. C. and R. L. TAYLOR (1989). The Finite Element Method, Volume 1: 

Basic Formulation and Linear Problem. London, McGraw-Hill, 4th edition. 



322 

 



323

 

 

ATENA software support four methods to execute dynamic analyses. These are: 

• Newmark's   method,  

• Hughes   method (Hughes 1983), 

• Wilson    

• Modified  Wilson  .  

 

Note that Hughes  method with 0 =  reduces to Newmark's   method and  Modified  Wilson 

  is just an extension to  Wilson  . 

The governing equations for dynamic analysis read: 

 

( )( ) ( )( ) ( )

Hughes method:

1 α α 1 α α 1 α α

Newmark method:

(Modified) Wilson method:

t t t

t t

t t
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 (5.95) 

where 

, ,t t t t t tu u u+ + +  is acceleration, velocity, and displacement at a time t t+  , (similar for time t 

and t t+   ),  

 , ,M C K  is mass, damping, and stiffness matrix, respectively, 

R  is the vector of external forces, i.e., concentrated loads, 

  is the Hughes damping parameter. 

They are is solved for displacement at time t t+   .  The displacement, acceleration and velocity 

at time t t+    is calculated as functions of (already known) , ,t t tu u u  and displacement 

increments 
t tu u+ +  .  If l-th iteration is solved, then we solve for displacement increment 

u and  
1

l
t t

k

k

u u+

=

 =    
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Substituting (5.96) into (5.95) and after some mathematical manipulation, the requested 

displacement increment at iteration l can be calculated: 

 inv

eff effu R = K   (5.97) 

where (for using structural damping M K = +C M K ) effective stiffness and RHS vector are: 

 
1 2 1 2

0( ) ( )

eff M K

eff M M K KR

 
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= +

= + + + +

K M K

M K
  (5.98) 

 

The coefficients above are calculated using the following expressions. They are summarized (by 

solution method): 
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The parameters ,   are the integration parameters used by Newmark   and Hughes   

method.  Their value is essential for convergence of this time marching scheme. It can be shown 

that  
1 1

,
2 6

 = =  corresponds to linear acceleration within the time step. Values  
1 1

,
2 4

 = =  

yield constant acceleration. The integration scheme is unconditionally stable, if 

21 1
, 0.25( )

2 2
    +  and it is only conditionally stable for 

21 1
, 0.25( )

2 2
    +  provided 

that the stability limit is fulfilled: 

 

 

1
2 2

21 1

2 2 2

2

critt


    






    
− + − + −    

      =
 

− 
 

 (5.102) 

where   is the modal damping parameter. 

The above defines the condition for time increment t  for a linear conditionally stable case: 
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 (5.103) 

 

As for Wilson   and Modified  Wilson  method, they use   parameter. Its value is 1   and 

the scheme is unconditionally stable for 1.4  . It essentially specifies the time, for which time 

we calculate the governing equations (5.95), i.e t t+   .  For  1 =  Wilson   and Modified  

Wilson  method yield the same solution expressions and equations, and these are also the same 

as those for Newmark and Hughes methods with 
1 1

, , 0
2 6

  = = = . 

Modified Wilson  method assembles the governing equations for time t t+  . As a result, all 

Von Neumann boundary conditions must be given for t t+  , (e.g., concentrated load, load by 

MASS_ACCELERATION etc.).  It does not apply to Dirichlet boundary conditions that are (as 

usually) input for t t+   (e.g., prescribed displacement, acceleration etc.).  

The fact that the Modified Wilson  method executes for t t+  also affects output/draw of 

results in structural material points. Within iterations (e.g., for monitors at iterations), they are 

printed/drawn for  t t+  . After the iterations process has been completed, they are 

printed/drawn for  t t+   as usual. Internal forces are always printed for t t+   and the same for 

external forces. 

As described above Modified Wilson  method behaves in a bit nonstandard way. Particularly 

input for t tR +   is unpractical. To alleviate these difficulties and inconvenience, Atena also offers 

Wilson   method. Although it still solves the governing equations for time t t+  , it uses 

several extrapolations (e.g., ( ), ( )t t t t t t t t t t t tR R R R F F F F  +  + +  += + − = + − ) so that it 

suffices with t tR +  and t tF +  only. Consequently, it inputs all boundary conditions and 

print/draw all result for t t+   akin to any other solution method for dynamic analysis. On the 

other hand, it is at price of accuracy because the extrapolation is linear, whereby the loading and 

internal forces are not!    

Remind that for dynamic analysis, concentrated forces, element body/boundary load, etc., is 

input in the incremental form, and it is "cumulated" in the structure. The same applies to 

prescribed displacements.  

Prescribed velocities, accelerations, etc., must be input as total load. MASS_ACCELERATION 

must also be input in total values (and in each step, it is also recalculated from scratch).   

 

More details on the methods' convergency can be found in (Hughes 1983) and (Wood. 1990). 

 

 

As far as damping matrix C is concerned, Atena uses the well known proportional damping: 
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 M K = +C M K  (5.104) 

where ,M K   are user-defined damping coefficients. These coefficients can be directly set as 

user input data, or they can be generated based on knowledge of modal damping parameters  . 

