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1 CONTINUUM GOVERNING EQUATIONS 

1.1  Introduction  
This chapter presents the general governing continuum equations for nonlinear analysis. In 
general, there exist many variants of nonlinear analysis depending on how many nonlinear 
effects are accounted for. Hence, this chapter first introduces some basic terms and entities 
commonly used for nonlinear structural analyses, and then it concentrates on formulations that 
are implemented in ATENA.  

It is important to realize that the whole structure does not have to be analyzed using a full 
nonlinear formulation. However, a simplified (or even linear) formulation can be used in many 
cases. It is a matter of engineering knowledge and practice to assess, whether the inaccuracies 
due to a simplified formulation are acceptable or not.  

The simplest formulation, i.e., linear formulation, is characterized by the following assumptions: 

The constitutive equation is linear, i.e., the generalized form of Hook's law is used. 

The geometric equation is linear; that is, the quadratic terms are neglected. It means that during 
analysis, we neglect the change of shape and position of the structure. 

Both loading and boundary conditions are conservative, i.e., they are constant throughout the 
whole analysis irrespective of the structural deformation, time etc. 

Generally, linear constitutive equations can be employed for a material, which is far from its 
failure point, usually up to 50% of its maximum strength. Of course, this depends on the type of 
material, e.g., rubber needs to be considered as a nonlinear material earlier. But for usual civil 
engineering materials, the previous assumption is satisfactory. 

Geometric equations can be considered linear if the deflections of a structure are much smaller 
than its dimensions. This must be satisfied not only for the whole structure but also for its parts. 
Then the geometric equations for the loaded structure can then be written using the original 
(unloaded) geometry. 

It is also important to realize that a linear solution is permissible only in the case of small strains. 
This is closely related to the material property because if strains are high, the stresses are usually, 
although not necessarily, high as well.  

Despite the fact that for the vast majority of structures linear simplifications are quite acceptable, 
there are structures when it is necessary to take into account some nonlinear behavior. The 
resulting governing equations are then much more complicated, and normally they do not have a 
closed-form solution. Consequently, some nonlinear iterative solution schemes must be used (see 
Chapter Solution of Nonlinear Equations further in this document).  

Nonlinear analysis can be classified according to a type of nonlinear behavior: 

Nonlinear material behavior only needs to be accounted for.  This is the most common case for 
ordinary reinforced concrete structures. Because of serviceability limitations, deformations 
are relatively small. However, the very low tensile strength of concrete needs to be accounted 
for. 

Deformations (either displacements only or both displacements and rotations) are large enough 
such that the equilibrium equations must use the deformed shape of the structure. However, 
the relative deformations (strains) are still small. The complete form of the geometric 
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equations, including quadratic terms, has to be employed, but constitutive equations are 
linear.  This group of nonlinear analyses includes most stability problems. 

The last group uses nonlinear both material and geometric equations. In addition, it is usually not 
possible to suddenly apply the total value of load, but it is necessary to integrate in time 
increments (or loading increments). This is the most accurate and general approach but 
unfortunately, is also the most complicated.  

There are two basic possibilities for formulating the general structural behavior based on its 
deformed shape: 

Lagrange formulation: 

In this case, we are interested in the behavior of infinitesimal particles of volume dV . Their 
volume will vary dependent on the loading level applied and, consequently, on the extent of 
current deformations. This method is usually used to calculate civil engineering structures. 

 Euler formulation: 

The essential idea of Euler's formulation is to study the "flow" of the structural material through 
infinitesimal and fixed volumes of the structure. This is the favorite formulation for fluid 
analysis, analysis of gas flow, tribulation etc., where large material flows exist. 

For structural analysis, however, the Lagrangian formulation is better, and therefore the attention 
will be restricted to this. Two forms of the Lagrangian formulation are possible. The governing 
equations can either be written with respect to the original undeformed configuration at time t = 
0 or with respect to the most recent deformed configuration at time t. The former case is called 
Total Lagrangian formulation (TL), while the latter one is called the Updated Lagrangian 
formulation (UL).    

It is difficult to say which formulation is better because both have their advantages and 
drawbacks. Usually, it depends on a particular structure being analyzed and which one to use is a 
matter of engineering judgment. Generally, provided the constitutive equations are adequate, the 
results for both methods are identical.  

ATENA currently uses the Updated Lagrangian formulation (which is described later in this 
chapter) and supports the highest, i.e., 3rd level of nonlinear behavior. Soon, it should also 
support Total Lagrangian formulation. 

1.2 General Problem Formulation 
A general analysis of a structure usually consists of the application of many small load 
increments. At each of those increments, an iterative solution procedure has to be executed to 
obtain a structural response at the end of the increment. Hence, denoting the start and end of the 
load increment by t  and t t  , at each step, we know the structural state at the time t  (from the 
previous steps) and solve for the state at the time t t  . This procedure is repeated as many 
times as necessary to reach the final (total) level of loading. 

This process is depicted in Fig. 1-1. At the time 0t   the volume of the structure is 0V , the 
surface area is 0S , and any arbitrary point M has coordinates 0 0 0

1 2 3, , X X X . Similarly, at the 

time t  the same structure has a volume tV , surface area tS , and coordinates of the point M  are 

1 2 3, , t t tX X X . A similar definition applies for the time t t   by replacing index t  by t t  . 
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M0
M1 M2

[0X1,
 tX1,

 t+tX1]
[0X2,

tX2,
t+tX2]

[0X3,
 tX3,

 t+tX3]

Configuration 0 Configuration t
Configuration t+t

 

Fig. 1-1 The movement of body of structure in Cartesian coordinate system. 

For the derivations of nonlinear equations, it is important to use clear and simple notations. The 
same system of notation will be used throughout this document: 

Displacements u  are defined in a similar manner to that adopted for coordinates, hence t
iu is the 

i -th element of the displacement vector at the time t , 
t t t

i i iu X X   is i -th element of the vector of displacement increments at the time t , 

The left superscript denotes the time corresponding to the value of the entity, the left subscript 
denotes the configuration with respect to which the value is measured, and subscripts on the 
right identify the relationships to the coordinate axis. Thus, for example 0

t t
ij

  denotes 

element i , j  of stress tensor  at the time t t   with respect to the original (undeformed) 
configuration. 

For derivatives, the abbreviated notation will be used, i.e., all right subscripts that appear after a 
comma declare derivatives. For example: 

 0 ,
t t t t

i j i
j

u u
X

 



 (1.2) 

The general governing equations can be derived in the form of a set of partial differential 
equations (for example, using the displacement method), or an energy approach can be used. The 
final results are the same.  

One of the most general methods of establishing the governing equations is to apply the principle 
of virtual work.  There are three basic variants of this: 

The principle of virtual displacements, 

The principle of virtual forces, 

The Clapeyron divergent theorem. 

Using the virtual work theorems, it is possible to derive several different variation principles 
(Lagrange principle, Clapeyron principle, Hellinger-Reissner principle, Hu-Washizu principle 
etc.). There are popular especially in linear analysis. They can be used to establish equilibrium 
equations, to study possible deformation modes in finite element discretization etc. 
Unfortunately, in the nonlinear analysis, they do not always work. 
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In this document, all the following derivations will be presented in their displacement forms, and 
consequently, the principle of virtual displacements will be used throughout. 

The following section deals with the definition of the stress and strain tensors, which are usually 
used in nonlinear analysis. All of them are symmetric. 

1.3 Stress Tensors 

1.3.1 Cauchy Stress Tensor  
This tensor is well known from linear mechanics. It expresses the forces that act on 
infinitesimally small areas of the deformed body at time t. Sometimes, these are also called an 
"engineering" stress. The Cauchy stress tensor is the main entity for checking ultimate stress 
values in materials. In the following text, it will be denoted by  . It is energetically conjugated 
with an Engineering strain tensor described later. 

1.3.2   2nd Piola-Kirchhoff Stress Tensor 
The 2nd Piola-Kirchhoff tensor is a fictitious entity, having no physical representation of it as in 
the case of the Cauchy tensor. It expresses the forces, which act on infinitesimal areas of the 
body in the undeformed configuration. Hence it relates forces to the shape of the structure, which 
no longer exists. 

The mathematical definition is given by: 

 
0

0 0
0 , ,
t t

ij t i m mn t j nt
S X X

 


  (1.3) 

where 
0

t




 is the ratio of density of the material at time 0  and t , 

 t
mn  is the Cauchy stress tensor at time t , 

 0
,t i mX is the derivative of coordinates, ref. (1.5).  

Using inverse transformation, we can express Cauchy stress tensor in terms of the 2nd Piola-
Kirchhoff stress tensor, i.e.: 

 0 , 0 0 ,0

t
t t t t

mn m i mn n jX S X



  (1.4) 

The elements 0
,t i mX are usually collected in the so-called Deformation gradient matrix: 

  0 0

Tt t TX X   (1.5) 

where: 

 

0 0 0 0
1 2 3

, ,
T

T

X X X

   
      

 

1 2 3, ,t T t t tX X X X     
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The ratio 
0

t




 can be computed using: 

 0
0det( )t t X   (1.6) 

Expression (1.6) is based on the assumption that the weight of an infinitesimal particle is 
constant during the loading process.  

Some important properties can be deduced from the definition of 2nd Piola-Kirchhoff tensor (1.3)
: 

at time 0, i.e., the undeformed configuration, there is no distinction between 2nd Piola-Kirchhoff 

and Cauchy stress tensors because 0
0 X E , i.e., unity matrix and the density ratio 

0

t




 = 1., 

2nd Piola-Kirchhoff tensor is an objective entity in the sense that it is independent of any 
movement of the body provided the loading conditions are frozen. This is a very important 
property. The Cauchy stress tensor does not satisfy this because it is sensitive to the rotation 
of the body. It is energetically conjugated with the Green-Lagrange tensor described later. 

They're some other stress tensor commonly used for nonlinear structural analysis, e.g., Jaumann 
stress rate tensor (describes stress rate rather than its final values) etc.; however, they are not 
used in ATENA and therefore not described in this document.  

1.4 Strain Tensors 

1.4.1 Engineering Strain 
It is the most commonly used strain tensor, comprising strains that are called Engineering strains. 
Its main importance is that it is used in linear mechanics as a counterpart to the Cauchy stress 
tensor. 

 
1

2
m n

t mn t t
n m

u u
e

X X

  
    

 (1.7) 

1.4.2 Green-Lagrange Strain  
This is the energy conjugate of the 2nd Piola-Kirchhoff tensor and its properties are similar (i.e., 
objective etc.). It is defined as: 

  0 0 , 0 , 0 , 0 ,

1

2
t t t t t

ij i j j i k i k ju u u u     (1.8) 

If we calculate the length of an infinitesimal fibber prior to and after deformation in the original 
coordinates, we get exactly the terms of the Green-Lagrange tensor. 

The following equation gives a relation between variation of Green-Lagrange and Engineering 
strain tensors: 

    0 0 0

t t
t m n

ij t mn
i j

X X
e

X X
  

  
 

 (1.9) 
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These are the strain tensors used in ATENA. From the other strain tensors commonly used in the 
nonlinear analysis we can mention Almansi strain tensor, co-rotated logarithmic strain, strain 
rate tensor etc. 

1.5 Constitutive Tensor 
Although the whole chapter later in this document is dedicated to the problem of constitutive 
equations and to material failure criteria, assume for the moment that  stress-strain relation can 
be written in the following form: 

 0 0 0
t t t

ij ijrs rsS C   (1.10) 

where 0
t

ijrsC is the constitutive tensor. 

This form is applicable for linear materials, or in its incremental form, it can also be used for 
nonlinear materials. The following important relations apply for transformation from coordinates 
to time 0  to coordinates at the time t : 

 0 , 0 , 0 0 , 0 ,0

t
t t t t t t
t mnpq m i n j ijrs p r q sC x x C x x




  (1.11) 

or in the other direction 

 
0

0 0 0 0
0 , , , ,
t t

ijrs t i m t j n t mnpq t r p t s qt
C x x C x x




  (1.12) 

Using constitutive tensor (1.11) and Almansi strains t
t , we can write for Cauchy stresses (with 

respect to coordinates at time t ): 

 t t t
ij t ijrs t rsC   (1.13) 

Almansi strains are defined (related to Green-Lagrange strains 0
t

ij by 

 0 0
, , 0

t t
t mn t i m t j n ijx x   (1.14) 

or can be calculated directly: 

  , , , ,

1

2
t t t t t
t ij t i j t j i t k i t k ju u u u     (1.15) 

The equation (1.13) is equivalent to the equation  (1.10) that was written for the original 
configuration of the structure. It is very important to know, with respect to which coordinate 
system the stress, strain, and constitutive tensors are defined, as the actual value can significantly 
differ. ATENA currently assumes that all these tensors are defined at coordinates at time t . 

1.6 The Principle of Virtual Displacements  
 This section presents how the principle of virtual displacement can be applied to the analysis of 
a structure. For completeness, both the Lagrangian Total and Updated formulations will be 
discussed. In all derivations, it is assumed that the response of the structure up to time t is 
known. Now, at the time t t  we apply load increment and using the principle of virtual 
displacement will solve for the state of the structure at t t  .  

Virtual work of the structure yields the following. For Total formulation: 
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   
0

0 0 0
t dt t dt t dt

ij ij

V

S dV R     (1.16) 

for Updated formulation: 

   
t

t dt t dt t dt
t ij t ij t

V

S dV R     (1.17) 

where 0V , tV denotes the structure volume corresponding to time 0  and t t dt R is the total 
virtual work of the external forces. The symbol  denotes variation of the entity.   Since energy 
must be invariant with respect to the reference coordinate system (1.16) and (1.17) must lead to 
identical results.  

Substituting expressions for strain and stress tensors, the final governing equation for structure 
can be derived. They are summarized in  (1.18) through (1.29). Note that the relationships are 
expressed with respect to configurations at an arbitrary time t  and an iteration ( )i . Typically, the 
time t may by 0 , in which case we have Total Lagrangian formulation or ( 1)t t i   , in which 
case, we have Updated Lagrangian formulation, where some terms can be omitted. ATENA also 
supports "semi" Updated Lagrangian formulation when t  conforms to time at the beginning of 
time increment, i.e., the beginning of load step. The following table compares the above-
mentioned formulations: 

Table 1.6-1 Comparison of different Lagrangian formulation. 

Transform each 
iteration 

Transform each load 
increment 

 

Lagrangian 
formulation IP state 

variables 
Material 

properties 
IP state 

variables 
Material 

properties 

Transform 
stress and 
strain for 

output 

Calculate 

( 1)
,

t t i
t i ju  for t ije

Total No No No No Yes Yes 

Updated Yes Yes Yes Yes No No 

"Semi"-
Updated 

No No Yes Yes No Yes 

Governing equations: 

  ( ) ( )

t

t t i t t i t t t
t ij t ij

V

S dV R     (1.18) 

where 2nd Piola-Kirchhoff stress and Green Lagrange strain tensor are: 

 ( ) ( ) ( ) ( )
, ,

t
t t i t i t t i t i

t ij t t i m t mn t t j nt t
S x x

 


 
   (1.19) 

  ( ) ( ) ( ) ( ) ( )
, , , ,

1

2
t t i t t i t t i t t i t t i

t ij t i j t i j t k i t k ju u u u          (1.20) 

The stress and strain increments:  

 ( ) ( 1) ( )t t i t t i i
t ij t ij t ijS S S     (1.21) 
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( ) ( 1) ( )

( ) ( ) ( )

t t i t t i i
t ij t ij t ij

i i i
t ij t ij t ije

  

 

   

 

 (1.22) 

where linear part of the strain increment is calculated by: 

  ( ) ( ) ( ) ( 1) ( ) ( 1) ( )
, , , , , ,

1

2
i i i t t i i t t i i

t ij t i j t i j t k i t k j t k j t k ie u u u u u u        (1.23) 

and nonlinear part by: 

  ( ) ( ) ( )
, ,

1

2
i i i

t ij t k i t k ju u   (1.24) 

Using constitutive equations in form: 

 ( ) ( )t t i i
t ij t ijrs t rsS C    (1.25) 

where ( )i
t ijrsC  is tangent material tensors and noting that    ( ) ( )t t i i

t ij t ij     , an incremental form of 

(1.18) can be derived: 

 

      ( ) ( ) ( ) ( ) ( ) ( ) ( )

t t

t ti i i i t t i i i t t
t ijrs t ij t ij t ij t ij t ij t ij t ijt

V V

C e e dV S e dV R            (1.26) 

After linearisation, i.e., neglecting 2nd order terms in (1.26): 

      ( ) ( ) ( ) ( ) ( ) ( )

t t

t ti i i i i i
t ijrs t ij t ij t ij t ij t ijrs t t ij t ijt

V V

C e e dV C e e dV        (1.27) 

we arrive to the final form of the governing equations: 

 

   

 

( ) ( ) ( 1) ( )

( 1) ( )

t t

t

t ti i t t i i
t ijrs t rs t ij t ij t ij

V V

tt t t t i i
t ij t ij

V

C e e dV S dV

R S e dV

  



 

  

 



 


 (1.28) 

Note that the term    ( )i
t ij t ije e   is constant, i.e., independent of ( )i

t iu , hence it is on RHS of 

(1.28). 

1.7 The Work Done by the External Forces 
So far only the incremental virtual internal work has been considered. This work has to be 
balanced by the work done by the external forces. It is calculated as follows: 

    
2 ( 1)

2
t t t

t t i
t t t t i t t i t t i

i t i t

V S V

u
R fb u dV fs u dS dV

t
  

 
   

  
    (1.29) 

where ifb  and ifs  are body and surface forces, t S  and  tV denotes integration with respect to the 

surface with the prescribed boundary forces and volume of the structure (at the time and t ). 

The 1st integral in (1.29) accounts for external work on a surface (e.g., external forces), the 
second one for work done by body forces (e.g., weight), and the last one accounts for work done 
by inertia forces, which are applicable only for dynamic analysis problems). 
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At this point, all the relationships for incremental analysis have been presented. In order to 
proceed further, the problem must be discretized and solved by iterations (described in Chapter 
Solution of Nonlinear Equations).  

1.8 Problem Discretisation Using Finite Element Method 
Spatial discretization consists of discretizing the primary variable, (i.e., deformation in case of 
ATENA) over the domain of the structure. It is done in ATENA by the Finite Element Method. 
The domain is decomposed into many finite elements, and at each of these elements, the 
deformation field is approximated by  

 t t j
i j iu h u  (1.30) 

where  
j is the index for  finite element node, 1...j n ,  
n is the number of element nodes,  

jh  are interpolation function usually grouped in matrix  1 2( , , ), ( , , )..... ( , , )j nH h r s t h r s t h r s t ,  

, ,r s t  are the local element coordinates. 

The interpolation functions jh  are usually created in the way that 1jh   at the node j  and 

0jh   at any other element nodes. 

Combining  (1.30) and  equation for strain  definition (1.8)  it can be derived: 

  ( ) ( 1) ( 1) ( )
0 1

t t i t t i t t i t t i
t t L t L t NL U       B B B  (1.31) 

where 
( )t t i

t
 is the vector of Green-Lagrange strains, 

( )t t iU  is the vector of displacements, 
( 1) ( 1)

0 1, ,t t i t t i
t L t L t NL

   B B B are linear strain-displacements transformation matrices (the 1st two of 

them) and nonlinear strain-displacements transformation matrix (the last one). 

A similar equation can also be written for stress tensor.  

 ( ) ( ) ( )t t i t t i t t i
t t tS    C  (1.32) 

where: 
( )t t i

t S
  is vector of 2nd Piola-Kirchhoff stress tensor and 

( )t t i
t

 C is incremental stress-strain material properties matrix. 

Applying the above discretization for each finite element of the structure and assembling the 
results, the continuum based governing equations in (1.28) can be re-written in the following 
form: 

 ( ) ( 1) ( ) ( 1)
2

( )t t t i t t i t t i t t t t i
t L t NLU U R F

t
      

    


M K K  (1.33) 

where  

t LK is the linear strain incremental stiffness matrix, 

( 1)t t i
t NL

 K is the nonlinear strain incremental stiffness matrix, 

t M is the structural mass matrix, 
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( )t t iU  is the vector of nodal point displacements increments at the time t t  , iteration i ;  

 ( )
2

t t iU
t

 


t+ t is the vector of nodal accelerations, 

t t R , ( 1)t t iF  is the vector of applied external forces and internal forces, 

( ) ( 1), i i superscripts indicate iteration numbers.  

Note that (1.33) also contains inertial term needed only for dynamic analysis. Finite element 
matrices in (1.33) and corresponding analytical expressions are summarized: 

 

 

 

( ) ( ) ( ) ( )

( 1) ( ) ( 1) ( 1) ( 1) ( ) ( 1) ( )

( 1) ( 1)

t t

t t

t

ti T i i i
t L t L t t L t ijrs t rs t ij

V V

tt t i i t t i T t t i t t i i t t i i
t NL t NL t ij t NL t ij t ij

V V

t t i t t i
t ij t

V

U C dV U C e e dV

U dV U S dV

F dV



          

   

 
     

 

 
     

 

 

 

 



K B B

K B S B

S  ( 1) ( )

( ) ( )
( ) ( )

2 2 2 2

t

t t

t t

tt t i i
ij t ij

V

t t t t A t t B t t
t t

A V

t t i t t i
t t t i t t t i ti i

V V

S e dV

R f dV dA f dV R

u u
U dV U dV

t t t t



 

 

   

 
 

  

      
          



 

 

T T

T

H H

M H H

 (1.34) 

1.9  Stress and Strain Smoothing 
All derivations and solution procedures in ATENA software are based on the deformational form 
of the finite element method. Any structure is solved using the weak (or integral) form of 
equilibrium equations. The whole structure is divided into many finite elements, and 
displacement u  at each particular element (at any location) is approximated by approximation 

functions ih  and element displacements iu  as follows: i
i

i

u h u , ( i  is index of an element 

node). It is important to note that in order not to lose any internal energy of the structure, the 
displacements over the whole structure must be continuous. The continuity within finite 
elements is trivial. The use of continuous approximation functions jh  ensures this requirement. 

A bit more complicated situation is on boundaries between adjacent elements; however, if the 
adjacent elements are of the same type, their displacements are also continuous. Note that there 
exist are some techniques that alleviate the continuity requirement, but in ATENA they are not 
used. 

Unlike displacements, stress and strain fields are typically discontinuous. Moreover, a structure 
is investigated within so-called material (or integral) points, which are points located somewhere 
within each element. Their position is derived from the requirement to minimize the 
approximation error. In other words, the standard finite element method provides stress and 
strain values only at those material points, and these values must be later somehow extrapolated 
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into element nodal points. Often, some sort of smoothing is required in order to remove the 
mentioned stress and strain discontinuity. This section describes how this goal is done in 
ATENA.  

There are two steps in the process of stress and strain smoothing: 1/ extrapolation of stress and 
strain from material points to element nodes and 2/ averaging of stress in global node. The whole 
technique is described briefly. All details and derivations can be found e.g. (ZIENKIEWICZ, 
TAYLOR 1989) and ČERVENKA et. al. 1993. 

1.9.1 Extrapolation of Stress and Strain to Element Nodes 
The extrapolation is done as follows (for each component of structural stress   and strain  ). 

Let us define a  vector of stresses xx   at element nodes i such as  ,1 ,2 ,, ,....
T

xx xx xx xx n       , 

where the 2nd index indicates element node number. Let us also define a vector 

 ,1 ,2 ,, ,....
T

xx xx xx xx nP P P P , whose component are calculated 

 ,
e

xx i i xx eP h d


   (1.35) 

The nodal value xx  (with values of  xx  at nodes i =1..n ) is then calculated as follows: 

  inv

xx xxM P   (1.36) 

where:  

 
e

ij i j eM h h d


   (1.37) 

In the above xx  is an extrapolated field of the stress xx  calculated by FEM. It is typically 

discontinuous.  n is the number of element nods, e  is the volume of the investigated finite 

element. The same strategy is also used for the remaining stress and strain components.  

This smoothing technique is called variational as it is base on averaging energy over the element.  

In addition, ATENA also supports another way of extrapolating vales from integration points to 
element nodes. In this case, (1.37) is assumed to be a "lumped" diagonal matrix in order to 
eliminate the need for solving a system of linear equations. The process of lumping is 
characterized as follows: 

 
1,e

ij i k ij e
k n

M h h d




   (1.38) 

As most element space approximations satisfy 
1,

1k
k n

h


  , the above equation is simplified to: 

 
e

ij i ijM h d


   (1.39) 

where ij  is Kronecker delta. This "lumped" formulation ATENA uses by default. 

 

The above values are output as nodal element stress/strain values. It follows to calculate 

averaged stress/stain value  , ,.....i xx yy xz i
      

 in a global node i  that is participated by all 

elements k with an incidence at the global node i .  
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k

k

i e
k

i
e

k















 (1.40) 

where is the vector of stresses  , ,.....i xx yy xz i
       at a node i  ,

ke is the volume of the 

element k  that has the incidence of global node i . It should be noted that in ATENA, the same 
extrapolation techniques are used for other integration point quantities as well such as: fracturing 
strains, plastic strains and others. 

1.10 Simple, Complex Supports and Master-Slave Boundary 
Conditions. 

Simple support and complex support boundary conditions represent boundary conditions of  
Dirichlet types, i.e., boundary conditions that prescribe displacements. On the other hand, Simple 
load boundary conditions are an example of von Neumann type boundary conditions when 
forces are prescribed. 

Let K is structural stiffness matrix, u  is the vector of nodal displacements, and R  is a vector of 

nodal forces. Further, let u  is subdivided into the vector of free degrees of freedom Nu  (with 

von Neumann boundary conditions) and constrained degrees of freedom Du  (with Dirichlet 

boundary conditions): 

 N

D

u
u

u

 
  
 

 (1.41) 

The problem governing equations can then be written: 

 NN ND N N

DN DD D D

u R

u R

     
     

    

K K

K K
 (1.42) 

ATENA software supports that any constrained degree of freedom can be a linear combination 
of other degrees of freedom plus some constant term: 

 ,0i i k
D D k N

k

u u u   (1.43) 

where ,0i
Du  is the constant term and k  are coefficients of the linear combination. Of course, the 

equation (1.43) can also include the term l
l D

l

u ; however, it is transformed into the constant 

term.  

The free degrees of freedom are then solved by   

    1

N NN N ND Du R R
 K K  (1.44) 

and the dependent DR  is solved by 

 D DN N DD DR u u K K  (1.45) 
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The ATENA simple support boundary conditions mean that the boundary conditions use only 
constant terms are ,0i

Du , (i.e. 0k   ). The complex support boundary conditions use the full 

form of (1.43). 

The boundary conditions as described above allow to specify for one degree of freedom either 
Dirichlet, or von Neumann boundary condition, but not both of them at the same time. It comes 
from the nature of the finite element method. However, ATENA can also deal with this case of 
more complex boundary conditions by introducing Lagrange multipliers. The derivation of the 
theory behind this kind of boundary conditions is beyond the scope of this manual. Details can 
be found elsewhere, e.g., in (Bathe 1982). To apply this type of boundary conditions in ATENA, 
specify for those degrees of freedom both simple load and complex support boundary condition, 
the latter one with the keyword "RELAX" keyword in its definition. 

A useful feature of ATENA is that at any time, it stores in RAM only NNK  and all the 

elimination with the remaining blocks of K is done at element level at the process of assembling 
the structural stiffness matrix. 

A special type of complex boundary conditions of the Dirichlet type are so-called master-slave 
boundary conditions. Such a boundary condition specifies that all (available) degrees of one 
finite node (i.e., slave node) are equal to degrees of freedom of another node (i.e., master node). 
If more master nodes are specified, then these master nodes are assumed to form a finite element 
and degrees of freedom of the slave node are assumed to be a node within that element. Its 
(slave) degrees of freedom are approximated by element nodal (i.e., master) degrees of freedom 
in the same way as displacements approximation within a finite element. The coefficients k  in 

(1.43) are thus calculated automatically. This type of boundary condition is used for example, for 
fixing discrete reinforcement bars to the surrounding solid element.  

   

1.11 References 
BATHE, K.J. (1982), Finite Element Procedures In Engineering Analysis,    Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey 07632,  ISBN 0-13-317305-4. 

ČERVENKA, J., KEATING, S.C., AND FELIPPA, C.A. (1993), "Comparison of strain 
recovery techniques for the mixed iterative method", Communications in Numerical Methods in 
Engineering, Vol. 9, 925-932. 

ZIENKIEWICZ, O.C., TAYLOR, R.L., (1989), The Finite Element Method, Volume 1, 
McGraw-Hill Book Company, ISBN 0-07-084174-8. 
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2 CONSTITUTIVE MODELS 

2.1 Constitutive Model SBETA (CCSbetaMaterial)  

2.1.1 Basic Assumptions 

2.1.1.1 Stress, Strain, Material Stiffness 

The formulation of constitutive relations is considered in the plane stress state. A smeared 
approach is used to model the material properties, such as cracks or distributed reinforcement. 
This means that material properties defined for a material point are valid within a certain 
material volume, which is in this case associated with the entire finite element. The constitutive 
model is based on the stiffness and is described by the equation of equilibrium in a material 
point:  

    , , , , , ,
T T

x y xy x y xy       s De s e  (2.1) 

where s, D and e are a stress vector, a material stiffness matrix and a strain vector, respectively. 
The stress and strain vectors are composed of the stress components of the plane stress state 

, ,x y xy   , Fig. 2-1, and the strain components , ,x y xy   , Fig. 2-2, where xy is the engineering 

shear strain. The strains are common for all materials. The stress vector s and the material matrix 
D can be decomposed into the material components due to concrete and reinforcement as: 

 ,c s c s   s s s D D D  (2.2) 

The stress vector s and both component stress vectors ,c ss s  are related to the total cross section 

area. The concrete stress cs is acting on the material area of concrete cA , which is approximately 

set equal to the cross section of the composite material c A A  (the area of concrete occupied by 

reinforcement is not subtracted). 

The matrix D has a form of the Hooke's law for either isotropic or orthotropic material, as will be 
shown in Section 2.1.11. 

 

Fig. 2-1  Components of plane stress state. 
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Fig. 2-2 Components of strain state. 

 

The reinforcement stress vector ss is the sum of stresses of all the smeared reinforcement 
components: 

 
1

n

s si
i

 s s  (2.3)  

where n is the number of the smeared reinforcement components. For the ith reinforcement, the 
global component reinforcement stress ssi is related to the local reinforcement stress ,

si  by the 

transformation: 

 ,
si i sip s T  (2.4) 

where pi is the reinforcing ratio si
i

c

A
p

A
 , Asi is the reinforcement cross section area. The local 

reinforcement stress ,
si  is acting on the reinforcement area Asi 

The stress and strain vectors are transformed according to the equations bellow in the plane 
stress state. New axes u, v are rotated from the global x, y axes by the angle The angle is 
positive in the counterclockwise direction, as shown in Fig. 2-3. 

 
 

Fig. 2-3  Rotation of reference coordinate axes. 

The transformation of the stresses: 

 ( ) ( )u xs T s  (2.5) 
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2 2

2 2

2 2

cos( ) sin( ) 2cos( )sin( )

sin( ) cos( ) 2cos( )sin( )

cos( )sin( ) cos( )sin( ) cos( ) sin( )


   
   

     

 
   
   

T  (2.6) 

   ( ) ( ), , , , ,
TT

u u v uv x x y xy      s s   

The transformation of the strains: 

 ( ) ( )u xe T e  (2.7) 

 

 

2 2

2 2

2 2

cos( ) sin( ) cos( )sin( )

sin( ) cos( ) cos( )sin( )

2cos( )sin( ) 2cos( )sin( ) cos( ) sin( )


   
   
     

 
   
   

T  (2.8) 

   ( ) ( ), , , , ,
TT

u u v uv x x y xy      e e . 

The angles of principal axes of the stresses and strains, Fig. 2-1, Fig. 2-2, are found from the 
equations: 

 
2

tan(2 ) , tan(2 )xy xy

x y x y
 

 
 

   
 

 
 (2.9) 

where   is the angle of the first principal stress axis and   is the angle of the first principal 

strain axis. 

In case of isotropic material (un-cracked concrete) the principal directions of the stress and 
strains are identical; in case of anisotropic material (cracked concrete) they can be different. The 
sign convention for the normal stresses, employed within this program, uses the positive values 
for the tensile stress (strain) and negative values for the compressive stress (strain). The shear 
stress (strain) is positive if acting upwards on the right face of a unit element.  

2.1.1.2  Concept of Material Model SBETA 

The material model SBETA includes the following effects of concrete behavior: 

� non-linear behavior in compression including hardening and softening, 
� fracture of concrete in tension based on the nonlinear fracture mechanics, 
� biaxial strength failure criterion, 
� reduction of compressive strength after cracking, 
� tension stiffening effect, 
� reduction of the shear stiffness after cracking (variable shear retention), 
� two crack models: fixed crack direction and rotated crack direction. 

Perfect bond between concrete and reinforcement is assumed within the smeared concept. No 
bond slip can be directly modeled except for the one included inherently in the tension stiffening. 
However, on a macro-level a relative slip displacement of reinforcement with respect to concrete 
over a certain distance can arise if concrete is cracked or crushed. This corresponds to a real 
mechanism of bond failure in case of the bars with ribs. 

The reinforcement in both forms, smeared and discrete, is in the uniaxial stress state and its 
constitutive law is a multi-linear stress-strain diagram. 
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The material matrix is derived using the nonlinear elastic approach. In this approach the elastic 
constants are derived from a stress-strain function called here the equivalent uniaxial law. This 
approach is like the nonlinear hypo-elastic constitutive model, except that different laws are used 
here for loading and unloading, causing the dissipation of energy exhausted for the damage of 
material. The detailed treatment of the theoretical background of this subject can be found, for 
example, in the book CHEN (1982). This approach can be also regarded as an isotropic damage 
model, with the unloading modulus (see next section) representing the damage modulus. 

The name SBETA comes from the former program, in which this material model was first used. 
It means the abbreviation for the analysis of reinforced concrete in German language - 
StahlBETonAnalyse. 

2.1.2 Stress-Strain Relations for Concrete 

2.1.2.1 Equivalent Uniaxial Law 

The nonlinear behavior of concrete in the biaxial stress state is described by means of the so-

called effective stress ef
c , and the equivalent uniaxial strain eq . The effective stress is in most 

cases a principal stress.  

The equivalent uniaxial strain is introduced to eliminate the Poisson’s effect in the plane stress 
state. 

 eq ci

ciE

   (2.10)  

The equivalent uniaxial strain can be considered as the strain, that would be produced by the 
stress ci in a uniaxial test with modulus ciE  associated with the direction i. Within this 

assumption, the nonlinearity representing a damage is caused only by the governing stress ci . 

The details can be found in CHEN (1982).  

The complete equivalent uniaxial stress-strain diagram for concrete is shown in Fig. 2-4. 

 
Fig. 2-4  Uniaxial stress-strain law for concrete. 

The numbers of the diagram parts in Fig. 2-4 (material state numbers) are used in the results of 
the analysis to indicate the state of damage of concrete. 
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Unloading is a linear function to the origin. An example of the unloading point U is shown in 

Fig. 2-4. Thus, the relation between stress ef
c and strain eq  is not unique and depends on a load 

history. A change from loading to unloading occurs when the increment of the effective strain 
changes the sign. If subsequent reloading occurs the linear unloading path is followed until the 
last loading point U is reached again. Then, the loading function is resumed. 

The peak values of stress in compression f’c
ef and in tension f’t

ef are calculated according to the 
biaxial stress state as will be shown in Sec.2.1.5. Thus, the equivalent uniaxial stress-strain law 
reflects the biaxial stress state.  

The above defined stress-strain relation is used to calculate the elastic modulus for the material 
stiffness matrices, Sect. 2.1.11. The secant modulus is calculated as 

 s c
c eq

E



  (2.11) 

It is used in the constitutive equation to calculate stresses for the given strain state, Sect. 2.1.12. 

The tangent modulus Ec
t is used in the material matrix Dc for construction of an element stiffness 

matrix for the iterative solution. The tangent modulus is the slope of the stress-strain curve at a 
given strain. It is always positive. In cases when the slope of the curve is less then the minimum 
value Emin

t the value of the tangent modulus is set Ec
t = Emin

t. This occurs in the softening ranges 
and near the compressive peak. 

Detail description of the stress-strain law is given in the following subsections. 