The parameters   are defined by 

 ( ) 2T T

i i i M K i i i      = + =C M K  (5.105) 

where: 

i  is i-th structural eigenvector, 

i  is i-th structural eigenmode, 

i  is modal damping parameter associated with i  and i . 

Using the fundamental properties of eigenmodes 1,T T

i i iM K    = = , we can rewrite (5.105)  

 2 2M K i i i    + =  (5.106) 

Equations (5.104) introduces 2 parameters for damping and, thus, if only 2 values of i  are to be 

used, they are directly substituted in (5.105), (resp. (5.106)) and solved for from this set of 

equations. 

However, in practice, structural damping is more complicated and some sort of compromise 

must be done. In this case, structural damping properties are typically measured for more 

eigenmodes, and optimal values of coefficients ,M K   are calculated by the least square method, 

i.e., we are seeking a minimum of the expression ( )
2

2 2i M K i i i

i

w      = + − .  It yields the 

following set of equations 
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 (5.107) 

 which is used to calculate the required damping parameters ,M K  .  

There exist other assumptions to account for structural damping; however, their use is typically 

significantly more complex and more costly in terms of both RAM and CPU.  
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A proper selection of the solution time increment dt is essential for each dynamic analysis. If it is 

too large, the computed results will suffer from unacceptable inaccuracies. We will probably 

miss some important peaks in the loading history, and the analysis as a whole may even diverge. 

On the other hand, the use of a too-small value of dt will yield an analysis that is pointlessly 

expensive in terms of execution time and its demands towards CPU/RAM resources. In addition, 

its postprocessing is more laborious and prone to errors. 

The spectral analysis described in this section is designed to assist the engineer in setting suitable 

dt. The main idea of the procedure is based on approximation of the structural loading ( )f t  by 

Fourier series ( )FTf t  , i.e. ( ) ( )FTf t f t , refer e.g., to http://en.wikipedia.org/wiki/Fourier_series 

. Both ( ), ( )FTf t f t  have one independent variable, which is structural time t  .  

The function ( )FTf t is assembled in the following form: 

 0

1

2 2
( ) sin cos

2

N

FT n n

n

a
f t a nt b nt

T T

 

=

   
= + +   

   
   (5.108) 

 

where N denotes the number of harmonics used for the approximation, n is harmonic-th id and 

2
sin nt

T

 
 
 

 and  
2

cos nt
T

 
 
 

 are n-th approximation functions, (i.e., n-th harminics). Eqn. 

(5.108) is suitable for approximation of a function (e.g. ( )f t ) in interval 0...t T  .  Its 

Fourier coefficients are calculated as follows, see 

http://stelweb.asu.cas.cz/~slechta/fourier/fourier.html , 

http://www.mathstools.com/section/main/fourier_series_calculator#.VCFKkhZIpKI: 
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  (5.109) 

 

Now let us introduce a coefficient 2 2

n n nc a b= +   and create a spectrum diagram of the loading. 

For each harmonic from (5.108), plot a point, whose coordinates are  '2
, nn c

T

 
 
 

. Such a point 



330 

shows how much important is the nth harmonic (i.e., the harmonic with circular frequency 

2
n

T


) for the loading function, i.e., how much it is excited by the load function ( )f t .  

The recommended solution time increment should be set so that the highest important harmonics 

are integrated in about 10 steps, i.e.,  

 min( )
10

significant

T
dt n   (5.110) 

 

By default, the FFT analysis uses a full modal spectrum, i.e., 1..n N=  in (5.108). However, the 

modal spectrum can be filtered, e.g. 1 1 2 2 1.. , .. ,... .. ,... ..k k Ln n m n m n m n m= . In this case, only values n 

from within the L intervals are used. This technique can be used to filter out some noise signals, 

etc. 

 

Let's take an example: Assume a simplified ElCentro accelerogram loading conditions, whose 

acceleration in time are depicted by the green line in the figure below: 

 

 

Let's approximate this function by the Fourier series. In the first case, we use 300 harmonics, i.e., 

300N = . The approximated accelerations are shown by the blue line, as seen in the figure 

above. In the second case, we use only 50 harmonics, and the corresponding approximation 

function is drawn by the red line. Plotting the functions in more detail, it can be seen that the 

approximation with 300N =  is fairly accurate whilst the approximation with 50N =  is rather 

crude, see the figure below. This conclusion is endorsed by the calculated average relative 

absolute error of the approximations. These are respectively 0.0314256 and 0.878789 
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The spectrum diagram below shows the contribution of individual approximation harmonics. It 

detects what harmonics are or are not important. Looking at the diagram, we see that the highest 

important harmonics is the one with log10( ) 1nT = − , i.e. min 0.1T = . Therefore, the recommended 

solution time increment is min 0.01
10

T
dt  = . This dt should ensure reasonably accurate results 

from dynamic analysis of a structure that is loaded by the investigated accelerogram.    
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The described spectrum analysis is fully supported by Atena (incl. all the plots). Its use is simple 

as it requires only a few input commands. For more details, please refer to the examples of 

commands for the input of a multilinear function (in the Atena input file documentation).  
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This section describes methods used by ATENA software to calculate structural eigenvalues 

and eigenvectors. Good knowledge of eigenmodes of a structure is, in many cases, essential 

for understanding its behavior and selection of a method for its further analysis. It applies to 

statics and particularly to dynamic analyses, in which case it helps to choose a proper time 

increment in subsequent loading steps. It also helps in avoiding or reducing oscillation of the 

structure. 