2.1.2.2 Tension before Cracking 

The behavior of concrete in tension without cracks is assumed linear elastic. cE  is the initial 

elastic modulus of concrete, 'ef
tf is the effective tensile strength derived from the biaxial failure 

function, Section 2.1.5.2. 

 ', 0ef eq ef
c c c tE f      (2.12) 

2.1.2.3 Tension after Cracking 

Two types of formulations are used for the crack opening:  

� A fictitious crack model based on a crack-opening law and fracture energy. This formulation 
is suitable for modeling of crack propagation in concrete. It is used in combination with the 
crack band, see Sect.2.1.3.   

� A stress-strain relation in a material point. This formulation is not suitable for normal cases of 
crack propagation in concrete and should be used only in some special cases.  

In following subsections are described five softening models included in SBETA material 
model.  
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(1) Exponential Crack Opening Law 

 

Fig. 2-5 Exponential crack opening law. 

This function of crack opening was derived experimentally by HORDIJK (1991). 
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where w is the crack opening, wc is the crack opening at the complete release of stress, is the 
normal stress in the crack (crack cohesion). Values of the constants are, 1c =3, 2c =6.93. Gf is the 

fracture energy needed to create a unit area of stress-free crack, 'ef
tf is the effective tensile 

strength derived from a failure function, Eq.(2.22). The crack opening displacement w is derived 
from strains according to the crack band theory in Eq.(2.18). 

(2) Linear Crack Opening Law 

 

Fig. 2-6 Linear crack opening law. 
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(3) Linear Softening Based on Local Strain 

 

Fig. 2-7 Linear softening based on strain. 

The descending branch of the stress-strain diagram is defined by the strain c3 corresponding to 
zero stress (complete release of stress). 

(4) SFRC Based on Fracture Energy 

 

Fig. 2-8 Steel fiber reinforced concrete based on fracture energy. 

Parameters:             1 2
1 2' '
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(5) SFRC Based on Strain 

 

Fig. 2-9 Steel fiber reinforced concrete based on strain. 
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Parameters:   1 2
1 2' '

,
ef ef

t t

f f
c c

f f
         

Parameters c1 and c2  are relative positions of stress levels, and c3 is the end strain. 

2.1.2.4 Compression before Peak Stress 

The formula recommended by CEB-FIP Model Code 90 has been adopted for the ascending 
branch of the concrete stress-strain law in compression, Fig. 2-10. This formula enables wide 
range of curve forms, from linear to curved, and is appropriate for normal as well as high 
strength concrete.  
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ef ef o
c c

c c
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 
 (2.15) 

 

Fig. 2-10 Compressive stress-strain diagram. 

Meaning of the symbols in the above formula in: 
c

ef -concrete compressive stress, 
'ef

cf  - concrete effective compressive strength (See Section 2.1.5.1) 

x  -   normalized strain, 
  -  strain, 
c  -  strain at the peak stress f’c

ef , 
k  -  shape parameter, 
Eo  -  initial elastic modulus, 

Ec  -  secant elastic modulus at the peak stress, 
'ef

c
c

c

f
E


 . 

Parameter k may have any positive value greater than or equal 1. Examples: k=1.  linear, k=2. - 
parabola.  

As a consequence of the above assumption, distributed damage is considered before the peak 
stress is reached. Contrary to the localized damage, which is considered after the peak. 
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2.1.2.5 Compression after Peak Stress 

The softening law in compression is linearly descending. There are two models of strain 
softening in compression, one based on dissipated energy, and other based on local strain 
softening. 

2.1.2.5.1  Fictitious Compression Plane Model 

The fictitious compression plane model assumes, that compression failure is localized in a plane 
normal to the direction of compressive principal stress. All post-peak compressive displacements 
and energy dissipation are localized in this plane. It is assumed that this displacement is 
independent on the size of the structure. This hypothesis is supported by experiments conducted 
by Van MIER (1986). 

This assumption is analogous to the Fictitious Crack Theory for tension, where the shape of the 
crack-opening law and the fracture energy are defined and are considered as material properties. 

 

Fig. 2-11 Softening displacement law in compression. 

In case of compression, the end point of the softening curve is defined by means of the plastic 
displacement wd. In this way, the energy needed for generation of a unit area of the failure plane 
is indirectly defined. From the experiments of Van MIER (1986), the value of wd =0.5mm for 
normal concrete. This value is used as default for the definition of the softening in compression.  

The softening law is transformed from a fictitious failure plane, Fig. 2-11, to the stress-strain 
relation valid for the corresponding volume of continuous material, Fig. 2-10. The slope of the 
softening part of the stress-strain diagram is defined by two points: a peak of the diagram at the 
maximal stress and a limit compressive strain d at the zero stress. This strain is calculated from 
a plastic displacement wd and a band size '

dL  (see Section 2.1.3) according to the following 

expression: 

 
'
d

d c
d

w

L
    (2.16) 

The advantage of this formulation is reduced dependency on finite element mesh. 

2.1.2.5.2 Compression Strain Softening Law Based on Strain. 

A slope of the softening law is defined by means of the softening modulus Ed . This formulation 
is dependent on the size of the finite element mesh. 
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2.1.3 Localization Limiters 
So-called localization limiter controls localization of deformations in the failure state. It is a 
region (band) of material, which represents a discrete failure plane in the finite element analysis. 
In tension it is a crack, in compression it is a plane of crushing. These failure regions have some 
dimension. However, since according to the experiments, the dimensions of the failure regions 
are independent on the structural size, they are assumed as fictitious planes. In case of tensile 
cracks, this approach is known as rack the “crack band theory“, BAZANT, OH (1983). Here is 
the same concept used also for the compression failure. The purpose of the failure band is to 
eliminate two deficiencies, which occur in connection with the application of the finite element 
model: element size effect and element orientation effect. 

y

x

4 noded element

crack 
direction

L

L

c

t




1

2

 

 Fig. 2-12 Definition of localization bands. 

2.1.3.1 Element Size Effect. 

The direction of the failure planes is assumed to be normal to the principal stresses in tension 
and compression, respectively. The failure bands (for tension Lt and for compression Ld) are 
defined as projections of the finite element dimensions on the failure planes as shown in Fig. 
2-12.  

2.1.3.2 Element Orientation Effect. 

The element orientation effect is reduced, by further increasing of the failure band for skew 
meshes, by the following formula (proposed by CERVENKA et al. 1995). 

' ',t t d dL L L L    

 max1 ( 1)
45

    ,      0;45     (2.17) 
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An angle   is the minimal angle (  1 2min ,  ) between the direction of the normal to the failure 

plane and element sides. In case of a general quadrilateral element the element sides directions 
are calculated as average side directions for the two opposite edges. The above formula is a 
linear interpolation between the factor 1.0 for the direction parallel with element sides, and 
 max , for the direction inclined at 45o. The recommended (and default) value of max =1.5. 

2.1.4 Fracture Process, Crack Width 
The process of crack formation can be divided into three stages, Fig. 2-13. The uncracked stage 
is before a tensile strength is reached. The crack formation takes place in the process zone of a 
potential crack with decreasing tensile stress on a crack face due to a bridging effect. Finally, 
after a complete release of the stress, the crack opening continues without the stress. 

The crack width w is calculated as a total crack opening displacement within the crack band. 

 '
cr tw L  (2.18) 

where cr is the crack opening strain, which is equal to the strain normal to the crack direction in 

the cracked state after the complete stress release. 

 

Fig. 2-13 Stages of crack opening. 

It has been shown that the smeared model based on the refined crack band theory can 
successfully describe the discrete crack propagation in plain, as well as reinforced concrete 
(CERVENKA et al. 1991, 1992, and 1995). 

It is also possible, that the second stress, parallel to the crack direction, exceeds the tensile 
strength. Then the second crack, in the direction orthogonal to the first one, is formed using the 
same softening model as the first crack. (Note: The second crack may not be shown in a 
graphical post-processing. It can be identified by the concrete state number in the second 
direction at the numerical output.) 

2.1.5 Biaxial Stress Failure Criterion of Concrete 

2.1.5.1 Compressive Failure 

A biaxial stress failure criterion according to KUPFER et al. (1969) is used as shown in Fig. 
2-14. In the compression-compression stress state the failure function is 
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Fig. 2-14  Biaxial failure function for concrete. 

 ' ' 1
2

2

1 3.65
,

(1 )
ef c

c c
c

a
f f a

a





 


 (2.19) 

where 1c , 2c  are the principal stresses in concrete and f’c is the uniaxial cylinder strength. In 

the biaxial stress state, the strength of concrete is predicted under the assumption of a 
proportional stress path. 

In the tension-compression state, the failure function continues linearly from the point 

1 0c  , '
2c cf   into the tension-compression region with the linearly decreasing strength: 
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where rec is the reduction factor of the compressive strength in the principal direction 2 due to 
the tensile stress in the principal direction 1. 

2.1.5.2 Tensile Failure 

In the tension-tension state, the tensile strength is constant and equal to the uniaxial tensile 
strength f’t. In the tension-compression state, the tensile strength is reduced by the relation: 

 ' 'ef
t t etf f r  (2.21) 

where ret is the reduction factor of the tensile strength in the direction 1 due to the compressive 
stress in the direction 2. The reduction function has one of the following forms, Fig. 2-15.  
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The relation in Eq.(2.22) is the linear decrease of the tensile strength and (2.23) is the hyperbolic 
decrease. 
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Two predefined shapes of the hyperbola are given by the position of an intermediate point r, x. 
Constants K and A define the shape of the hyperbola. The values of the constants for the two 
positions of the intermediate point are given in the following table. 

 

type point parameters 

 r x A K 

a 0.5 0.4 0.75 1.125 

b 0.5 0.2 1.0625 6.0208 

 

Fig. 2-15 Tension-compression failure function for concrete. 

2.1.6  Two Models of Smeared Cracks 
The smeared crack approach for modeling of the cracks is adopted in the model SBETA. Within 
the smeared concept two options are available for crack models: the fixed crack model and the 
rotated crack model. In both models the crack is formed when the principal stress exceeds the 
tensile strength. It is assumed that the cracks are uniformly distributed within the material 
volume. This is reflected in the constitutive model by an introduction of orthotropy.  

2.1.6.1 Fixed Crack Model 

In the fixed crack model (CERVENKA 1985, DARWIN 1974) the crack direction is given by 
the principal stress direction at the moment of the crack initiation. During further loading this 
direction is fixed and represents the material axis of the orthotropy. 
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Fig. 2-16 Fixed crack model. Stress and strain state. 

The principal stress and strain directions coincide in the uncracked concrete, because of the 
assumption of isotropy in the concrete component. After cracking the orthotropy is introduced. 
The weak material axis m1 is normal to the crack direction, the strong axis m2 is parallel with the 
cracks. 

In a general case the principal strain axes and rotate and need not to coincide with the axes 
of the orthotropy m1 and m2. This produces a shear stress on the crack face as shown in Fig. 
2-16. The stress components c1andc2 denote, respectively, the stresses normal and parallel to 
the crack plane and, due to shear stress, they are not the principal stresses. The shear stress and 
stiffness in the cracked concrete is described in Section 2.1.7. 

2.1.6.2 Rotated Crack Model 

In the rotated crack model (VECCHIO 1986, CRISFIELD 1989), the direction of the principal 
stress coincides with the direction of the principal strain. Thus, no shear strain occurs on the 
crack plane and only two normal stress components must be defined, as shown in Fig. 2-17. 

 

Fig. 2-17 Rotated crack model. Stress and strain state. 

If the principal strain axes rotate during the loading the direction of the cracks rotate, too. In 
order to ensure the co-axiality of the principal strain axes with the material axes the tangent shear 
modulus Gt is calculated according to CRISFIELD 1989 as 
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 (2.24) 
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2.1.7 Shear Stress and Stiffness in Cracked Concrete 
In case of the fixed crack model, the shear modulus is reduced according to the law derived by 
KOLMAR (1986) after cracking. The shear modulus is reduced with growing strain normal to 
the crack, Fig. 2-18 and this represents a reduction of the shear stiffness due to the crack 
opening. 

 

Fig. 2-18 Shear retention factor. 
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where gr  is the shear retention factor, G is the reduced shear modulus and Gc is the initial 

concrete shear modulus:  
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where Ec is the initial elastic modulus and  is the Poisson's ratio. The strain  is normal to the 
crack direction (the crack opening strain), c1 and c2 are parameters depending on the reinforcing 
crossing the crack direction, p is the transformed reinforcing ratio (all reinforcement is 
transformed on the crack plane) and c3 is the user’s scaling factor. By default, c3=1. In ATENA 
the effect of reinforcement ratio is not considered, and p is assumed to be 0.0.  

There is an additional constraint imposed on the shear modulus. The shear stress on the crack 
plane uv G   is limited by the tensile strength f’t. The secant and tangent shear moduli of 

cracked concrete are equal. 

2.1.8 Compressive Strength of Cracked Concrete 
A reduction of the compressive strength after cracking in the direction parallel to the cracks is 
done by a similar way as found from experiments of VECCHIO and COLLINS 1982 and 
formulated in the Compression Field Theory. However, a different function is used for the 
reduction of concrete strength here, to allow for user's adjustment of this effect. This function 
has the form of the Gauss's function, Fig. 2-19. The parameters of the function were derived 
from the experimental data published by KOLLEGER et al. 1988, which also included data of 
Collins and Vecchio (VECCHIO at al.1982)  
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2(128 )' ' , (1 ) uef

c c c cf r f r c c e      (2.27) 

For the zero normal strain, there is no strength reduction, and for the large strains, the 
strength is asymptotically approaching to the minimum value ' 'ef

c cf cf . 

 

Fig. 2-19 Compressive strength reduction of cracked concrete. 

The constant c represents the maximal strength reduction under the large transverse strain. From 
the experiments by KOLLEGGER et all. 1988, the value c = 0.45 was derived for the concrete 
reinforced with the fine mesh. The other researchers (DYNGELAND 1989) found the reductions 
not less than c=0.8. The value of c can be adjusted by input data according to the actual type of 
reinforcing. 

However, the reduction of compressive strength of the cracked concrete does not have to be 
affected only by the reinforcing. In the plain concrete, when the strain localizes in one main 
crack, the compressive concrete struts can cross this crack, causing so-called "bridging effect". 
The compressive strength reduction of these bridges is also captured by the above model. 

2.1.9 Tension Stiffening in Cracked Concrete 
The tension stiffening effect can be described as a contribution of cracked concrete to the tensile 
stiffness of reinforcing bars. This stiffness is provided by the uncracked concrete or not fully 
opened cracks and is generated by the strain localization process. It was verified by simulation 
experiments of HARTL, G., 1977 and published in the paper (MARGOLDOVA et.al. 1998). 

Including an explicit tension stiffening factor would result in an overestimation of this effect. 
Therefore, in the ATENA versions up to1.2.0 no explicit tension stiffening factor is possible in 
the input. 

2.1.10 Summary of Stresses in SBETA Constitutive   Model 
In the case of uncracked concrete, the stress symbols have the following meaning: 
 1c   -  maximal principal stress 

2c   -  minimal principal stress 

            (tension positive, compression negative) 

In the case of cracked concrete, Fig. 2-16 stresses are defined on the crack plane: 
  1c   - normal stress normal to the cracks 

 2c   - normal stress parallel to the cracks 
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 c    - shear stress on the crack plane  

2.1.11 Material Stiffness Matrices 

2.1.11.1 Uncracked Concrete 

The material stiffness matrix for the uncracked concrete has the form of an elastic matrix of the 
isotropic material. It is written in the global coordinate system x and y. 
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In the above E is the concrete elastic modulus derived from the equivalent uniaxial law. The 
Poisson's ratio  is constant. 

2.1.11.2 Cracked Concrete 

For the cracked concrete, the matrix has the form of the elastic matrix for the orthotropic 
material. The matrix is formulated in a coordinate system m1, m2, Fig. 2-16 and Fig. 2-17, which 
is coincident with the crack direction. This local coordinate system is referred to the superscript 
L later. The direction 1 is normal to the crack and the direction 2 is parallel with the crack. The 
definition of the elastic constants for the orthotropic material in the plane stress state follows 
from the flexibility relation: 
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First, we eliminate the orthotropic Poisson’s ratios for the cracked concrete, because they are 
commonly not known. For this we use the symmetry relation 12 2 21 1E E  . Therefore, in   (2.29) 

there are only three independent elastic constants 1 2 21, ,E E  . Assuming that 21   is the 
Poisson's ratio of the uncracked concrete and using the symmetry relation, we obtain 
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The stiffness matrix L
cD is found as the inverse of the flexibility matrix in (2.30): 
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In the above relation E2 must be nonzero. If E2 is zero and E1 is nonzero, then an alternative 

formulation is used with the inverse parameter 2

1

1 E

E
 . In case that both elastic modules are 

zero, the matrix L
cD  is set equal to the null matrix. 

The matrix L
cD  is transformed into the global coordinate system using the transformation matrix 

T from (2.8). 

  TDTD L
c

T
c   (2.32) 

The angle  is between the global axis x and the 1st material axis m1, which is normal to the 
crack, Fig. 2-16. 

2.1.11.3 Smeared Reinforcement 

The material stiffness matrix of the ith smeared reinforcement is 
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The angle  is between the global axis x and the ith reinforcement direction, and Esi is the elastic 
modulus of reinforcement. The reinforcing ratio pi =As/Ac. 

2.1.11.4 Material Stiffness of Composite Material 

The total material stiffness of the reinforced concrete is the sum of material stiffness of concrete 
and smeared reinforcement: 

 
1

n

c si
i

 D D D  (2.34) 

The summation is over n smeared reinforcing components. In ATENA the smeared 
reinforcement is not added on the constitutive level, but it is modeled by separate layers of 
elements whose nodes are connected to those of the concrete elements. This corresponds to the 
assumption of perfect bond between the smeared reinforcement and concrete. 

2.1.11.5 Secant and Tangent Material Stiffness 

The material stiffness matrices in the above Subsections 2.1.11.1, 2.1.11.2, 2.1.11.3, 2.1.11.4 are 
either secant or tangent, depending on the type of elastic modulus used.  

The secant material stiffness matrix is used to calculate the stresses for the given strains, as 
shown in Section 2.1.12.  

The tangent material stiffness matrix is used to construct the element stiffness matrix. 

2.1.12 Analysis of Stresses 
The stresses in concrete are obtained using the actual secant component material stiffness matrix 

 s
c cs D e  (2.35) 
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where s
cD  is the secant material stiffness matrix from Section 2.1.11 for the uncracked or 

cracked concrete depending on the material state. The stress components are calculated in the 
global as well as in the local material coordinates (the principal stresses in the uncracked 
concrete and the stresses on the crack planes). 

The stress in reinforcement and the associated tension stiffening stress is calculated directly from 
the strain in the reinforcement direction. 

2.1.13 Parameters of Constitutive Model 
Default formulas of material parameters: 

 

Parameter: Formula: 

Cylinder strength ' '0.85c cuf f   

Tensile strength 2
' ' 30.24t cuf f  

Initial elastic modulus ' '(6000 15.5 )c cu cuE f f   

Poisson's ratio 0.2   

Softening compression 0.0005dw mm   

Type of tension softening 1 – exponential, based on GF 

Compressive strength in cracked concrete c = 0.8 

Tension stiffening stress 0.st   

Shear retention factor variable (Sect.2.1.7) 

Tension-compression function type linear 

Fracture energy Gf  according to VOS 1983 '0.000025 ef
F tG f  [MN/m] 

Orientation factor for strain localization 
max 1.5     (Sect.2.1.3) 

 

The SBETA constitutive model of concrete includes 20 material parameters. These parameters 
are specified for the problem under consideration by user. In case of the parameters are not 
known automatic generation can be done using the default formulas given in the table above. In 
such a case, only the cube strength of concrete f’cu (nominal strength) is specified and the 
remaining parameters are calculated as functions of the cube strength. The formulas for these 
functions are taken from the CEB-FIP Model Code 90 and other research sources.  

Used units are MPa.  

The parameters not listed in the table have zero default value. 

The values of the material parameters can be also influenced by safety considerations. This is 
particularly important in cases of a design, where a proper safety margin should be met. For that 
reason, the choice of material properties depends on the purpose of analysis and the filed of an 
application. The typical examples of the application are the design, the simulation of failure and 
the research. 
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In case of the design application, according to most current standards, the material properties for 
calculation of structural resistance (failure load) are considered by minimal values with applied 
partial safety factors. The resulting maximum load can be directly compared with the design 
loads. 

According to some researchers, more appropriate approach would be to consider the average 
material properties in nonlinear analysis and to apply a safety factor on the resulting integral 
response variable (force, moment). However, this safety format is not yet fully established. 

In cases of the simulation of real behavior, the parameters should be chosen as close as possible 
to the properties of real materials. The best way is to determine these properties from mechanical 
tests on material sample specimens. 

2.2 Fracture–Plastic Constitutive Model (CC3DCementitious, 
CC3DNonLinCementitious, CC3DNonLinCementitious2, 
CC3DNonLinCementitious2User, 
CC3DNonLinCementitious2Variable, 
CC3DNonLinCementitious2FRC, 
CC3DNonLinCementitious2SHCC, 
CC3DNonLinCementitious3) 

2.2.1 Introduction 
Fracture-plastic model combines constitutive models for tensile (fracturing) and compressive 
(plastic) behavior. The fracture model is based on the classical orthotropic smeared crack 
formulation and crack band model. It employs Rankine failure criterion, exponential softening, 
and it can be used as rotated or fixed crack model. The hardening/softening plasticity model is 
based on Menétrey-Willam failure surface. The model uses return mapping algorithm for the 
integration of constitutive equations. Special attention is given to the development of an 
algorithm for the combination of the two models. The combined algorithm is based on a 
recursive substitution, and it allows for the two models to be developed and formulated 
separately. The algorithm can handle cases when failure surfaces of both models are active, but 
also when physical changes such as crack closure occur. The model can be used to simulate 
concrete cracking, crushing under high confinement, and crack closure due to crushing in other 
material directions. 

Although many papers have been published on plasticity models for concrete (for instance, 
PRAMONO, WILLAM 1989, MENETREY et al 1997, FEENSTRA 1993, 1998 ETSE 1992) or 
smeared crack models (RASHID 1968, CERVENKA and GERSTLE 1971, BAZANT and OH 
1983, DE BORST 1986, ROTS 1989), there are not many descriptions of their successful 
combination in the literature. OWEN et al. (1983) presented a combination of cracking and 
visco-plasticity. Comprehensive treatise of the problem was provided also by de BORST (1986), 
and recently several works have been published on the combination of damage and plasticity 
(SIMO and JU 1987, MESCHKE et al. (1998). The presented model differs from the above 
formulations by ability to handle also physical changes like for instance crack closure, and it is 
not restricted to any shape of hardening/softening laws. Also, within the proposed approach it is 
possible to formulate the two models (i.e. plastic and fracture) entirely separately, and their 
combination can be provided in a different algorithm or model. From programming point of 
view such approach is well suited for object-oriented programming.  
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The method of strain decomposition, as introduced by DE BORST (1986), is used to combine 
fracture and plasticity models together. Both models are developed within the framework of 
return mapping algorithm by WILKINS (1964). This approach guarantees the solution for all 
magnitudes of strain increment. From an algorithmic point of view the problem is then 
transformed into finding an optimal return point on the failure surface.  

The combined algorithm must determine the separation of strains into plastic and fracturing 
components, while it must preserve the stress equivalence in both models. The proposed 
algorithm is based on a recursive iterative scheme. It can be shown that such a recursive 
algorithm cannot reach convergence in certain cases such as, for instance, softening and dilating 
materials. For this reason, the recursive algorithm is extended by a variation of the relaxation 
method to stabilize convergence. 

2.2.2 Material Model Formulation 

The material model formulation is based on the strain decomposition into elastic e
ij , plastic p

ij  

and fracturing f
ij components (DE BORST 1986). 

 f
ij

p
ij

e
ijij    (2.36) 

The new stress state is then computed by the formula: 

 )(1 f
kl

p
klklijkl

n
ij

n
ij E     (2.37) 

where the increments of plastic strain p
ij  and fracturing strain f

ij must be evaluated based on 

the used material models. 

2.2.3 Rankine-Fracturing Model for Concrete Cracking 
Rankine criterion is used for concrete cracking 

 0 it
t

ii
f

i fF   (2.38) 

It is assumed that strains and stresses are converted into the material directions, which in case of 
rotated crack model correspond to the principal directions, and in case of fixed crack model, are 

given by the principal directions at the onset of cracking. Therefore, t
ii   identifies the trial 

stress and itf  tensile strength in the material direction i . Prime symbol denotes quantities in the 

material directions. The trial stress state is computed by the elastic predictor. 

 klijkl
n

ij
t

ij E   1  (2.39) 

If the trial stress does not satisfy (2.38), the increment of  fracturing strain in direction i can be 
computed using the assumption that the final stress state must satisfy (2.40). 

 0 it
f

kliikl
t

iiit
n

ii
f

i fEfF   (2.40) 

This equation can be further simplified under the assumption that the increment of fracturing 
strain is normal to the failure surface, and that always only one failure surface is being checked. 
For failure surface k , the fracturing strain increment has the following form. 

 ik
ij

f
kf

ij

F 


   (2.41) 



36 

After substitution into (2.40) a formula for the increment of the fracturing multiplier   is 
recovered. 
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f )( max
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



   and  )ˆ(max   f

kktk Lw  (2.42) 

This equation must be solved by iterations since for softening materials the value of current 
tensile strength )( max

kt wf  is a function of the crack opening w , and is based on Hordijk’s formula 

(defined in SBETA model). 

The crack opening w  is computed from the total value of fracturing strain f
kk ˆ in direction k , 

plus the current increment of fracturing strain  , and this sum is multiplied by the 
characteristic length tL . The characteristic length as a crack band size was introduced by 

BAZANT and OH. Various methods were proposed for the crack band size calculation in the 
framework of finite element method. FEENSTRA (1993) suggested a method based on 
integration point volume, which is not well suited for distorted elements. A consistent and rather 
complex approach was proposed by OLIVIER. In the presented work the crack band size Lt is 
calculated as a size of the element projected into the crack direction, Fig. 2-20. CERVENKA V. 
et al. (1995) showed that this approach is satisfactory for low order linear elements, which are 
used throughout this study. They also proposed a modification, which accounts for cracks that 
are not aligned with element edges.  

 
Fig. 2-20 Tensile softening and characteristic length 

 

Equation (2.42) can be solved by recursive substitutions. It is possible to show by expanding 
)( max

kt wf   into a Taylor series that this iteration scheme converges if: 

 
t

kkkkkt
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E
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wf
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



)( max

 (2.43) 

Equation (2.43) is violated for softening materials only when snap back is observed in the stress-
strain relationship, which can occur if large finite elements are used. In the standard 
displacement based finite element method, the strain increment is given, therefore, a snap back 
on the constitutive level cannot be captured. This means that the critical region, with snap back 
on the softening curve, will be skipped in a real calculation, which physically means, that the 
energy dissipated by the system will be over estimated. This is of course undesirable, and finite 
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elements smaller then 
w

fEL tkkkk





)0(

 should be used, where 
w

ft


 )0(

 denotes the initial slope 

of the crack softening curve.  

It is important to distinguish between total fracturing strain f
ij ˆ , which corresponds to the 

maximal fracturing strain reached during the loading process, and current fracturing strain f
ij  , 

which can be smaller due to crack closure, and is computed using (2.44) derived by ROTS and 
BLAUWENDRAAD. 

 mnklmn
cr

ijklijkl
f

kl EEE   1)( ,  and cr
ijlkE  is defined by f

kl
cr

ijklij E    (2.44) 

The fourth order crack tensor cr
ijklE represents the cracking stiffness in the local material directions. 

In the current formulation, it is assumed, that there is no interaction between normal and shear 
components. Thus, the crack tensor is given by the following formulas. 

 0cr
ijklE   for  ki   and  lj   (2.45) 

Mode I crack stiffness equals 
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ˆ
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,  (no summation of indices) (2.46) 

and mode II and III crack stiffness is assumed as: 

 ´ ´min ,cr cr cr
ijij F iiii jjjjE s E E  ,  (no summation of indices) (2.47) 

where ji  , and Fs  is a shear factor coefficient that defines a relationship between the normal 

and shear crack stiffness. The default value of Fs  is 20.  

Shear strength of a cracked concrete is calculated using the Modified Compression Field Theory 
of VECHIO and COLLINS (1986). 
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, i j     (2.48) 

Where cf   is the compressive strength in MPa, ga is the maximum aggregate size in mm and w  

is the maximum crack width in mm at the given location. This model is activated by specifying 
the maximum aggregate size ga

 
otherwise the default behavior is used where the shear stress on 

a crack surface cannot exceed the tensile strength. 

The secant constitutive matrix in the material direction was formulated by ROTS and 
BLAUWENDRAAD in the matrix format. 

 EE)EE(-EE 1-crs   (2.49) 

Strain vector transformation matrix T  (i.e. global to local strain transformation matrix) can be 
used to transform the local secant stiffness matrix to the global coordinate system. 

  TETE sTs   (2.50) 

It is necessary to handle the special cases before the onset of cracking, when the crack stiffness 
approaches infinity. Large penalty numbers are used for crack stiffness in these cases. 
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2.2.3.1 Unloading Direction 

Crack closure stiffness is controlled by the unloading factor (material parameter) 0 ≤ fU < 1.  

The value of 0 corresponds to unloading to origin (default value for backward compatibility),  

fU =1 means unloading direction parallel to the initial elastic stiffness.  

2.2.4 Plasticity Model for Concrete Crushing 
New stress state in the plastic model is computed using the predictor-corrector formula. 

 ( ) ( 1) ( )n n p t p t p
ij ij ijkl kl kl ij ijkl kl ij ijE E                 (2.51) 

The plastic corrector p
ij  is computed directly from the yield function by return mapping 

algorithm. 

 ( ) ( ) 0p t p p t
ij ij ij ijF F l        (2.52) 

The crucial aspect is the definition of the return direction ijl , which can be defined as  
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where ( )ijG  is the plastic potential function, whose derivative is evaluated at the predictor stress 

state t
ij  to determine the return direction.  

 

The failure surface of MENETREY, WILLAM is used in the current version of the material 
model. 
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In the above equations ( , , )    are Heigh-Vestergaard coordinates, cf  and tf   is compressive 

strength and tensile strength respectively. Parameter e  0 5 10. , . defines the roundness of the 
failure surface. The failure surface has sharp corners if e  0 5. , and is fully circular around the 
hydrostatic axis if e  10. .   

The position of failure surfaces is not fixed but it can move depending on the value of strain 
hardening/softening parameter. The strain hardening is based on the equivalent plastic strain, 
which is calculated according to the following formula. 

 )min( p
ij

p
eq    (2.55) 

For Menétrey-Willam surface the hardening/softening is controlled by the parameter 1,0c , 

which evolves during the yielding/crushing process by the following relationship: 
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In the above two formulas the expression )( p
eqcf  indicates the hardening/softening law, which is 

based on the uniaxial compressive test. The law is shown in Fig. 2-21, where the softening curve 
is linear, and the elliptical ascending part is given by the following formula: 
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f’ = 2f’c0 t

       

Fig. 2-21. Compressive hardening/softening and compressive characteristic length. Based on 
experimental observations by VAN MIER. 

 

The law on the ascending branch is based on strains, while the descending branch is based on 
displacements to introduce mesh objectivity into the finite element solution, and its shape is 
based on the work of VAN MIER. The onset of nonlinear behavior '

0cf  is an input parameter as 

well as the value of plastic strain at compressive strength p
c . The Fig. 2-21 shows typical values 

of these parameters. In general case, however, p
c should be calculated from the total strain at the 

peak by subtracting the elastic part 
'

1
p c

c

f

E
   , where 1  is the compressive strain when the 

compressive strength '
cf  is reached. Especially the choice of the parameter '

0cf  should be 

selected with care, since it is important to ensure that the fracture and plastic surfaces intersect 
each other in all material stages. On the descending curve the equivalent plastic strain is 
transformed into displacements through the length scale parameter cL . This parameter is defined 

by analogy to the crack band parameter in the fracture model in Sec. 2.2.3, and it corresponds to 
the projection of element size into the direction of minimal principal stresses. The square in 
(2.56) is due to the quadratic nature of the Menétry-Willam surface. 

Return direction is given by the following plastic potential 

 21 2
3

1
)( JIG ij

p    (2.58) 

where   determines the return direction. If   0  material is being compacted during crushing, 
if   0  material volume is preserved, and if   0  material is dilating. In general, the plastic 
model is non-associated, since the plastic flow is not perpendicular to the failure surface 
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The return mapping algorithm for the plastic model is based on predictor-corrector approach as 
is shown in Fig. 2-22. During the corrector phase of the algorithm the failure surface moves 
along the hydrostatic axis to simulate hardening and softening. The final failure surface has the 
apex located at the origin of the Haigh-Vestergaard coordinate system. Secant method-based 
Algorithm 1 is used to determine the stress on the surface, which satisfies the yield condition and 
also the hardening/softening law. 

 

Fig. 2-22  Plastic predictor-corrector algorithm. 

 

 

 

 

Fig. 2-23. Schematic description of the iterative process (2.73). For clarity shown in two dimensions. 
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Algorithm 1:  (Input is ( 1) ( 1) ( ), ,n n p n
ij ij ij     ) 

Elastic predictor: ( 1) ( )t n n
ij ij ijkl klE      (2.59) 

Evaluate failure criterion: ( 1)( , )p p t n p
A ij ijf F   ,  0 A  (2.60) 

If failure criterion is violated i.e. 0p
Af  

Evaluate return direction: 
( )p t

ij
ij

ij

G
m








 (2.61) 

Return mapping: ( 1)( , ) 0p t n p
ij B ij ij BF E m        (2.62) 

Evaluate failure criterion: ( 1)( , )p p t n p
B ij B ij ij B ijf F E m m        (2.63) 

Secant iterations )(i as long as A B e      (2.64) 

New plastic multiplier increment: 
p

A
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f
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  (2.65) 

New return direction: 
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Evaluate failure criterion: ( ) ( 1) ( )( , )p p t i n p i
ij ij ij ijf F E m m       (2.67) 

New initial values for secant iterations:  

   B
pp

B
p

B fff ,0  (2.68) 

   B
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BBA
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B
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A
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B fffff ,,,0  (2.69) 

End of secant iteration loop 

End of algorithm update stress and plastic strains. 

 ( ) ( 1) ( )n p n p i
ij ij B ijm     ,     ( ) ( )n t i

ij ij B ijE m     (2.70) 

2.2.5 Combination of Plasticity and Fracture model 
The objective is to combine the above models into a single model such that plasticity is used for 
concrete crushing and the Rankine fracture model for cracking. This problem can be generally 
stated as a simultaneous solution of the two following inequalities. 

 ( 1)( ( )) 0p n f p
ij ijkl kl kl klF E            solve for kl

p  (2.71) 

 ( 1)( ( )) 0f n p f
ij ijkl kl kl klF E            solve for kl

f  (2.72) 

Each inequality depends on the output from the other one, therefore the following iterative 
scheme is developed. 

 

 

Algorithm 2: 
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Step 1:   ( 1) ( 1) ( 1) ( )( ( )) 0p n i f i cor i p
ij ijkl kl kl kl klF E b              solve for ( )i p

kl   

Step 2:   ( 1) ( ) ( )( ( )) 0f n i p i f
ij ijkl kl kl klF E          solve for ( )i f

kl                   

Step 3:   ( ) ( ) ( )i cor i f i f
ij ij ij        (2.73) 

Iterative correction of the strain norm between two subsequent iterations can be expressed as 

 ( ) ( )(1 )i cor f p i cor
ij ijb        (2.74) 
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and b is an iteration correction or relaxation factor, which is introduced to guarantee 
convergence. It is to be determined based on the run-time analysis of f and p , such that the 
convergence of the iterative scheme can be assured. The parameters f and p  characterize the 
mapping properties of each model (i.e. plastic and fracture). It is possible to consider each model 
as an operator, which maps strain increment on the input into a fracture or plastic strain 
increment on the output. The product of the two mappings must be contractive to obtain a 
convergence. The necessary condition for the convergence is: 

 
(1 ) 1f pb     (2.75) 

If b  equals 0 , an iterative algorithm based on recursive substitution is obtained. The 
convergence can be guaranteed only in two cases:  

One of the models is not activated (i.e. implies f or 0p  ), 

There is no softening in either of the two models and dilating material is not used in the plastic 
part, which for the plastic potential in this work means 0 , (2.58). This is a sufficient but 

not necessary condition to ensure that f and 1p . 