 

Currently, ATENA uses the Inverse subspace iteration method to compute the eigenvalues 

and eigenvectors.  The method is in detail described in (Bathe 1982), and hence, only its main 

features are presented here. The current implementation can be used only for symmetric 

matrices. The same applies to Jacobi and Rayleigh-Ritz methods that are mentioned later in 

this section. 

It consists of three methods; each of them is capable of solving the eigenvalue problem on its 

own. However, if they are used simultaneously, they yield a very efficient scheme for solving 

eigenvalues and eigenvectors of large sparse structural systems. The significant advantage of 

this approach is that it is possible to search for a selected number of the lowest eigenmodes 

only. The lowest eigenmodes are typically the most important for the behavior of the structure 

because they represent the highest energy that the structure can absorb. On the other hand, the 

highest eigenmode is of low importance, can be neglected, and thereby save a lot of CPU time 

and other computational resources.  

The Inverse subspace iteration consists of   

• Inverse iteration method 

• Rayleigh-Ritz method 

• Jacobi method    

It solves general eigenvalues and eigenvector problem of  the following form: 

 
2u u=K M  (8.1) 

where 

K,M  is stiffness and mass matrix of structure, 

u is the vector of eigenvector’s nodal displacements, 

  is circular eigenfrequency 

We are looking for a non-trivial solution, so that we solve for 
2  that comes from 

 2det( ) 0− =K M  (8.2) 
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This method is used to transform the original eigenproblem of dimension n into an associated 

eigenproblem of dimension m<<n. The solution is to search in space 
m nV V . Let vectors 

k  constitute linearly independent bases in 
nV . An eigenvector 

iu  is computed as a linear 

combination 
ic  of the base vectors 

k  , i.e. 

 
i iu c= Ψ  (8.3) 

where 

Ψ  is the matrix of base vectors , 1..k k m = , 

ic  is the vector of coefficients of the linear combination. 

Rayleigh quotient is defined as  

 ( )
T

i i
i T

i i

u u
u

u u
 =

K

M
 (8.4) 

It can be proved that ( )iu  converges from the upper side to the corresponding circular 

frequency 2

i . The condition of a minimum of ( )iu  yields: 

 
,

( )
0, 1..i

i k

u
k m

c


= =


 (8.5) 

where  ,i kc  is k  component of the vector 
ic  

If we introduce 

 ,T T= =A Ψ KΨ B Ψ MΨ  (8.6) 

the condition (8.5), after substituting (8.6), results in  

 2

i i ic c=A B  (8.7) 

which is an equation of eigenproblem of matrices A,B. This problem has dimension m, which 

is significantly smaller than the original dimension n.  

 

Jacobi method is used for the solution of full symmetric eigensystems of lower dimension. In 

the frame of the Inverse subspace iteration method, it is used to solve (8.7). (Note, however, 

that that the eigenproblem (8.7) can be used by any other method). 

The Jacobi method is based on the property that if we have a matrix A, an orthogonal matrix 

C, and a diagonal matrix D, whereby 

 
T =C AC D  (8.8) 
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then the matrices A and D  have identical eigenvalues, and they are diagonal elements of the 

matrix D.  The transformation matrix C is calculated in an iterative manner 

 
1 2....... , 1..k k= = C S S S  (8.9) 

where the individual   
kS  has the following form 

 

1 0 0 0

1

1

0 cos( ) 0 sin( ) 0

0 1 0

0 sin( ) cos( ) 0

0 0 0 1

kS  

 

 
 
 
 
 

= − 
 
 
 
 
 

 (8.10) 

The entries cos( ), sin( )   are put in i,j rows and columns, and they are constructed in the 

way that they will zeroize ija  after the transformation. The other diagonal elements are equal 

to 1 and the remaining off-diagonal elements are 0. 

In the case of a general eigenproblem, the whole procedure of constructing 
kS  is very similar. 

The matrices 
kS  now adopt the shape 

 

1 0 0 0

1

1

0 1 0 0

0 1 0

0 1 0

0 0 0 1

kS a

b

 
 
 
 
 

=  
 
 
 
 
 

 (8.11) 

Notice that the matrix 
kS  is not orthogonal anymore. The two variables a,b are calculated to 

zeroize off-diagonal elements i,j of both matrices K and M. Eigenmodes of the problem are 

then calculated as  

 
'

2

'

ii
i

ii

a

b
 =  (8.12) 

where   ' ',ii iia b  are diagonal elements of transformed (and diagonalized) matrices A, B.  

Eigenvectors of the problem are columns of the transformation matrix C. 

 

Inverse iteration method is carried out as follows: Starting with an initial transformation of 

eigenvector ,1iu , we calculate a vector of corresponding inertia forces (step 1)  
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,1 ,1i if u= M  (8.13) 

Knowing 
,1if , we can compute a new approximation of 

iu , (step 2) 

 1

,2 ,1i iu K f−=  (8.14) 

and repeat the step 1.  Hence, for iteration k we have  

 
, ,

1

, 1 ,

i k i k

i k i k

f u

u K f−

+

=

=

M
 (8.15) 

and the iterating is stop, when , 1 ,i k i ku u+  . The above-described algorithm tends to converge 

to the lowest eigenmodes. If any of these are to be skipped, the initial eigenvector ,1iu  must be 

orthogonal to the corresponding eigenvectors. In practice, the vector ,i ku  must be 

orthogonalized with respect to the skipped eigenvectors even during the iterating procedure, 

as the initial orthogonality may get (due to some round-off errors) lost. 

 

Having briefly described the above three methods, we can now proceed to the actual solution 

algorithm of the Inverse subspace iteration method itself: 

 

1

1 1 1

1 1 1

1 1 1 1

1 1 1
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Step3 Jacobi method:

Step 4-Correct theeigenvectors:
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+ + +
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=

−

=

=

2

KU MU

A U KU

B U MU

A C B C Δ

U U C

 (8.16) 

In the above 

m is the number of projection eigenmodes (reasonably higher than the number of required 

eigenmodes),   

kU  is the matrix of columnwise arranged m eigenvectors after k- th iteration, 

1k +A , 1k +B  are transformed stiffness and mass matrices of the problem, (having dimension 

m<<n), 

1k +C  is the matrix of eigenvectors of  1k +A , 1k +B , see (8.9) 
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2
Δ  is a matrix with eigenmodes (on its diagonal). Notice that eigenmodes for transformed and 

the original eigenmode problem are the same. 

  

The steps 1 thru 4 are repeated until the difference between the two subsequent operations is 

negligible. 

The solution algorithm (8.16) is in ATENA a bit modified in order to reduce CPU time and 

RAM resources and is described below: 

 

1

1 1

1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1

Step1- Inverseiteration method:

ˆ

ˆ

Step 2-Raylegh quotient method:

ˆ

ˆ

ˆ

Step3 Jacobi method:

Step 4-Corr

k k

k kk

T T

k k k k k

k k

T T

k k k k k

k k k k

+

+ +

+ + + + +

+ +

+ + + + +

+ + + +

=

=

= =

=

= =

−

= 2

U MU

KU U

A U KU U U

U MU

B U MU U U

A C B C Δ

1 1 1

ect theeigenvectors:

T T

k k k+ + +=U U C  (8.17) 

The advantage of this procedure over the one defined in (8.16) is that now you don’t need to 

store the original and factorized form of the matrix K. Only the factorized form is needed 

during the iterations. 

A special issue in this method is how to set up the initial vectors 1U . This is what we do in 

ATENA. The first vector contains the diagonal elements of M. The next vectors are 

constructed in the way that they have zeros everywhere except one entry. This entry 

corresponds to maximum ii

ii

m

k
 and is set to 1. 

The procedure as it is (because of the Inverse iteration method) cannot solve for zero 

eigenmodes. This may be a problem, especially if we want to analyze structural rigid body 

motions or spurious energy modes. If this is the case, shift matrix K  by an arbitrary value s , 

i.e., solve the associated eigenproblem 

 
2( )s s s su u − =K M M  (8.18) 

The original eigenvalues and eigenvectors are then calculated by 
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2 2

s

s s

u u

  

=

= −
 (8.19) 

Another problem of Inverse subspace iteration is to compute multiple eigenvectors. 

Unfortenatly, it is not that rare case and it happens, e.g., if the structure has an axis of 

symmetry. The occurrence of multiple eigenmodes in the structure may yield non-orthogonal 

eigenvectors, and thus, some eigenmodes can be missed. There are some techniques for 

resolve this problem (Jendele 1987); however, they have not been implemented in ATENA 

yet. Good news is that in reality, no eigenmodes are usually quite identical due to some 

round-off errors. The case of multiple structural eigenmodes thus typically causes only some 

worsening of accuracy and no eigenmode gets missed. 

Nevertheless, if we want to be sure that no eigenmode was missed, we can assess it by Sturm 

sequence property test.  

 

This property says (Bathe 1982) that if we have an eigenproblem (8.1), perform a shift s  and 

factorize that matrix (i.e., D is a diagonal matrix, L is a lower triangular matrix), 

 T

s− =K M L DL  (8.20) 

then the number of negative diagonal elements in D  equal to the number of eigenvalues 

smaller than the shift   . This way, we can simply test, whether we missed an eigenvalue 

with the calculated set of m eigenmodes or not 

There are other methods that can be used to compute eigenvalues and eigenvectors of large 

sparse eigensystems. Particularly popular is e.g., Lanczosh method (Bathe 1982). There exist 

also several enhancements for the present Inverse subspace iteration method. For instance, 

using a shifting technique may significantly improve the convergency of the method 

(especially if some eigenvalues are close to each other).  

These improved techniques may be implemented in the future. In any case, the current 

ATENA implementation of eigenmodes analysis proves to solve the eigenmodes problem in 

most cases quite successfully.     
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A unique feature of ATENA software is the way in which it implements Dirichlet boundary 

conditions. It supports to constraint any degree of freedom (DOF) by a linear of any number 

of other structural DOFs. The proposed method of applying and processing the boundary 

conditions is computationally efficient and memory economical because all constraint degrees 

of freedoms (DOFs) are eliminated already during assembly of structural global stiffness 

matrix and load vectors. The adopted concept has a wide range of use, and several of its 

possibilities are discussed. At the end of the Section, a few samples are given.  