It can be shown that the values of f and p  are directly proportional to the softening rate in 
each model. Since the softening model remains usually constant for a material model and finite 
element, their values do not change significantly between iterations. It is possible to select the 
scalar b  such that the inequality (2.75) is satisfied always at the end of each iteration based on 
the current values of f and p . There are three possible scenarios, which must be handled, for 
the appropriate calculation of b : 

 pf ,  where  is related to the requested convergence rate. For linear rate it can be 

set to 2/1 . In this case the convergence is satisfactory and 0b . 

1 pf , then the convergence would be too slow. In this case b can be estimated 

as 


 pf

b  1 , in order to increase the convergence rate.  

pf1 , then the algorithm is diverging. In this case b should be calculated as 

pf
b




1  to stabilize the iterations. 
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This approach guarantees convergence as long as the parameters fp  ,  do not change 

drastically between the iterations, which should be satisfied for smooth and correctly formulated 
models. The rate of convergence depends on material brittleness, dilating parameter   and finite 
element size. It is advantageous to further stabilize the algorithm by smoothing the parameter b  
during the iterative process: 

 ( ) ( 1)( ) / 2i ib b b   (2.76) 

where the superscript i  denotes values from two subsequent iterations. This will eliminate 
problems due to the oscillation of the correction parameter b . Important condition for the 
convergence of the above Algorithm 2 is that the failure surfaces of the two models are 
intersecting each other in all possible positions even during the hardening or softening. 

Additional constraints are used in the iterative algorithm. If the stress state at the end of the first 
step violates the Rankine criterion, the order of the first two steps in Algorithm 2 is reversed. 
Also, concrete crushing in one direction influences the cracking in other directions. It is assumed 
that after the plasticity yield criterion is violated, the tensile strength in all material directions is 
set to zero. 

On the structural level secant matrix is used to achieve a robust convergence during the strain 
localization process. 

The proposed algorithm for the combination of plastic and fracture models is graphically shown 
in Fig. 2-23. When both surfaces are activated, the behavior is quite like the multi-surface 
plasticity (SIMO et al. 1988). Contrary to the multi-surface plasticity algorithm the proposed 
method is more general in the sense that it covers all loading regimes including physical changes 
such as for instance crack closure. Currently, it is developed only for two interacting models, and 
its extension to multiple models is not straightforward. 

There are additional interactions between the two models that need to be considered to properly 
describe the behavior of a concrete material: 

(a) After concrete crushing the tensile strength should decrease as well 

(b) According to the research work of Collins (VECHIO and COLLINS (1986)) and 
coworkers it was established the also compressive strength should decrease when 
cracking occurs in the perpendicular direction. This theory is called compression field 
theory and it is used to explain the shear failure of concrete beams and walls. 

The interaction (a) is resolved by adding the equivalent plastic strain to the maximal fracturing 
strain in the fracture model to automatically increase the tensile damage based on the 
compressive damage such that the fracturing strains satisfies the following condition: 

ˆ f pt
kk eq

c

f

f
 


 


     (2.77) 

The compressive strength reduction (b) is based on the following formula based proposed by 
Collins: 

c c cr f   

 lim

1

1
, 1.0

0.8 170c c cr r r


  


 (2.78) 
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Where 1 is the tensile strain in the crack. In ATENA the largest maximal fracturing strain is 

used for 1 and the compressive strength reduction is limited by lim
cr . If lim

cr is not specified, then 

no compression reduction is considered. 

2.2.6 Variants of the Fracture Plastic Model 
The several ATENA material models are based on the above theories:  

CC3DCementitious,  

CC3DNonLinCementitious, 

CC3DNonLinCementitious2, 

 CC3DNonLinCementitious2Variable,  

CC3DNonLinCementitious2Fatigue (described in section 2.2.10), 

 CC3DNonLinCementitious2User,  

CC3DNonLinCementitious2FRC (described in section 2.2.11), 

CC3DNONLINCEMENTITIOUS2SHCC,  

CC3DNONLINCEMENTITIOUS2HPFRC (described in section 2.2.12),  

and CC3DNonLinCementitious3 (described in section 2.2.13),  

with the following differences: CC3DCementitious assumes linear response up to the point when 
the failure envelope is reached both in tension and compression. This means that there is no 
hardening regime in Fig. 2-21. The material CC3DNonLinCementitious on the contrary assumes 
a hardening regime before the compressive strength is reached. The material 
CC3DNonLinCementitious2 is equivalent to CC3DNonLinCementitious but purely incremental 
formulation is used (in CC3DNonLinCementitious a total formulation is used for the fracturing 
part of the model), therefore this material can be used in creep calculations or when it is 
necessary to change material properties during the analysis. The material 
CC3DNonLinCementitious2Variable is based on the material CC3DNonLinCementitious2 and it 
allows to define history evolution laws for selected material parameters. The following material 
parameters can be defined using an arbitrary evolution laws: young modulus E , tensile strength 

'
tf , compressive strength '

cf  and '
0cf . It is the responsibility of the user to define the parameters 

in a meaningful way. It means that at any time (please note compressive strength parameters '
cf  

and '
0cf  are defined as negative values in ATENA): 

 ' '1
2 0t cf f  (2.79) 

 ' ' '
0 0 0, 0c c cf f f   (2.80) 

The material CC3DNonLinCementitious2User allows for user defined laws for selected material 
laws such as: diagrams for tensile and softening behavior (see Fig. 2-24 and Fig. 2-25), shear 
retention factor (Fig. 2-26) and the effect of lateral compression on tensile strength (Fig. 2-27). 
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Fig. 2-24. An example of a user defined tensile behavior for CC3DNonLinCementitious2User 
material. 
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Fig. 2-25. An example of a user defined compressive behavior for CC3DNonLinCementitious2User 
material. 
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Fig. 2-26. An example of a user defined shear retention factor for shear stiffness degradation after 
cracking. 
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In the user defined material mode II and III crack stiffness are evaluated with the help of the 
shear retention factor gr  

as: 

 
1

gcr
ijij

g

r G
E

r
 


 (2.81) 

where ji  , min( , )i j
g g gr r r  is the minimum of shear retention factors on cracks in directions 

i , j , and G  is the elastic shear modulus. Shear retention factor on a crack in direction i is 

evaluated from the user specified diagram as shown in Fig. 2-26. 

In the above diagrams tL  and cL represents the crack band size and crush band size respectively 

as it is defined Section 2.1.3. t
chL  and c

chL represents a size for which the tensile and compression 

diagram respectively is valid. For instance, it represents the measuring base that was used in an 
experiment to determine the strain values in the diagrams above. loc  represents the strain value, 

after which strain localization can be expected. Usually, this is the strain after which the diagram 
is entering into the softening regime. For instance, the strain value that is used to determine the 
tensile strength is calculated based on the following assumptions: 

1
f f

locif     

1 1
f f   

else   

1 1( )f f f f t
tloc loc
ch

L
L

        (2.82) 

The calculation of the strain value for graphs in Fig. 2-25 and Fig. 2-26 is analogical to Eq. 
(2.82) but the appropriate values of loc , L  and chL should be used. It should be noted that the 

strain 1
f is the strain that is calculated from the strain tensor at the finite element integration 

points, while the strain 1
f is used to determine the current tensile strength from the provided 

stress-strain diagram (see Fig. 2-24). The equation (2.82) then represents a scaling that considers 
the difference between the experimental size and the size of the integration point. This approach 
guarantees that the same amount of energy is dissipated when using large and small finite 
elements. 

It is also possible to define a material law for the shear strength of a cracked concrete and for the 
compressive strength reduction after cracking.  

Compressive strength of cracked concrete  1( )f
c c cr f     (2.83) 

Shear strength of cracked concrete    1( )f
ij sh tf f      (2.84) 

It should be realized that the compressive strength of the cracked concrete i.e. (2.83) is a 
function of the maximal fracturing strain, i.e. maximal tensile damage at the given point. The 
shear strength should be a function of the crack opening. Because of that the shear strength is 
specified as a function of the fracturing strain 1

f  after the localization transformation (2.82). 

The shear strength law is specified as a value relative to tf  . The compressive strength reduction 

is specified as a function relative to cf  . 
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t t/f’

1.0

3 c/f’1.0  

Fig. 2-27. An example of a user defined tensile strength degradation law due to lateral compressive 
stress. 

2.2.7 Tension Stiffening 
In heavily reinforced concrete structures, the cracks cannot fully developed and concrete 
contributes to the steel stiffness. This effect is called tension stiffening and in 
CC3DNonLinCementitious2 material it can be simulated by specifying a tension stiffening 
factor tsc . This factor represents the relative limiting value of tensile strength in the tension 

softening diagram. The tensile stress cannot drop below the value given by the product of ts tc f  

(see Fig. 2-28). The recommended default value for tsc is 0.4 as recommended by CEB-FIP 

Model Code 1990. 

 

ft

cts



ft



 

Fig. 2-28: Tension stiffening. 

2.2.8 Crack Spacing 
In heavily reinforced concrete structures, or structures with large finite elements, when many 
reinforcement bars are crossing each finite element, the crack band approach described in 
Section 2.1.3 will provide too conservative results, and the calculated crack widths may be 
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overestimated. This is the consequence of the fact that the crack band approach assumes that the 
crack spacing is larger than a finite element size. In heavily reinforced structures, or if large 
finite elements are used, it may occur that the crack spacing will be smaller than finite element 
size. This is especially true if shell/plate elements are used. In this case, typically large finite 
elements can be used, and they usually contain significant reinforcement. In these cases, it is 
useful to provide the crack spacing manually, since otherwise the program will overestimate the 
cracking and due to that also larger deflections may be calculated. The program ATENA allows 
the user to manually define the crack spacing. This user defined spacing is used as crack band 
size tL  in cases when the user defined crack spacing is smaller than the tL  that would be 

calculated by formulas presented in Section 2.1.3. 

2.2.9 Fixed or Rotated Cracks 
Similarly, to the SBETA material, the Cementitious material family offers the choice of fixed 
and rotated crack models (see section 2.1.6). The fixed crack material parameter determines at 
which maximum residual tensile stress level the crack direction gets fixed. In other words, 0.0 
means fully rotated crack model (as 0 in SBETA), 1.0 means fixed crack model (as 1 in 
SBETA), values between 0.0 and 1.0 determine the crack direction locking level, e.g., 0.7 fixes 
the crack direction as soon it opens so far that the softening law drops to 0.7 times the [initial] 
tensile strength. 

2.2.10 Fatigue 
For modelling fatigue behavior of concrete (CEB 1988 and SAE AE-4) under tensile load, a new 
material has been implemented in ATENA. The new material 
(CC3DNonLinCementitious2Fatigue) is based on the existing three-dimensional fracture plastic 
material (CC3DNonLinCementitious2) and uses a stress-based model (2.2.10.1). It has an 
additional parameter, fatigue , and additional data attributes for base , N , and fatigue , used in the 

damage calculation as described in section 2.2.10.2. For details and validation against tests 
conducted by KESSLER-KRAMER (2002) see ČERVENKA, PRYL (2007) or PRYL, 
CERVENKA, PUKL (2010). Modelling 3-point bending tests with this material is presented in 
PRYL, PUKL, CERVENKA (2013) and PRYL, D., MIKOLÁŠKOVÁ, J., PUKL, R. (2014).  

2.2.10.1 Stress Based Models 

In this approach the fatigue is represented by the so-called S-N curves relating the applied stress, 
S, and the number of cycles, N, to failure. Such curves must be determined by tests, see Fig. 
2-29.  

For steel reinforcement bars the performance can be normally expressed as a simple power law 
by BASQUIN (1910). 

 m
r N C   (2.85) 

where r  is the stress range, N  is the number of cycles to failure and m and C are constants. 
This means a linear relationship between  and N in a full logarithmic diagram. The equation 
(2.85) is generally valid for the high-cycle range. 

For plain concrete, the performance can normally be expressed as a straight line in a semi-
logarithmic diagram of the form: 

  max 1 1 logR N
f

     (2.86) 
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where max is the maximum stress, f is static concrete strength, min

max

R



 , min  is minimum 

stress and   is a material constant. The equation (2.86) holds for both compressive and tensile 

stresses, however, the value of   is not necessarily the same for tensile and compressive 

behavior of a material. The value should be determined from experiments. For example, 

 =0.052 was used based on the experimental results for load levels 0.7 and 0.9 statF  when 

modelling the test on a probe sealed during curing with a notch from section 3.5.2.4 of 
KESSLER-KRAMER (2002) for validation.  

 

 

Fig. 2-29: Typical S-N line for concrete in compression (KLAUSEN (1978)) 

The S-N relations mentioned above are mainly obtained by constant amplitude tests. However, 
in real structures the stresses are varying. One method which can be of help in this context is the 
well-known Palmgren-Miner hypothesis PALMGREN (1924), MINER (1945). 

 
1

1
k

i

i i

n

N

  (2.87) 

where in  is the number of constant amplitude cycles at stress level i , iN  is the number of cycles 

to failure at stress level i , and k  is the number of stress levels. As a rough tool this hypothesis is 
useful, especially concerning steel. It can also be used for concrete although some investigations 
have suggested that a value lower than 1 should be used. 
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2.2.10.2 Fatigue Damage Calculation 

In the implemented model, fatigue damage consists of a contribution based on cyclic stress 
(2.2.10.2.1), and an additional contribution from crack opening and closing in each cycle 
(2.2.10.2.3). The former is dominant before cracking occurs, the latter in already cracked 
regions.  

2.2.10.2.1 Stress Based Contribution 

The number of cycles to failure N  is determined from a simple stress based model, so called S-
N or Wöhler curve as described in the previous section 2.2.10.1. 

 1 1 logupper
fatigue R N

f


   , i.e., 

 

1

1

10

upper

fatigue

f

R

N





 
 

 
 
 
  , where upper  stands for the maximum 

tensile or compressive stress and f  for the corresponding strength, tf  or cf , base

upper

R



 . 

Then, the damage due to fatigue after n  cycles is calculated as an increase of the maximum 

fracturing strain f
ij ˆ  (see section 2.2.3). The maximum fracturing strain in each principal 

direction is adjusted by adding  

fatigue
fatigue

w

ElemSize
  , where fatigue fail

n
w w

N
  and the failing displacement for the given stress 

_ _ ( )fail upperw invert soft law   (see Fig. 2-30).  

 

Fig. 2-30: Softening law and fatigue damage. 
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In ATENA 4.0, a single value of fatigue  is used to calculate fatigue damage caused by both 

tensile and compressive stresses. So far, there is also no special provision implemented for loads 
crossing zero, i.e., changing from tension to compression and back in each cycle, which lead to 
faster damage according to experimental results presented in CEB 1988 and SAE AE-4. In that 
situation, the damage is calculated separately for cyclic loading from 0 to max. compression and 
from 0 to max. tension, and then the worse of both damage values is considered. It should be 
also noted that the damage is only introduced in form of maximum fracturing strain, which has 
no direct impact on compressive material properties, i.e., the fatigue damage effectively only has 
influence on tensile behaviour of the material.  

2.2.10.2.2 Stress Based Contribution with Trilinear Damage 1 

Hardcoded definition of damage evolution during the fatigue process, with the breakpoints  

wf1 = wfr_1 * wfail and wf2 = wfr_2 * wfail.  

fatiguew  = n * wf1 / N1 for n_tot < N1 

 wf1 + ((n_tot - N1) * (wf2 - wf1) / (N2 - N1)) - wf_curr for N1 <= n_tot < N2 

 wf2 + ((n_tot - N2) * (wfail - wf2) / (N - N2)) - wf_curr for N2 <= n_tot < N 

 wfail * n_tot / N - wf_curr for N <= n_tot 

where 

n_tot = n + N_beg, N_curr = N - N_beg,  

N_beg =  wf_curr * N1 / wf1  for wf_curr < wf1 

 N1 + (wf_curr - wf1) * (N2 - N1)/(wf2 - wf1) for wf1 <= wf_curr < wf2 

 N2 + (wf_curr - wf2) * (N - N2)/( wfail - wf2) for wf2 <= wf_curr 

0 < N_beg < N 

and  

wfr_1 = 0.1, Nr_1  = 0.1, wfr_2 = 0.5, Nr_2  = 0.9, N1 = Nr_1 * N, N2 = Nr_2 * N.  

2.2.10.2.3 Crack Opening Based Contribution 

The damage due to cracks that open and close during the cyclic loading is determined as 

fatigueCOD
fatigueCOD

w

ElemSize
  , where /fatigueCOD fatigue COD fatigueCODloadw n R c COD  2, CODR  is the crack 

opening ratio (similar to the cycle asymmetry ratio R  used in the stress based contribution; with 
a bottom limit of 0.01), and COD  denotes the difference between the maximum and minimum 

crack opening during a cycle. The resulting fatigueCOD  is added to fatigue  before the fatigue 

damage is introduced into the material. 

                                                 
1 Available since version 5.3.0 

2 In ATENA versions prior to 5.1.3 and 5.3.4: fatigueCOD fatigue fatigueCODloadw n c COD   
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2.2.10.3 Bringing in Fatigue Damage 

It is recommended to introduce the fatigue induced damage into the unloaded structure (i.e., at 
the lower stress level). Several other approaches of introducing the damage into the model were 
also tested, i.e., introducing the damage at the upper load level or during reloading, but they 
usually bring more convergence problems, especially during unloading.  

2.2.11 Fiber Reinforced Concrete (FRC) Material 
The CC3DNonLinCementitious2FRC material model is based on CC3DNonLinCementitious2 
as described above in Sections 2.2.1 - 2.2.6. In case of FRC, the fibers added to the concrete 
mixture increase the residual strength and ductility of the material, which is reflected by the 
tension softening law. In the FRC material model, the added fractural energy approach proposed 
by Juhász (2013) is implemented in the stress-crack width diagram. The total fractural energy of 
the fiber reinforced concrete reads: 

 FFRC F FfG G G   ,  

where GFFRC and GF, are the fractural energies of the fiber reinforced concrete and the plain 
concrete matrix, respectively, and GFf is the additional fractural energy, which corresponds to the 
pull-out energy of the fibers.   

 

Fig. 2-31: Crack opening law for FRC using the added fractural energy approach. 

The fracture energy added by the fibers is assumed as: 

 Ff f tG w f   , 

where wf is the maximum crack opening width of the FRC, which depends on the type and 
length of the fibers, and ft is the post-cracking residual tension strength. It should be noted that 
the value of ft defined as fFtu in the fib model code 2010 (Taerwe and Matthys, 2013).  