 

A crucial part of a typical finite element analysis (whether linear or nonlinear) is the solution 

of a set of linear algebraic equations in the following form 

 
1

, 1..
n

ij j i

j

K u r i n
=

= =  (9.1) 

where ijK  is an element ,i j  of a predictor matrix K, (i.e., usually structural stiffness matrix), 

ir  is an external force (or unbalanced force), applied into i-th structural degree of freedom 

(DOF), and finally 
iu  is displacement (or displacement increment) at the same DOF. Such a 

set of equations is always accompanied by many boundary conditions (BCs). They can be one 

of the following: 

Von-Neumann boundary conditions, (also called right-hand side (RHS) BCs). Number and 

type of these BCs have no impact on dimension n of the problem (9.1). They are accumulated 

in the vector r . This vector is assembled on the per-node basis for concentrated nodal forces 

and/or per-element basis for nodal forces being equivalent to element loads.  

The second type of boundary conditions are Dirichlet boundary conditions (also called left-

hand side (LHS) BCs). ATENA implementation of this type of BCs is now described. A 

simple form of such BCs reads 

 
0

0, 1,

, 1,

l

l l

u l n

u u l n

=  

=  
 (9.2) 

These kinds of BCs typically represent structural supports with no displacements (the first 

equation) or with prescribed displacements
0lu , (the second equation). Although most LHS 

BCs are of the above form (and only a few finite element packages offer anything better), 

there are cases when a more general LHS BC is required. Therefore, ATENA software 

provides a solution for implementing a form of Dirichlet BCs, where each degree of structural 

freedom can be a linear combination of any other degrees of freedom. Mathematically, this is 

expressed by 

 0

1,

, 1,l l lk k

k n

u u u l n
 

= +    (9.3) 
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There are many cases in which the above form of Dirichlet conditions proves helpful. Some 

examples are discussed later in the Chapter. The important point about implementing 

Equations (9.3) is that they are utilized already during the assembling of the problem (9.1). It 

means that if we have m of these BCs, then the final dimension of the matrix K becomes only 

( )n m− . This fact significantly reduces requirements for computer storage.  

In the following, we shall call such boundary conditions as “Complex Boundary Conditions”, 

or CBCs, (see also ATENA Input file manual, where the same name is used).  

 

The procedure of implementing Dirichlet BCs of the form (9.3) is now presented. Let us start 

with just one BC equation (9.4). It says that 
lu  equals to a constant prescribed displacement 

0lu  plus 
lk multiple of a displacement 

ku .   

 
0l l lk ku u u= +  (9.4) 

Substituting (9.4) into the Equation (9.1) yields  

 0

1, 1,

( ) , 1..
n n

ij j il l ij j il l lk k i

j j l j j l

K u K u K u K u u r i n
=  = 

+ = + + = =   (9.5) 

which after some manipulation can be simplified into the form  

 ( ) 0

1

, 1..
n

ij il lk kj j i il l

j

K K u r K u i n 
=

+ = − =  (9.6) 

The above set of equations could be already used to solve for the unknown displacements (or 

displacement increments) ju . kj  stands for .k j  Kronecker delta tensor. The trouble is, 

however, that even though the matrix K might be symmetric, the set of equations (9.6) is not 

symmetric anymore. Thus, to preserve the symmetry, add  an 
lk  multiple of the row l , i.e.,     

 ( ) ( )0

1

n

lk lj ll lk kj j lk l ll l

j

K K u r K u   
=

 
+ = − 

 
  (9.7) 

to the row k, i.e., 

 ( ) 0

1

n

kj kl lk kj j k kl l

j

K K u r K u 
=

+ = −  (9.8) 

This results in the row k getting the form 

 

( )( )

( )( )

( )

1

1

0 0

n

kj kl lk kj lk lj ll lk kj j

j

n

kj lk lj kl lk lk lk ll kj j

j

k kl l lk l lk ll l

K K K K u

K K K K u

r K u r K u

    

    

 

=

=

+ + + =

+ + + =

− + −



  (9.9) 
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Hence, the final form of the governing set of equations will read 

 
( )

( )

2

1

0 0

n

ij il lk kj ik lk lj ik kj lk ll j

j

i il l ik lk l ll l

K K K K u

r K u r K u

      

 

=

+ + + =

− + −


 (9.10) 

The above equations can be written as 

 
1

, 1..
n

ij j i

j

K u r i n
=

= =  (9.11) 

where 

 

11 1 1 1 1 1

1

2

1 1

... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ...

... ... ... ... ... ... ... ... ...

... ... 2 ... ...

i k l lk j n

i ii ik il lk ij in

k lk l ki lk li kk kl lk kk kk lk ll kj lk lj kn lk

K

K K K K K K

K K K K K K

K K K K K K K K K K K





       

=

+

+

+ + + + + +

1

1

... ... ... ... ... ... ... ... ...

... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ...

ln

j ji jk jl lk jj jn

n ni nk nl lk nj nn

K K K K K K

K K K K K K





 
 
 
 
 
 
 
 
 
 +
 
 
 + 

 (9.12) 

 

 
( )

1 1 0

0

0 0

0

0

...

...

...

...

l l

i il l

k kl l lk l ll l

j jl l

n nl l

r

r K u

r K u

r K u r K u

r K u

r K u



=

− 
 
 
 −
 
 
 − + −
 
 
 −
 
 
 − 

 (9.13) 

 

Providing the original matrix K is symmetric, i.e. ij jiK K= , then the matrix K  is now also 

symmetric, i.e. 
ij jiK K= . 

The displacement 
lu  constrained by Equation (9.4) has a constant part 

0lu  and a variable part 

lk ku ,  in which 
lu  depends only on a single 

ku . A more general form of this BC would be if 

lu  depends on more displacements. It corresponds to the following form of the boundary 

condition: 
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 0l l lk k

k

u u u= +   (9.14) 

In this case, the displacement 
lu  is calculated as a constant part 

0lu  plus a linear combination 

lk  of displacements 
ku . k can be any displacement, i.e. 1..k n  . Replacing BC defined 

by Equation (9.4) by the above Equation (9.14), the equation will change to the form 

 
( )

( )( )

2

1 ,

0 0

,

n

ij il lk kj ik lk lj ik kj lk ll j

j k k l

i il l ik lk l ll l

k k l

K K K K u

r K u r K u

      

 

= 



 
+ + + = 

 

− + −

 


 (9.15) 

10.1.2 Mul iple CBCs 

The previous paragraph derived all the necessary relations for implementing a single 

boundary condition. Now we will proceed to the case of multiple boundary conditions. Each 

particular BC is again written in the form (9.14). 

 0 1 2, 1, , { , ,... }l l lk k r

k

u u u l n l l l l= +   =  (9.16) 

The problem is, however, that displacements 
ku  in (9.16) need not be free but fixed by 

another BC, k can also run through l, (resulting in a recursive formulation), more BCs can be 

specified for the same 
lu , a particular BC can be specified more times and in more forms etc. 

For example, we may have a set of boundary equations that contains BCs 

 
1 2 2 1,u u u u= =  (9.17) 

or it can contain  

 
1 2 2 1 1, , 0.003u u u u u= = =  (9.18) 

Both of these are correct. Unfortunately, the set can also contain  

   
1 2 2 2 1 1, 0.003, , 0.003u u u u u u= = − = =  (9.19) 

which is definitely wrong. Therefore, before any use of such set of BCs it is necessary to 

detect and fix all redundant and contradictory multiple BCs present in it. It is easily done in 

case of a simple set of BCs like the one above, but in real analyses with thousands of BCs in 

the form (9.16), (some of them quite complex, i.e., k runs through many DOFs) the only way 

to proceed is to treat (9.16) as a set of equations to be solved prior their use in (9.13). 

Redundant BCs are ignored, and contradictory BCs are fulfilled after their summation.  Let us 

suppose that all structural constraints are specified in the set of equation (9.16). This can be 

written in matrix form 

 
0l l ku u u= + A  (9.20) 

The above relationship represents a system of algebraic linear equations. The system is 

typically non-symmetric, sparse and has a different number of rows (i.e., the number of BCs) 

and columns, (i.e., the number of master and slave DOFs). Moreover, it is often ill-
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conditioned, with a number of equations being linear combinations of the others, e.g., see the 

example in (9.17). In the beginning, it is often not known which DOF is dependent, (i.e., 

slave) and which is independent, (i.e., master), (e.g., see also (9.17)). 

Based on the above properties, the following procedure has been developed to solve the 

problem (9.20):  

1. Allocate "columns" for all slave and master DOFs, i.e., loop through all BCs in (9.16) 

and allocate DOFs for both slave (i.e., LHS) and master (i.e., RHS) displacements 
iu . 

2. Allocate storage for the matrix A  and vectors 
0,l lu u  in (9.20). The matrix has 

rl  the 

number of rows (see (9.16)) and 
cl  the number of columns. 

cl  is the dimension of the 

DOFs map created in the point add. 1. 

3. Assemble the matrix A  and the vectors 
0,l lu u .  

4. Detect constant BCs, i.e., 
0l lu u=  and swap rows of A so that the rows corresponding 

to constant BCs are pushed to the bottom.  

5. Detect constant fixed DOFs, i.e., those with 0lk =  and variable fixed DOFs, i.e., that 

are those dependent on other (master) DOFs and having 0lk  . 

6. Swap columns of A , so that the former DOFs are pushed to the right and the latter 

DOFs to the left. The operations described at the point 5 and 6 are needed to assure 

order, in which the constrained DOFs are eliminated. This is important for later 

calculation of the structural reactions. 

7. Using the Gauss method to triangulate the set of BC equations. The triangulation is 

carried out in the standard way with the following differences. 

a. Before eliminating entries of A located in column below 
kka , check for a non-

zero entry in the row k. If all its entries are zero, then ignore this row and 

proceed to the next one.  (It is the case of multiple BCs having the same 

content). 

b. Check, whether the row k specifies BC for constant or variable DOF, (see 

explanation in the point 5 above). In the former case push the row k to the 

bottom and proceed to the next row. 

c. Swap columns ... ck l   so that ( )kkabs a becomes maximum.  

d. If 0kka = , swap lines ... rk l   to find a non-zero entry in 
kka . Thereafter, 

swap columns ... ck l   to find maximum 
kka . 

e. Eliminate entries below 
kka  as usually. 