2.2.12 Strain Hardening Cementitious Composite (SHCC, HPFRCC) Material 
The CC3DNONLINCEMENTITIOUS2SHCC is suitable for fibre reinforced concrete, such as 
SHCC (Strain Hardening Cementitious Composites) and HPFRCC or UHPFRC (high and ultra-
high performance fiber reinforced concrete) materials. The theory of this material model is 
identical to those described in Sections 2.2.1 - 2.2.6. The tensile softening regime (Fig. 2-33) and 
the shear retention factor (Eq. (2.94)) are modified based on the model, proposed in KABELE, P. 
(2002). This model is based on a notion of a representative volume element (RVE), which 
contains distributed multiple cracks (hardening) as well as localized cracks (softening) – see Fig. 
2-32. 
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Fig. 2-32: Representative volume element with cracks. 

2.2.12.1 Basic Assumptions 

a) multiple cracking regime (hardening) 

 A set of parallel planar multiple cracks forms when maximum principal stress max = fc (first 
crack strength). 

 Crack planes are perpendicular to the direction of max (-axis). 

 The direction of a crack set is fixed. 

 Secondary crack set may form in direction perpendicular to primary set if the maximum 
normal stress in the corresponding direction (-axis) exceeds fc.  

 Cracks may slide if the direction of principal stress changes. 

 Crack opening and sliding are resisted by fiber bridging. 

 Crack opening and sliding displacements are averaged over the RVE as cracking strains 

ij
mc , , ij

mc ,
(notation: lower indices – components of tensor or vector, upper indices – 

multiple or localized crack mc, lc and association with primary or secondary crack direction , 
) 

b) localized cracking regime (softening) 

 A localized crack forms within a set of multiple cracks if the corresponding normal cracking 
strain exceeds the level of mc

mb (cracking strain capacity, a material constant). 

 Opening and sliding displacements of the i , i localized cracks are treated by the crack 

band model (i.e. they are transformed into cracking strains ij
lc, , ij

lc,
by dividing them with 

corresponding band width w
c or w

c). 

The overall strain of the RVE is then obtained as a sum of strain of material between cracks 
(which may possibly contain nonlinear plastic strain due to compressive yielding), cracking 
strains due to multiple cracks, and cracking strains due to localized cracks:  

 ij ij
s

ij
mc ,

ij
mc ,

ij
lc,

ij
lc ,

 (2.88) 

where s
ij  represents the strain of the continuous material between cracks. 
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2.2.12.2 Crack Opening Model 

The crack-normal stress components are related to cracking strains corresponding to opening of 
multiple and localized cracks by piecewise linear relations depicted in Fig. 2-33 [although linear 
hardening and softening are shown, a user should be allowed to input piecewise linear curves]. 
Note that for multiple cracks, it is assumed that they do not close unless exposed to crack-normal 
compression (plasticity-like unloading) while a localized crack is assumed to close so that 
normal stress decreases linearly to reach zero at zero COD [these assumptions may need to be 
revised in the future to some combination of plasticity and damage-like closure]. See also section 
2.2.3. 

multiple cracking regime



cracking strain mc


loading

unloading/
reloading


crack
opening

unloading/
reloading

mc
mb



COD cracking strain mc


localized cracking regime

 

Fig. 2-33: Stress vs. cracking strain relations in crack-normal direction. 

2.2.12.3 Crack Sliding Model 

The model for crack sliding phenomena is implemented by means of a variable shear retention 

factor  The shear retention factor is defined as a ratio of the material post-cracking shear 
stiffness Gc to its elastic shear stiffness G, 

 
cG

G
  . (2.89) 

Let us determine stiffness Gc, while considering the most general 2-D case of an element, which 
contains two perpendicular sets of multiple cracks and two perpendicular localized cracks. If the 

problem is defined in plane , then the total engineering shear strain has only one non-zero 
component, which is obtained as: 

 2 s 2 mc , 2 mc , 2 lc , 2 lc ,
, (2.90) 

which can be rewritten with use of the shear bridging model (Kabele, 2000) as: 

 
1 
G

1 

M mc ,

1 

M mc ,

1 

wc L

1 

wc L

1 
Gc  (2.91) 

Functions M and L are defined by 

 ( )
2

f fV k G
M 


  (2.92) 
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 ( ) 0L   , for 0    (2.93) 

Here Vf is the fiber volume fraction, Gf is the fiber shear modulus, Ef is the fiber Young’s 
modulus, df is the fiber diameter, and k is the fiber cross-section shape correction factor. The 
quantity  and  indicates the crack opening in direction  and  respectively. The parameter 

0 represents the limiting value of the crack opening displacement, when no tensile stress can be 

transferred across the crack, i.e. the point when the stress-displacement diagram in Fig. 2-33 

drops to zero. These parameters are to be supplied by the user except for the parameter 0 , 

which is automatically extracted from the provided stress-strain law for tension. The shear 
retention factor is then expressed as 
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 (2.94) 

Note that for an element containing only multiple cracks (before localization) 0  and 

1/L terms approach zero. For an uncracked element, 
mc , mc , 0  and 1/M and 1/L 

approach zero, giving =1.  

2.2.13 Confinement-Sensitive Constitutive Model 
The CC3DNonLinCementitious3 fracture-plastic constitutive model is an advanced version of 
the CC3DNonLinCementitious2 material that can handle the increased deformation capacity of 
concrete under triaxial compression. It is suitable for problems including confinement effects 
such as confined reinforced concrete members (columns, bridge piers), nuclear vessels and 
triaxial compression tests of plain concrete. A detailed description of the model formulation is 
presented in PAPANIKOLAOU and KAPPOS (2007). In this section, only the main differences 
between the CC3DNonLinCementitious3 and the CC3DNonLinCementitious2 model are 
described, which are mainly focused on the plasticity part of the model (section 2.2.4). 

2.2.13.1 Hardening and Softening Function  

The position of failure surface can expand and move along the hydrostatic axis (simulating the 
hardening and softening stages), based on the value of the hardening/softening parameter (κ). In 
the present model, this parameter identifies with the volumetric plastic strain (GRASSL et al., 
2002) : 

 p p p p
v 1 2 3dκ dε dε dε dε     (2.95) 

The instantaneous shape and location of the loading surface during hardening is defined by a 
hardening function (k), which depends on the hardening/softening parameter (κ). This function is 
directly incorporated in the Menétrey-Willam failure surface equations  (2.54), operating as a 
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scaling factor on the compressive concrete strength (fc). It has the same elliptic form with 
CC3DNonLinCementitious2  (2.57), but herein in terms of the plastic volumetric strain: 

  
2p p

v,t vp
v o o p

v,t

ε ε
k(κ) k(ε ) k 1 k 1

ε

 
        

 
 (2.96) 

where p
v,tε  is the plastic volumetric strain at uniaxial concrete strength (onset of softening) and ko 

is the value that defines the initial yield surface that bounds the initial elastic regime (onset of 
plasticity). At the end of the hardening process, the hardening function retains a constant value 
of unity and the material enters the softening regime, which is controlled by the softening 
function (c). This function simulates the material decohesion by shifting the loading surface 
along the negative hydrostatic axis. It is assumed that it follows the softening function originally 
proposed by VAN GYSEL and TAERWE (1996) for uniaxial compression: 

 

2

2p
v 1

2

1

c(κ) c(ε ) n 1
1

n 1

 
 
          
 

 (2.97) 

where: 

 p p
1 v v,tn ε / ε  (2.98) 

 p p
2 v,t v,tn (ε t) / ε   (2.99) 

Parameter t in equation (2.99) controls the slope of the softening function and the outmost square 
is necessary due to the quadratic nature of the loading surface. The softening function value 
starts from unity and complete material decohesion is attained at c = 0. The evolution of both 
hardening and softening functions with respect to the hardening/softening parameter is 
schematically shown in Fig. 2-34. 
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Fig. 2-34: Evolution of hardening (k) and softening (c) functions with respect to the plastic 
volumetric strain. 

2.2.13.2 Plastic Potential Function 

The present plasticity model incorporates a non-associated flow rule using a polynomial plastic 
potential function (g), with Lode angle (θ) dependency and adjustable order (n): 

 

n

c c c

ρ 1 ρ ξ
g A C (B C)(1 cos3θ) a

2k c f k c f k c f

                     
 (2.100) 

Parameters A, B and C define the shape of the plastic potential function in stress space and their 
calibration is based on the assumption that the inclination (ψ) of the incremental plastic strain 
vector identifies with the inclination of the total plastic strain vector at three distinct stress states, 
namely the uniaxial, biaxial and triaxial compressive concrete strength (Fig. 2-35). The attraction 
constant (a) is included for mathematical clarity and is not a user parameter, due to plastic 
potential function differentiation in the flow rule.  
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Fig. 2-35: Direction (ψ) of the incremental (a) and total (b) plastic strain vectors. 

2.2.13.3 Suggested Model Parameters 

A detailed calibration scheme for the plasticity model parameters, based on and extensive 
experimental database can be found in PAPANIKOLAOU and KAPPOS (2007) and suggested 
values (including the fracture model parameters) for various uniaxial compressive concrete 
strengths (fc) are shown in the following table (see Atena Input File Format document for the 
material definition details): 

Table 2.2-1 Suggested parameters for the fracture and plasticity models 

fc (ΜPa) 20 30 40 50 60 70 

Εc (MPa) 24377 27530 30011 32089 33893 35497 

ν 0.2 0.2 0.2 0.2 0.2 0.2 

ft (MPa) 1.917 2.446 2.906 3.323 3.707 4.066 

λt 1.043 1.227 1.376 1.505 1.619 1.722 

e 0.5281 0.5232 0.5198 0.5172 0.5151 0.5133 

fco (MPa) -4.32 -9.16 -15.62 -23.63 -33.14 -44.11 

p
v,tε  4.92·10-4 6.54·10-4 8.00·10-4 9.35·10-4 1.06·10-3 1.18·10-3 

t 1.33·10-3 2.00·10-3 2.67·10-3 3.33·10-3 4.00·10-3 4.67·10-3 

A 7.342177 5.436344 4.371435 3.971437 3.674375 3.43856 

B -8.032485 -6.563421 -5.73549 -5.430334 -5.202794 -5.021407 

C -3.726514 -3.25626 -3.055953 -2.903173 -2.797059 -2.719067 

n 3 3 3 3 3 3 

Gf (MN/m) 4.87·10-5 6.47·10-5 7.92·10-5 9.26·10-5 1.05·10-4 1.17·10-4 
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fc (ΜPa) 80 90 100 110 120 

Εc (MPa) 36948 38277 39506 40652 41727 

ν 0.2 0.2 0.2 0.2 0.2 

ft (MPa) 4.405 4.728 5.036 5.333 5.618 

λt 1.816 1.904 1.986 2.063 2.136 

e 0.5117 0.5104 0.5092 0.5081 0.5071 

fco (MPa) -56.50 -70.30 -85.48 -102.01 -114.00 

p
v,tε  1.30·10-3 1.41·10-3 1.52·10-3 1.62·10-3 1.73·10-3 

t 5.33·10-3 6.00·10-3 6.67·10-3 7.33·10-3 8.00·10-3 

A 3.245006 3.082129 2.942391 2.820644 2.713227 

B -4.871993 -4.745867 -4.637358 -4.542587 -4.458782 

C -2.659098 -2.611426 -2.572571 -2.540158 -2.512681 

n 3 3 3 3 3 

Gf (MN/m) 1.29·10-4 1.40·10-4 1.50·10-4 1.61·10-4 1.71·10-4 

2.3 Von Mises Plasticity Model 
Von Mises plasticity model called also as J2 plasticity is based only on one parameter k. The 
yield function is defined as: 

  2( ) 0p p
ij eqF J k     (2.101) 

where 2J  denotes the second invariant of stress deviator tensor. The parameter 

   1
3

p p
eq y eqk     is the maximal shear stress and y  is the uniaxial yield stress. This 

parameter controls the isotropic hardening of the yield criterion. 

    2
3

1

, :
incN

p p p p p
y eq y eq eq

i

H    


     ε ε  (2.102) 

y  is the yield stress, H  the hardening modulus and p
eq  is the equivalent plastic strain 

calculated as a summation of equivalent plastic strains during the loading history. 

In case of von Mises plasticity the plastic potential function is identical with the yield function: 

 )()( ij
P

ij
p FG    (2.103) 

The associated flow rule is assumed. The background information can be found in (CHEN, 
SALEEB 1982, Sec.5.4.2). 

The Von Mises model could be used to model cyclic steel behavior including Bauschinger 
effect. In this case the yield function is modified as: 
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      1
2 0: ( 1) 0p

eqk r k      σ X σ X  (2.104) 

where σ  is the deviatoric stress, 0k  is an initial value of ( )p
eqk   according to (2.102), X is the so 

called back stress controlling the kinematic hardening: 

 2
3 1 2

p p
eqk k     X ε X  (2.105) 

In equations (2.104) and (2.105) quantities 1 2, ,r k k  are material parameters for the cyclic 
response. If r  is non-zero, the cyclic model is activated, and it controls the radius of the Von 
Mises surface. If 1r   the yielding will start exactly when y  is reached. For lower values, the 

non-linear behavior starts earlier, and the slope of the response is mainly affected by parameter 

1k  (larger value – higher slope). Parameter 2k  on the other hand affects the memory of the cyclic 
response. Some examples of various parameter combinations are shown at Fig. 2-36. 
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Fig. 2-36: Effect of material parameter choice on cyclic response for E=210 GPa and y = 200 MPa. 

 

 



62 

2.4 Drucker-Prager Plasticity Model 
Drucker-Prager plasticity model is based on a general plasticity formulation that is described in 
Section 2.2.4. The yield function is defined as: 

 F I J kDP
p

ij( )    1 2 0  (2.106) 

Where   and k  are parameters defining the shape of the failure surface. They can be estimated 
by matching with the Mohr-Coulomb surface. If the two surfaces are to agree along the 
compressive meridian, i.e. 00  , the formulas are: 

 
   
2sin 6 cos

,
3 3 sin 3 3 sin

c
k

 
 

 
 

 (2.107) 

This corresponds to a outer cone to the Mohr-Coulomb surface. The inner cone, which passes 
through the tensile meridian where 060   has the constants given by the following expressions: 

 
   
2sin 6 cos

,
3 3 sin 3 3 sin

c
k
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 

 
 

 (2.108) 

The position of failure surfaces is not fixed but it can move depending on the value of strain 
hardening/softening parameter. The strain hardening is based on the equivalent plastic strain, 
which is calculated according to the following formula. 

 )min( p
ij

p
eq    (2.109) 

Hardening/softening in the Drucker-Prager model is controlled by the parameter k . This 
parameter is selected such that the surface at the peak passes through the uniaxial compressive 
strength, and it changes according to the following expression. 
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The symbol k’ in the above formula replaces k in (2.106). In the above two formulas the 
expression )( p

eqcf  indicates the hardening/softening law, which is based on the uniaxial 

compressive test. The law is shown in Fig. 2-37.  

 

Fig. 2-37. Linear softening in the Drucker-Prager material model 

 

Return direction is given by the following plastic potential: 

 21 2
3

1
)( JIG ij

p    (2.111) 
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where   determines the return direction. If   0  material is being compacted during crushing, 
if   0  material volume is preserved, and if   0  material is dilating. In general, the plastic 
model is non-associated, since the plastic flow is not perpendicular to the failure surface 

The return mapping algorithm for the plastic model is based on predictor-corrector approach as 
is shown in Fig. 2-22. During the corrector phase of the algorithm the failure surface moves 
along the hydrostatic axis to simulate hardening and softening. The final failure surface has the 
apex located at the origin of the Haigh-Vestergaard coordinate system. Secant method-based 
Algorithm 1 is used to determine the stress on the surface, which satisfies the yield condition and 
also the hardening/softening law. 

2.5 User Material Model 
In some situations, none of the standard material models available in ATENA can describe the 
behavior sufficiently. Many such cases can be handled by defining user laws in the fracture-
plastic material model (see CC3DNonLinCementitious2User described in section 2.2.6), in the 
others the user can provide a dynamic link library implementing his own material model. The 
user material is based on the elastic isotropic material, adding new material parameters and state 
variables (both limited to floating point values). See the User Material DLL Manual for 
description and reference, and the CCUserMaterialExampleDLL directory in Atena Science 
Examples for an example project including the source code in C and a window help file version 
of the manual, AtenaV4_UserMaterialDLL.chm. Please note that the behavior of the user model 
may have influence on convergence of the analysis.  

2.6 Interface Material Model 
The interface material model can be used to simulate contact between two materials such as for 
instance a construction joint between two concrete segments or a contact between foundation 
and concrete structure. The interface material is based on Mohr-Coulomb criterion with tension 
cut off. The constitutive relation for a general three-dimensional case is given in terms of 
tractions on interface planes and relative sliding and opening displacements. 
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 (2.112) 

For two-dimensional problems second row and column are omitted. 

The initial failure surface corresponds to Mohr-Coulomb condition (2.113) with ellipsoid in 
tension regime. After stresses violate this condition, this surface collapses to a residual surface 
which corresponds to dry friction. 
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In tension the failure criterion is replaced by an ellipsoid, which intersect the normal stress axis 
at the value of tf  with the vertical tangent and the shear axis is intersected at the value of c (i.e. 

cohesion) with the tangent equivalent to  . 

The parameters for the interface model cannot be defined arbitrarily; there is certain dependence 
of some parameters on the others. When defining the interface parameters, the following rules 
should be observed: 

 
,

0, 0, 0

t t
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c
f f c

c f
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  
 (2.114) 

It is recommended that parameters , ,tc f   are always greater than zero. In cases when no 

cohesion or no tensile strength is required, some very small values should be prescribed. 

  


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Fig. 2-38:  Failure surface for interface elements. 