As it was already mentioned, the matrix A is typically very sparse. Hence, a special storage 

schemes are used that stores only non-zero entries of A. The data are stored by rows. Each 

row has a number of data series, i.e., sequences or chunks of consecutive non-zero data 

(within the row). The data are in a three-dimensional container.  For each such chunk of data, 

we also need to store its first position and length. This is done in two two-dimensional 

containers.  
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As an example, suppose that we have the following matrix A: 

 

11

22 23 26 27

33

42 44

55 56 57

62 66

77

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

a

a a a a

a

a a

a a a

a a

a

 
 
 
 
 

=  
 
 
 
 
 

A  (9.21) 

 It is stored as follows ( .Adata stores the actual data, .Arowbase stores base indices for non-

zero entries in rows, .A rowlength  contains dimension of non-zero data chunks; all arranged 

by rows): 

 

11

22 23 26 27

33

42 44

. (1)(1)(1)

. (2)(1)(1) , . (2)(1)(2) , . (2)(2)(1) , . (2)(2)(2)

. (3)(1)(1) ,

. (4)(1)(1) , . (4)(2)(1)

.......

. (1)(1) 1

. (2)(1) 2,

A data a

A data a A data a A data a A data a

A data a

A data a A data a

A rowbase

A rowbase A

=

= = = =

=

= =

=

= . (2)(2) 6

. (3)(1) 3

. (4)(1) 2, . (4)(2) 4

.....

. (1)(1) 1

. (2)(1) 2, . (2)(2) 2

. (3)(1) 1

. (4)(1) 1, . (4)(2) 1

rowbase

A rowbase

A rowbase A rowbase

A rowlength

A rowlength A rowlength

A rowlength

A rowlength A rowlength

=

=

= =

=

= =

=

= =

 (9.22) 

A number of optimisation techniques are used to speed up the process of triangularization of 

the matrix A. These are summarized below: 

The data are stored by rows and the elimination is also carried out by rows. (Row-based 

storage is also more convenient during assembling the A from (9.16)). All the operations 

needed for the elimination are carried out only for nonzero data. Their horizontal position is 

stored in .Arowbase  and .A rowlength , hence it is no problem to skip all zero entries. A 

typical total number of columns 
cl , see (9.16), is of order from thousands to hundred 

thousands DOFs. On the other hand .a rowlength is on average only of order of tens. This is 

where the CPU savings comes from. 

By the way, the same mapping of non-zero entries is also used for columns. This is achieved 

by additional arrays .Acolumnbase  and .A columnlength  that are also included in the storage 

scheme A. (Their construction is similar to .Arowbase  and .A rowlength ; instead by rows 
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they are arranged by columns). These two additional arrays make possible to skip all zero 

entries during column-base operations. The resulting significant increase of triangularization 

speed pays off for a small amount of an extra RAM that is needed to store .Acolumnbase  and 

.A columnlength . 

The adopted procedure of triangularization many times swaps lines and/or columns of A. In 

view of the adopted storage scheme, it can be a quite expensive procedure. To alleviate this 

problem, the storage scheme includes four additional arrays, namely .Arowindex , 

.Arowinverseindex , .Acolumnindex  and .Arowinverseindex . In the 

beginning, . ( )A rowindex i i=  and similarly . ( ) , 1... cArowinverseindex i i i l= = . When a row 
1r  

should be swapped with a row 
2r , the data in .Adata  remains unchanged and we swap only 

corresponding row indices in .Arowindex , (and accordingly also entries in the array for 

inverse mapping .Arowinverseindex).  The same strategy is used for swapping the columns. 

As a result, any swapping operation does not require any moving of actual data (except of 

swapping corresponding indices for mapping the rows and columns) and thus it is extremely 

fast. On the other hand, in order to access ija we must use ' 'i ja , where ' ( )i rowindex i=  and 

' ( )j columnindex j= . The incurred CPU overhead is well acceptable, because the matrix A is 

very sparse.  

 

This section presents several examples where the developed Dirichlet boundary conditions are 

advantageously used. In each case, the corresponding finite element model exploits the 

general form of BC defined by Equation (9.16).  

 

Suppose we need to refine a mesh as shown in Fig. 10-1. The mesh should refine from 5 

elements per row to 10 elements per row. The figure depicts three possible techniques to 

achieve the goal.  

In the case A, the fine and coarse parts of the mesh (consisting of quadrilateral elements) are 

connected by a row of triangular elements. This way of mesh refinement is used the most 

often. However, mixing quadrilateral and triangular elements is not always the best solution. 

In the case B, the refinement is achieved by using hierarchical finite elements,  see (Bathe 

1982). The coarse mesh near the interface employs five nodes hierarchical elements. This 

refinement is superior to the others; however, it requires special finite elements and special 

mesh generator; both of these rarely available in a typical finite element package.   

In the case C, the fine and coarse parts of the mesh are generated independently. After the 

generation of all nodes and elements, the interface nodes are connected by complex boundary 

conditions. For example, we can use , , 0.5 0.5i m k n j m nu u u u u u u= = = + . The main advantage 

of this approach is that it is simple for both finite element pre/postprocessor and finite element 

modeler (namely its finite element library). Hence it is preferable! 
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Note that all the above techniques are supported in ATENA finite element package, the last 

one requiring implementation of CBCs in the form (9.14). 

 

This example demonstrates another advantage of using the proposed CBCs: It is possible to 

generate meshes within sub-regions without requirement of nodes coincidence on their 

interfaces. Because mesh structure on the sub-regions’ surfaces is not prescribed, this 

approach provides more flexibility to mesh generation. This feature is heavily used by 

ATENA 3D pre-processor. 

  

Compatible meshes on the contact between the blocks 
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Incompatible meshes on the contact between the blocks using CBCs 

In the above example, two blocks are connected to form a structure, where the top (smaller) 

block is placed atop of the bottom (larger) block. The position of the top block is arbitrary 

with respect to the bottom block. Unless the concept of CBCs is used, the meshes on the 

interface of the two blocks must be compatible (see top of Fig. 10-2). On the other hand, the 

proposed CBCs allow using of incompatible meshes (see the bottom of Fig. 10-2). In this 

case, the mesh in each block is generated independently, which is significantly simpler. After 

they are done, the proposed CBCs are applied to connect the interface nodes. (Typically, the 

surface with the finer mesh is fixed to the surface with the coarse mesh).  The latter approach 

also demonstrates the possibility of a mesh refinement while still using well-structured and 

transparent meshes. This is particularly useful in the case of complex numerical models.       

 

In this example, the described boundary conditions are used to simplify the modeling of the 

reinforced concrete beam, see Fig. 10-3. The procedure to create the model is as follows. 

Firstly, the mesh for solids, i.e., concrete elements are generated. It poses no problem, as it is 

a regular mesh consisting of 48 quadrilateral elements. At this point, no attention needs to be 

paid to the geometry of reinforcing bars present in the beam. Thereafter, the reinforcing bars 

are inserted and their meshes are generated based on the existing mesh of solid elements. The 

first step is to find all nodes, where the bar changes direction. These nodes are called principal 

nodes; see e.g., node n in Fig. 10-3. Then, the intersection of all straight parts of the bar with 

underlying solid elements are detected, e.g., the nodes m,p. Thus, all end nodes of embedded 

bar elements are defined. The last step is to link displacements of the nodes of the bar to the 

underlying solid elements.  
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i j

l

n

p k
m

bar 1

bar 2 

For example, if we want to connect the node n to the an embedding solid element, i.e., to 

nodes i,j,k,l, see Fig. 10-3, we use the standard interpolation 
4

1

( , ) ( , )i i

i

u r s h r s U
=

=  , where 

( , ),i ih r s U  are element interpolation function and Ui are nodal displacements for the 

underlying solid element, respectively. For displacement at the node n we can write 
4

1

( , ) ( , )n n i n n i

i

u r s h r s U
=

=  .  ( ,n nr s ) are coordinates of the node n. Comparing this formula with 

(9.3), it is obvious that 
0( , ), 0ni i n n nh r s u = = . Consequently, the bar DOFs are always 

kinematically dependent on the DOFs of underlying solid elements.  

This technique can also be applied when bond elements are inserted between solid and 

embedded bar elements. This is treated in a separate paper by authors in ref. (Jendele, 2003). 

Currently, ATENA software can generate discrete reinforcement to all 2D and 3D linear and 

nonlinear elements (triangles, quads, tetrahedral elements, wedges, bricks…). The user only 

draws the position of the principal nodes of reinforcement bars and the rest is done 

automatically. 

 

In the following text, another possible use of the present boundary conditions is presented. A 

curvilinear nonlinear beam from Chapter 3.17 is discussed. A particular feature we would like 

to point out here is that although it originally has only three displacements and three rotations 

in the nodes 13,14,15, see Fig. 3-40, its implementation in ATENA has also 3 displacements 

in the nodes 1 to 12. However, these DOFs are linked to the original DOFs in the nodes 13 to 

15 by the proposed CBCs. This concept has several advantages. 

• The beam finite element has native 3D geometry and its pre- and post-processing 

visualization is more realistic than using its original 1D geometry. 

• It is simple to connect such beam elements to any adjacent 3D finite elements, e.g., 

brick elements. 

• Mesh generation is easily done by any 3D solid element generator that can pull off 

nonlinear hexahedral elements. It suffices to generate only the nodes 1 to 12 (with 3 

displacement DOFs) and the three original beam nodes (each beam node has 3 

displacement and 3 rotation DOFs) are generated automatically. The pre-processor 

need not to support rotational DOFs.  
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• The post-processing of this element and an ordinary nonlinear hexahedral element is 

the same. Consequently, this element does not need any extra support for the 

visualisation of the results. It makes its implementation and use simple. 

Derivation of all ij  coefficients and 
0iu  constants for all nodes 1 to 12 is beyond the scope 

of this document. Nevertheless, a similar procedure is used, as it was in the previous example. 

ATENA package also covers Ahmad element for curved shell structures, see Chapter 3.12. 

The usual 2D shape of the shell element is in the same manner, replaced by geometry of a 3D 

nonlinear hexahedral element. Originally, the shell element has 3 displacements and 2 

rotations at each node located in the middle thickness of the shell. These 5 DOFs are in by use 

of CBCs replaced by 3 displacements at the top and 2 displacements at the bottom at the 

respective nodes from the hexahedron, (i.e., brick)  geometry. Advantages of this approach 

are the same as those in the case of the curvilinear beam above: simpler pre/post-processing, 

simpler connection to the adjacent 3D elements, no need to support rotational DOFs during 

pre/post-processing, no need for extra support for geometry of the shell element. 
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