In general three-dimensional case   in Fig. 2-38 and equation (2.113) is calculated as: 

 2 2
1 2     (2.115) 
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Fig. 2-39: Typical interface model behavior in shear (a) and tension (b) 

The nnK , ttK  denote the initial elastic normal and shear stiffness, respectively. Typically for 

zero thickness interfaces, the value of these stiffnesses correspond to a high penalty number. It is 
recommended not to use extremely high values as this may result in numerical instabilities. It is 
recommended to estimate the stiffness value using the following formulas  

 nn

E
K

t
 ,     tt

G
K

t
  (2.116) 

where E and G  is minimal elastic modulus and shear modulus respectively of the surrounding 
material. t  is the width of the interface zone. Its value can be selected either based on the reality. 
For instance, for mortar between masonry bricks the value is typically 10-20 mm. Alternatively, 
it can be estimated as a dimension, which can be considered negligible with respect to the 
structural size. For instance, in case of a dam analysis, where the dam dimensions are typically in 
the order of 100 meters, the width of the interface zone can be estimated to be 0.5 meters. It is 
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suitable due to numerical reasons if stiffness is about 10 times of the stiffness of adjacent finite 
elements.  

There are two additional stiffness values that need to be specified in the ATENA input. They are 
denoted in Fig. 2-39 as min

nnK and min
ttK . They are used only for numerical purposes after the 

failure of the element to preserve the positive definiteness of the global system of equations. 
Theoretically, after the interface failure the interface stiffness should be zero, which would mean 
that the global stiffness will become indefinite. These minimal stiffnesses should be about 0.001 
times of the initial ones. 

It is possible to define evolution laws for tensile as well as shear softening by arbitrary 
multilinear laws. Examples of such laws are shown in Fig. 2-40. The figure describes bi-linear 
softening laws. The break point of this law can be determined for instance by the formula 
proposed by Bruehwiler and Wittman (1990). 
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Fig. 2-40: Example of a softening law for tension and cohesion. 

The evolution law depends on the equivalent nonlinear interface relative displacement  

 2 2 2
1 2

f
eq f f fu u v v         in 3D and 2 2f

eq f fu u v      in 2D (2.118) 

Where fu and fiv are the inelastic components of the relative interface displacement on the 

basis of their decomposition into elastic and nonlinear, i.e. fracturing part. 
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 (2.119) 

This approach ensures that the degradation in shear affects also tensile strength and vice versa. 
For instance, when the interface is damaged in shear, the tensile strength is reduced as well. The 
typical behavior of the interface model with the softening evolution laws is shown in Fig. 2-39 
by the dotted lines. The default behavior when no softening law is given is brittle with 
immediate drop to zero in tension and to the residual dry friction in shear. The behavior is shown 
in Fig. 2-39 by the solid black line. 

When user softening laws are defined for the interface material, it is recommended that the 
softening law for cohesion is always more ductile then the one for tensile strength, i.e. the 
cohesion should be higher than the tensile strength at any time during the softening process. 

ueq
f ueq

f
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Fig. 2-41: Example of a cyclic response of the model in shear under constant normal pre-stress. 

2.7 Reinforcement Stress-Strain Laws 

2.7.1 Introduction 
Reinforcement can be modeled in two distinct forms: discrete and smeared. Discrete 
reinforcement is in form of reinforcing bars and is modeled by truss elements. The smeared 
reinforcement is a component of composite material and can be considered either as a single 
(only one-constituent) material in the element under consideration or as one of the more such 
constituents. The former case can be a special mesh element (layer), while the later can be an 
element with concrete containing one or more reinforcements.  In both cases the state of uniaxial 
stress is assumed, and the same formulation of stress-strain law is used in all types of 
reinforcement. More info about discrete reinforcement is available in Section 10.2.3 Discrete 
Reinforcement Embedded in Solid Elements, located near the end of this manual. 

2.7.2 Bilinear Law 
The bilinear law, elastic-perfectly plastic, is assumed as shown in Fig. 2-42. 
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Fig. 2-42  The bilinear stress-strain law for reinforcement. 

The initial elastic part has the elastic modulus of steel Es. The second line represents the 
plasticity of the steel with hardening and its slope is the hardening modulus Esh. In case of 
perfect plasticity Esh =0. Limit strain L represents limited ductility of steel.  

2.7.3 Multi-line Law 
The multi-linear law consists of four lines as shown in Fig. 2-43. This law allows to model all 
four stages of steel behavior: elastic state, yield plateau, hardening and fracture. The multi-line is 
defined by four points, which can be specified by input. 

 

Fig. 2-43 The multi-linear stress-strain law for reinforcement. 

The above-described stress-strain laws can be used for the discrete as well as the smeared 
reinforcement. The smeared reinforcement requires two additional parameters: the reinforcing 
ratio p (see Section 2.1.1.1) and the direction angle  as shown in Fig. 2-44.  
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Fig. 2-44 Smeared reinforcement. 

The spacing s of the smeared reinforcement is assumed infinitely small. The stress in the 
smeared reinforcement is evaluated in the cracks, therefore it should also include a part of stress 
due to tension stiffening (which is acting in concrete between the cracks, section 2.1.9). 

 ' '
scr s ts     (2.120) 

where '
s  is the steel stress between the cracks (the steel stress in smeared reinforcement), '

scr  

is the steel stress in a crack. If no tension stiffening is specified ts =0 and ' '
scr s  . In case of 

the discrete reinforcement the steel stress is always '
s . 

2.7.4 No Compression Reinforcement 
Normally all reinforcement material models in ATENA exhibit the same behavior in tension as 
well as in compression. The material types CCReinforcement and 
CCSmearedReinforcement include the capability to deactivate the compressive response of 
the reinforcement. This is sometimes useful, if this material model is used to simulate the 
behavior of reinforcement elements that have a very low bending stiffness, so it can be assumed 
that when the reinforcement is loaded by compressive forces, buckling occurs and the strength of 
the elements in compression is negligible.  This is controlled by the command COMPRESSION 
0 or 1, which deactivates and activates the compressive response respectively (for more details 
see ATENA Input File Format). 

2.7.5 Cyclic Reinforcement Model 
The reinforcing steel stress-strain behavior can be described by the nonlinear model of 
Menegotto and Pinto (1973). In ATENA this model is extended to account of the isotropic 
hardening due to an arbitrary hardening law that can be specified for reinforcement (see Sections 
2.7.2, 2.7.3). The stress in the cyclic model is calculated according to the following expression. 

   *
0 r r        (2.121) 
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where 0R , 1c  and 2c  are experimentally determined parameters, and b the current hardening 

modulus. The Fig. 2-45 shows the meaning of strain values r , 0 ,   and stress values r  and 

0 . These values changes for each cycle. The values with the subscript r  indicate the point 

where the cycle started, and the subscript 0  indicates the theoretical yield point that would be 
reached during the unloading if the response would not have been modified by the hysteretic 
behavior. During the calculation of this point the material stress-strain law is considered (see 
Sections 2.7.2, 2.7.3) 

  *
R eqf  ,   

.

1

incrN
i

eq eq
i

 


   (2.123) 

 

 

Fig. 2-45: Cyclic reinforcement model based on Menegotto and Pinto (1973). 

2.7.6 Cyclic Reinforcement Model – Steel DRC 

Another nonlinear constitutive model for reinforcement which captures cyclic behavior and is 
implemented in ATENA is described by Dodd and Restrepo (1995) and further improved by Se-
Hyung Kim (2015). 
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Fig. 2-46: Cyclic reinforcement model based on Dodd and Restrepo (1995) – backbone curve 
definition points. 

 
 

Fig. 2-47: Cyclic reinforcement model based on Dodd and Restrepo (1995) – effect of parameter . 
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2.8 Reinforcement Bond Models 
The basic property of the reinforcement bond model is the bond-slip relationship. This 
relationship defines the bond strength (cohesion) b depending on the value of current slip 

between reinforcement and surrounding concrete. ATENA contains three bond-slip models: 
according to the CEB-FIB model code 1990, slip law by Bigaj and the user defined law. In the 
first two models, the laws are generated based on the concrete compressive strength, 
reinforcement diameter and reinforcement type. The important parameters are also the 
confinement conditions and the quality of concrete casting. 

2.8.1 CEB-FIP 1990 Model Code 

 

Fig. 2-48:  Bond-slip law by CEB-FIP model code 1990. 
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fb   ,   

3
s s  (2.127) 

 

 

 

Table  2.8-1:  Parameters for defining the mean bond strength-slip relationship for ribbed bars. 

 2 3 4 5 

Value Unconfined concrete* Confined concrete** 

 Bond conditions Bond conditions 

 Good All other cases Good All other cases 

S1 0.6 mm 0.6 mm 1.0 mm 

S2 0.6 mm 0.6 mm 3.0 mm 

S3 1.0 mm 2.5 mm clear rib spacing 

 0.4 0.4 

max 

2.0
C

f  1.0
C

f  2.5
C

f  1.25
C

f  

f 

max0.15   max0.40   

*  Failure by splitting of the concrete 

**Failure by shearing of the concrete between the ribs 

Table  2.8-2:  Parameters for defining the bond strength-slip relationship for smooth bars. 

Values Cold drawn wire Hot rolled bars 

 Bond conditions Bond conditions 

 Good All other 

cases 

Good All other cases 

1 2 3
s s s   

0.01 mm 0.1 mm 

 0.5 0.5 
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max f
   0.1

C

f  0.05
C

f  0.3
C

f  0.15
C

f  

2.8.2 Bond Model by Bigaj 
The second pre-defined bond model available in ATENA is based on the work by BIGAJ 1999. 
This model depends on the bond quality, concrete cubic compressive strength '

cuf  and 

reinforcement bar radius D . The slip law for this model is shown in Fig. 2-49. 

 

Fig. 2-49:  Bond law by BIGAJ 1999 

The ascending part of the stress-slip law i.e. part a  is modeled by a bi-linear curve. The 
coordinates of the four points defining this stress-slip relationship are listed in the table below. 

 

Table  2.8-3: Parameters for defining the bond strength-slip relationship for ribbed bars.  

Concrete 
Type 

Bond 
quality 

 Point 1 Point 2 Point 3 Point 4 

/s D  0.000 0.020 0.044 0.480 Excelent 

'/ 0.8b cuf  0.500 3.000 0.700 0.000 

/s D  0.000 0.030 0.047 0.480 Good 

'/ 0.8b cuf  0.500 2.000 0.700 0.000 

/s D  0.000 0.040 0.047 0.480 

 

 

'
cf  < 60 

Bad 

'/ 0.8b cuf  0.500 1.000 0.700 0.000 

 Excelent /s D  0.000 0.012 0.030 0.340 

3 4
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'/ 0.88b cuf  0.600 2.500 0.900 0.000 

/s D  0.000 0.020 0.030 0.340 Good 

'/ 0.88b cuf  0.600 1.900 0.900 0.000 

/s D  0.000 0.025 0.030 0.340 

 

'
cf  > 60 

Bad 

'/ 0.88b cuf  0.600 1.100 0.900 0.000 

2.8.3 Memory Bond Material 
The Memory Bond material is an improvement to better capture the response during cyclic 
loading and unloading in general. It can be used with any of the above-mentioned bond strength 
– bond slip envelope functions. The response only differs after the bond stress sign changes. 
Instead of following the same envelope as during loading, the maximum bond stress is 

determined by the additional parameter 1 , see Fig. 2-50. Admissible values are res  ≤ 1  ≤ max , 

where res  is the residual bond stress (last value from the bond strength – bond slip function) and 

max  the maximum bond stress (max. value from the bond strength – bond slip function).  

In the figure, s is the current slip value, smax the maximum of the absolute slip value ever reached 
(damage variable), ( )f s   is the bond strength function.  

 

Fig. 2-50:  Memory Bond working diagram 

The response for a slip change 1i i is s s    is defined separately for 2 cases:  

(1) Loading range maxs s  

 ( )f s   

(2) Unloading range -smax < s < smax  
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10s      

10s       

2.9 Microplane Material Model (CCMicroplane4) 
The basic idea of the microplane model is to abandon constitutive modelling in terms of tensors 
and their invariants and formulate the stress-strain relation in terms of stress and strain vectors 
on planes of various orientations in the material, now generally called the microplanes.  This 
idea arose in G.I. Taylor’s (TAYLOR 1938) pioneering study of hardening plasticity of 
polycrystalline metals.  Proposing the first version of the microplane model, BAZANT 1984, in 
order to model strain softening, extended or modified Taylor’s model in several ways (in detail 
see BAZANT et al. 2000), among which the main one was the kinematic constraint between the 
strain tensor and the microplane strain vectors.  Since 1984, there have been numerous 
improvements and variations of the microplane approach. A detailed overview of the history of 
the microplane model is included in BAZANT et al 2000 and CANER and BAZANT 2000.  In 
what follows, we briefly review the derivation of the microplane model that is used in this work. 

     In the microplane model, the constitutive equations are formulated on a plane, called 

microplane, having an arbitrary orientation characterized by its unit normal .in  The kinematic 

constraint means that the normal strain N  and shear strains ,M L   on the microplane are 

calculated as the projections of the macroscopic strain tensor ij : 

    1 1
, ,

2 2N i j ij M i j j i ij L i j j i ijn n m n m n l n l n           (2.128) 

where im  and il  are chosen orthogonal vectors lying in the microplane and defining the shear 

strain components. The constitutive relations for the microplane strains and stresses can be 
generally stated as: 
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





 (2.129) 

where F  and G  are functionals of the history of the microplane strains in time t. For a detailed 
derivation of these functionals a reader is referred to BAZANT et al 2000 and CANER and 
BAZANT 2000. The macroscopic stress tensor is obtained by the principle of virtual work that is 
applied to a unit hemisphere .  After the integration, the following expression for the 
macroscopic stress tensor is recovered (BAZANT 1984): 

   ( )

1

3
6 , where

2 2 2

mN
M L

ij ij ij ij N i j i j j i i j j is d w s s n n m n m n l n l n




  
 

         (2.130) 

where the integral is approximated by an optimal Gaussian integration formula for a spherical 
surface; numbers   label the points of the integration formula and w  are the corresponding 

optimal weights. 
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2.9.1 Equivalent Localization Element 
The objective of the equivalent localization element is to achieve equivalence with the crack 
band model. This basic idea is that the material properties and parameters of the softening 
material model are not modified to account for the differences in the finite element size, but 
rather the softening crack band is coupled in series with an elastically behaving layer, to obtain 
equivalence.  For brevity, this layer will henceforth be called the `spring’. For large finite 
elements, the effective length of this added elastic spring, representing the thickness of the added 
elastic layer having the elastic properties of the material, will be much larger than the size (or 
thickness) of the localization zone (crack band). Thus, after the crack initiation, the energy stored 
in the elastic spring can be readily transferred to the localization zone and dissipated in the 
softening (i.e., fracturing) process.  

Inside each finite element at each integration point, an equivalent localization element is 
assumed. The localization element is a serial arrangement of the localization zone, which is 
loading, and an elastic zone (spring), which is unloading. The total length of the element is 
equivalent to the crack band size L  (width), and can be determined using the same methods as 
described in Section 2.1.3 (see Fig. 2-12). The width of the localization zone is given either by 
the characteristic length of the material or by the size of the test specimen for which the adopted 
material model has been calibrated.  

The three-dimensional equivalent element is constructed by three serial arrangements of the 
elastic zone (spring) and localization band. The spring-band systems are perpendicular to each 
other, and they are arranged parallel to the principal strain directions (Fig. 2-51). The simplified 
two-dimensional version is shown in Fig. 2-52. In this arrangement of spring-band systems it is 
possible to identify the following unknown stresses and strains: 

 1 2 3 1 2 3, , , and , , ,b u u u b u u u
ij ij ij ij ij ij ij ij         

where superscript b  denotes the quantities in the localization band and the symbol m ux   with 
superscripts u  and m  defines the quantities in the elastic spring in the direction m . 
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Fig. 2-51:  The arrangement of the three-dimensional equivalent localization element. 
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Fig. 2-52:  The simplified two-dimensional view of the spring-band arrangement. 

Ideally, the chosen directions should be perpendicular to the planes of failure propagation. In 
ATENA, it is assumed for them to be aligned with the principal axes of the total macroscopic 
strain tensor, which in most cases should approximately correspond to the above requirement. 
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Altogether there are 48 unknown variables. In the subsequent derivations, it is assumed that 
these stresses and strains are defined in the principal frame of the total macroscopic strain tensor. 
The set of equations available for determining these variables starts with the constitutive 
formulae for the band and the elastic springs: 

 ( )b b
ij ijF   (2.131) 

 for 1...3m u m u
ij ijlk klD m    (2.132) 

The first formula (2.131) represents the evaluation of the non-linear material model, which in our 
case is the microplane model for concrete. The second equation (2.132) is a set of three elastic 
constitutive formulations for the three linear zones (springs) that are involved in the arrangement 
at Fig. 2-51. This provides the first 24 equations, which can be used for the calculation of 
unknown strains and stresses. 

The second set of equations is provided by the kinematic constrains on the strain tensors. 
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 (2.133) 

These 6 additional equations can be written symbolically as: 

    1 1 1

2
b i i u i i b j j u j j

ij ij ij ij iji j
h L h h L h

L L
                  

 (2.134) 

The next set of equations is obtained by enforcing equilibrium in each direction between the 
corresponding stress components in the elastic zone and in the localization band. For each 
direction m , the following condition must be satisfied: 

 for 1...3b m m u m
ij j ij je e m    (2.135) 

where m
je denotes coordinates of a unit direction vector for principal strain direction m . Since 

the principal frame of the total macroscopic strain tensor is used the unit vectors have the 
following coordinates: 

      1 2 31,0,0 , 0,1,0 , 0,0,1j j je e e    (2.136) 

The remaining equations are obtained by enforcing equilibrium between tractions on the other 
surfaces of the band and the elastic zone (layer) imagined as a spring: 

 where 1..3, 1...3,b m n u m
ij j ij je e m n m n      (2.137) 
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The equation (2.137) is equivalent to a static constraint on the remaining stress and strain 
components of the elastic springs. Formulas (2.135) and (2.137) together with the assumption of 
stress tensor symmetry represent the remaining 18 equations that are needed for the solution of 
the three-dimensional equivalent localization element. These 18 equations can be written as: 

 for 1...3b m u
ij ij m    (2.138) 

This means that the macroscopic stress must be equal to b
ij , i.e., the stress in the localization 

element, and that the stresses in all the three elastic zones must be equal and to the microplane 
stress b

ij . This also implies the equivalence of all the three elastic strain tensors. 

Based on the foregoing derivations, it is possible to formulate an algorithm for the calculation of 
unknown quantities in the three-dimensional equivalent localization element. 

Input: , , ,b u
ij ij ij ij     (2.139) 

Initialization: b u
ij ij ij        (2.140) 
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( ) ( 1)
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Step 2: 
( ) ( 1) ( )i i iu u u

ij ij ijd  
     (2.142) 

Step 3: 
( ) 2 2i j i j i j j i
ib u

ij ij iji j j i i j j i

L L L L L h L h

L h L h L h L h
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    
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 (2.143) 

Step 4: 
( ) ( )( ) i ii b u

ij ij ijr     (2.144) 

where ijlkC is the compliance tensor. The above iterative process is controlled by the following 

convergence criteria; 

  
( ) ( ) ( ) ( )

, ,
u i i i u i
ij ij ij ij

b b
ij ij ij ij

d r r d
e e e

 

   
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   

T

 (2.145) 

The macroscopic stress is then equal to the stress in the localization band b
ij . More details about 

the derivations of the above algorithm as well as various examples of application can be obtained 
from the original reference CERVENKA et al. 2004. It should be noted that the described 
equivalent localization element is used only if the calculated crack band size L  (see Section 
2.1.3) in each principal strain direction is larger than the prescribed localization band size h . For 
smaller element sizes the equivalent localization approach is not used and mesh-dependent 
results may be obtained. 
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3 FINITE ELEMENTS 

3.1 Introduction 
The preceding chapters dealt with the general formulation of the problem, geometric and 
constitutive equations. All expressions were derived independently of the structural shape, the 
finite elements used etc. Here, an information about finite elements currently implemented in 
ATENA is given.   
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Fig. 3-1 Examples of interpolation function for plane quadrilateral elements. 

The available elements can be divided into three groups: plane elements for 2D, 3D and axi-
symmetric analysis, solid 3D elements and special elements, which comprises elements for 
modeling external cable, springs, gaps etc. 

With few exceptions all elements implemented in ATENA are constructed using isoparametric 
formulation with linear and/or quadratic interpolation functions. The isoparametric formulation 
of one-, two- and three-dimensional elements belong to the "classic" element formulations.  This 
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is not because of its superior properties, but since it is a versatile and general approach with no 
hidden difficulties and, also very important, these elements are easy to understand. This is very 
important particularly in nonlinear analysis. For example, it is highly undesirable to add element-
related problems to problems related to e.g. material modeling. 

Big advantage of ATENA isoparametric elements is that their interpolation functions ( , , )ih r s t  

are constructed in hierarchical manner. Take an example of plane quadrilateral element. Some of 
its interpolation functions are depicted in Fig. 3-1. The 1st four functions, i.e. functions 1( , , )h r s t  

to 4 ( , , )h r s t  has to be always present in the interpolation set, (to ensure bilinear approximation). 

Then, any additional function 6 ( , , )h r s t  through 9 ( , , )h r s t  can be added independently. This 

would involve adding the new function itself and amendments to the already present 
interpolation functions. This approach (and use of C++ templates) makes possible that one 
element formulation generates quadrilateral elements with nodes (1,2,3,4), (1,2,3,4,5), 
(1,2,3,4,6), ... (1,2,3,4,8), (1,2,3,4,9), (1,2,3,4,5,6), (1,2,3,4,5, 7), ... (1,2,3,8,9), ... 
(1,2,3,4,5,6,7,8,9). Additional mid-side points are particularly useful for changing mesh density, 
(i.e. element size), see Fig. 3-2, as they allow change of mesh density without need triangular 
elements. 

Although the concept of hierarchical elements was described for plane quadrilateral elements, in 
ATENA it applies for plane triangular elements, 3D bricks, tetrahedral and wedge elements, too. 
Always there is a set of basic interpolation function that can be extended by any “higher” 
interpolation function.  

Apart of interpolation functions finite element properties depend strongly on numerical 
integration scheme used to integrate element stiffness matrix, element nodal forces etc. In Atena, 
majority of elements are integrated by Gauss integration scheme that ensure ( 1)n n  order 
accuracy, where n  is degree of the polynomial used to approximate the integrated function.   
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Fig. 3-2 Change of finite element mesh density. 
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3.2 Truss 2D and 3D Element 
2D and 3D truss elements in ATENA are coded in group of elements CCIsoTruss<xx> ... 
CCIsoTruss<xxx>. The string in < > describes present element nodes, (see Atena Input File 
Format document for more information). These are isoparametric elements integrated by Gauss 
integration at 1 or 2 integration points for the case of linear or quadratic interpolation, i.e. for 
elements with 2 or 3 element nodes, respectively. They are suitable for plane 2D as well as 3D 
analysis problems. Geometry, interpolation functions and integration points of the elements are 
given in Fig. 3-3, Table  3.2-1 to Table  3.2-3. 

1
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3 CCIsoTruss<xx>
CCIsoTruxx<xxx>

r

s
y

x
 

Fig. 3-3 Geometry of CCIsoTruss<...> elements. 

Table  3.2-1 Interpolation functions of CCIsoTruss<...> elements. 

 

Node 
i 

 

Function 

 hi 

 

Include only if node 3 is 
defined 

 

1 1
(1 )

2
r  3

1

2
h  

2 1
(1 )

2
r  3

1

2
h  

3 2(1 )r   

Table  3.2-2 Sample points for Gauss integration of 1 node CCIsoTruss<xx> element. 

 

Integration point 

 

 

Coordinate r 

 

Weight 

1 0. 2. 
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Table  3.2-3 Sample points for Gauss integration of 2 and 3 nodes CCIsotruss<xxx> elements. 

 

Integrati
on point 

 

 

Coordinate r 

 

Weight 

1 0.577350269189626 1. 

2 -0.577350269189626 1. 

The element vectors and matrices for Total Lagrangian formulation, configuration at time t  and 
iteration (i)  are as follows. Note that they are equally applicable for Updated Lagrangian 
formulation upon applying changes related to the element reference coordinate system 
(undeformed vs. deformed element axis.). The formulation is present for 3-nodes element option. 
The 2-nodes variant is obtained by simply neglecting the terms for the element mid-point. 

An arbitrary point on the truss element has at reference time t  coordinates 1 1 1[ , , ]t t t tX x x x : 

 

1 2 3
1 1 1 1 2 1 3

1 2 3
2 2 1 2 2 2 3

1 2 3
3 3 1 3 2 3 3

t t t t

t t t t

t t t t

x x h x h x h

x x h x h x h

x x h x h x h

  

  

  

 (3.1) 

At time ( 1)it t    the same point has coordinates ( 1)t t iX  :  

  

 

( 1) 1 1( 1) 2 2( 1) 3 3( 1)
1 1 1 1 1 1 2 1 1 3

( 1) 1 1( 1) 2 2( 1) 3 3( 1)
2 2 2 1 2 2 2 2 2 3

( 1) 1 1( 1) 2 2( 1) 3 3( 1
3 3 3 1 3 3 2 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) (

t t i t t i t t i t t i

t t i t t i t t i t t i

t t i t t i t t i t t i

x x u h x u h x u h

x x u h x u h x u h

x x u h x u h x u

    

    

    

     

     

      )
3)h

 (3.2) 

and at time ( )it t   coordinates ( )t t iX  

 

( ) 1 1( ) 2 2( ) 3 3( )
1 1 1 1 1 1 2 1 1 3

( ) 1 1( ) 2 2( ) 3 3( )
2 2 2 1 2 2 2 2 2 3

( ) 1 1( ) 2 2( ) 3 3( )
3 3 3 1 3 3 2 3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

t t i t t i t t i t t i

t t i t t i t t i t t i

t t i t t i t t i t t i

x x u h x u h x u h

x x u h x u h x u h

x x u h x u h x u h







     

     

     

 (3.3) 

Increment of Green Lagrange strain ( ) ( ) ( 1)
11 11 11

i t t i t t t t i
t t t        (at time t t  , iteration ( )i with 

to configuration at time t ) is calculated:  
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2 2( ) ( 1)

( )
11 2

1

2

it t t t i

i
t

t

l l

r r

l

r



                  
   

     

 (3.4) 

where truss length differentials are 

 

2 2 2 2

1 2 3

2 2 2 2( 1) ( 1) ( 1) ( 1)
1 2 3

2 2 2( ) ( ) ( )
1 2

t t t t

t t i t t i t t i t t i

t t i t t i t t i

l x x x

r r r r

l x x x

r r r r

l x x

r r r

       

  

          
                   

          
                   

        
              

2( )
3

t t ix

r

 
  

 (3.5) 

 

Substituting (3.5), (3.3) into (3.4) after some math manipulation it can be derived: 

 

1 2 31 1 1 2 1 3
1 1 1

1 2 32 1 2 2 2 3
1 1 1

1 2 33 1 3 2 3 3
1 1 1
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2 2 2

0 2
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t t t

t t t

t t t

t t t

t t
t L

t

h h h h h h
x x x

r r r r r r
h h h h h h
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r r r r r r
h h h h h h
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r r r r r r
h h h h h h
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r r r r r r
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     
 
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     

 
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     

 
     
     

 
     


 
  

B 1 2 32 1 2 2 2 3
2 2 2

1 2 33 1 3 2 3 3
2 2 2

1 2 31 1 1 2 1 3
3 3 3

1 2 32 1 2 2 2 3
3 3 3

13 1 3 2
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t t t

t t t

t t t

t t t

t t

h h h h h
x x x

r r r r r r
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x x x
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r r r r

    
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     
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2 33 3
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x x

r r
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 (3.6) 
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 
 
 
 
 
   
    

 (3.7) 

 and 

 

1 2 3

( 1) 1 2 3

1 2 3

0 0 0 0 0 0

1
0 0 0 0 0 0

0 0 0 0 0 0

t t n
t NL t

h h h

r r r
h h h

r r rl
h h hr
r r r

 

   
    

        
        
    

B  (3.8) 

 

The 2nd Piola-Kirchhoff stress matrix and tensor are: 

 

( 1)
11

( 1) ( 1) ( 1) ( 1)
11 11

( 1)
11

0 0

0 0 , [ ]

0 0

t t i
t

t t i t t i t t i t t i
t t t t

t t i
t

S

S S S S

S

 

       

 

 
   
  

 (3.9) 

The formulation is completed by relationship for element deformation gradient ( )
1,1

t t i
t X , which 

yields:  

 

( )

( )
1,1

t t i

t t i
t t

l

r
X

l

r





 
  
 
  

 (3.10) 

Note that 2-nodes truss element has constant  strains along its length and thus the increment of 
Green Lagrange strain can be calculated directly, (i.e. not using differentials truss length as it 
was the case of (3.4) ): 
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   2 2( ) ( 1)

( )
11 2

1

2

t t i t t i

i
t t

l l

l


    
 
 

 (3.11) 

This yields a bit simpler element formulation (with the same results). However, for the sake of 
preserving unified approach to all truss elements, ATENA uses even in this case the equation 
(3.4). 

3.3 Plane Quadrilateral Elements 
Plane quadrilateral elements in ATENA are coded in group of elements CCIsoQuad<xxxx> ... 
CCIsoQuad<xxxxxxxxx>. The string in < > describes present element nodes (see Atena Input 
File Format document for more information). These are isoparametric elements integrated by 
Gauss integration at 4 or 9 integration points for the case of bilinear or bi-quadratic interpolation, 
i.e. for elements with 4 or 5 and more element nodes, respectively. They are suitable for plane 
2D, axisymmetric and 3D problems.  

CCIsoQuad2_5<...> elements present a simplified 3D formulation of the CCIsoQuad<...> 
elements. Their higher execution performance is achieved at cost of omitting some nonlinear 
terms, see below.  

Geometry, interpolation functions and integration points of the elements are given in Fig. 3-4 
and in the subsequent tables. 

 

Fig. 3-4 Geometry of CCIsoQuad<...> elements. 
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2
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Table 3.3-1: Interpolation functions of CCIsoQuad<...> elements. 

 

Include only if node i is defined 

 

 

Node 
i 

 

Function hi 

i = 5 I = 6 i = 7 i = 8 i = 9 

1 1
(1 )(1 )

4
r s   5

1

2
h  

  
8

1

2
h  9

1

4
h  

2 1
(1 )(1 )

4
r s   5

1

2
h  6

1

2
h  

  
9

1

4
h  

3 1
(1 )(1 )

4
r s   

 
6

1

2
h  7

1

2
h  

 
9

1

4
h  

4 1
(1 )(1 )

4
r s   

  
7

1

2
h  8

1

2
h  9

1

4
h  

5 21
(1 )(1 )

2
r s   

    
9

1

2
h  

6 21
(1 )(1 )

2
s r   

    
9

1

2
h  

7 21
(1 )(1 )

2
r s   

    
9

1

2
h  

8 21
(1 )(1 )

2
r s   

    
9

1

2
h  

9 2 21
(1 )(1 )

2
r s 

 

     

 

Table 3.3-2: Sample points for Gauss integration of 4 nodes CCIsoQuad<...> element. 

Integration 
point 

Coordinate r Coordinate s Weight 

1 0.577350269189626 0.577350269189626 1. 

2 0.577350269189626 -0.577350269189626 1. 

3 -0.577350269189626 0.577350269189626 1. 

4 -0.577350269189626 -0.577350269189626 1. 
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Table 3.3-3: Sample points for Gauss integration 5 to 9 nodes CCIsoQuad<...> elements. 

 

Integrati
on point 

 

Coordinate r 

 

Coordinate s 

 

Weight 

1 0.774596669241483 0.774596669241483 0.3086419753 

2 0.774596669241483 0. 0.4938271605 

3 0.774596669241483 -0.774596669241483 0.3086419753 

4 0. 0.774596669241483 0.4938271605 

5 0. 0. 0.7901234568 

6 0. -0.774596669241483 0.4938271605 

7 -0.774596669241483 0.774596669241483 0.3086419753 

8 -0.774596669241483 0. 0.4938271605 

9 -0.774596669241483 -0.774596669241483 0.3086419753 

 

Equations (3.12) through (3.21) present CCIsoQuad<...> axisymmetric element formulation. 2D 
element formulation is simply obtained by removing terms associated with circumferential 
strains and stresses ( ) ( )

33 33,t t i t t i
t t S  . 

Incremental strains:  

 

    

    

 

2 2( ) ( ) ( 1) ( ) ( 1) ( ) ( ) ( )
11 1,1 1,1 1,1 2,1 2,1 1,1 2,1

2 2( ) ( ) ( 1) ( ) ( 1) ( ) ( ) ( )
22 2,2 1,2 1,2 2,2 2,2 1,2 2,2

( ) ( ) ( )
12 1,2 2,1

1

2

1

2

1

2
1

2

i i t t i i t t i i i i
t t t t t t t t

i i t t i i t t i i i i
t t t t t t t t

i i i
t t t

t
t

u u u u u u u

u u u u u u u

u u







   

   

    

    

 

 

 

 

( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( )
1,1 1,2 2,1 2,2 1,2 1,1 2,2 2,1

( ) ( ) ( ) ( )
1,1 1,2 2,1 2,2

2( ) ( ) ( ) ( )
( ) 1 1 1 1
33 2

1 11

1

2

1

2

t i i t t i i t t i i t t i i
t t t t t t t

i i i i
t t t t

i t t i i i
i

t t tt

u u u u u u u u

u u u u

u u u u

x xx


       



   



 
    

   (3.12) 
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Displacement derivatives: 

 

 ( ) ( 1)

( )
,

( 1)
( 1)
,

t t i t t i
i ii

t i j t
j

t t i
t t i i

t i j t
j

u u
u

x

u
u

x

  

 
 

 









 (3.13) 

Strains and matrices to calculate them: 

 

( ) ( 1) ( )

( ) ( ) ( ) ( ) ( )
11 22 12 33

( ) ( ) ( 1) 1( ) 1( ) 2( ) 2( ) ( ) ( )
1 2 1 2 1 2

, , 2 ,

, , , ,..... ,

i t t i i
t t L

i i i i i
t t t t t

i t t i t t i i i i i n i n i

U

U U U u u u u u u



    

 

  

 

   

      

B

 (3.14) 

Linear strain-displacement matrix: 

 ( 1) ( 1)
0 1

t t i t t t t i
t L t L t L

     B B B  (3.15) 

Linear strain-displacement matrix – constant part: 

 

  

1,1 2,1

1,2 2,2 ,2

0 1,2 1,1 2,2 2,1 ,2 ,1

1 2

1 1 1

0 0 ... 0 0

0 0 ... 0

...

0 0 ... 0

t t

t t t n
t t

t L t t t t t n t n

n
t t t

h h

h h h

h h h h h h

h h h

x x x



 
 
 
 
 
 
  

B  (3.16) 

where 

 



,

( ) ( ) ( 1)

1 1
1

i
t i j t

j

i t t i t t i
i i i

n
t t k

k
k

h
h

x

u u u

x h x

  







 



 (3.17) 
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Linear strain-displacement matrix – non-constant part:  
( 1) ( 1) ( 1) ( 1)

11 1,1 21 1,1 11 2,1 21 2,1
( 1) ( 1) ( 1) ( 1)

11 1,2 21 1,2 11 2,2 21 2,2
( 1) ( 1) ( 1) ( 1)
1 11 1,2 11 1,1 21 1

t t i t t i t t i t t i
t t t t

t t i t t i t t i t t i
t t t t

t t i t t i t t i t t i
t L t t t

l h l h l h l h

l h l h l h l h

l h l h l h

       

       

        B

 

( 1) ( 1) ( 1) ( 1) ( 1)
,2 21 1,1 11 2,2 11 2,1 21 2,2 21 2,1

( 1) ( 1)1 2
33 33

1 1

0 0

t t i t t i t t i t t i t t i
t t t t t

t t i t t i

t t

l h l h l h l h l h

h h
l l

x x

         

   




   




 



( 1) ( 1)
11 ,1 21 ,1
( 1) ( 1)

11 ,2 21 ,2
( 1) ( 1) ( 1) ( 1)
11 ,2 11 ,1 21 ,2 21 ,1

( 1)
33

1

...

...

...

... 0

t t i t t i
t n t n

t t i t t i
t n t n

t t i t t i t t i t t i
t n t n t n t n

t t i n
t

l h l h

l h l h

l h l h l h l h

h
l

x

   

   

       

 




 




 (3.18) 

where 

 



( 1) ( 1)
11 ,1 1

1

( 1) ( 1)
12 ,2 1

1

( 1) ( 1)
21 ,1 2

1

( 1) ( 1)
22 ,2 2

1

( 1) ( 1)
33 1

11

1

n
t t i t t k i

t k t
k

n
t t i t t k i

t k t
k

n
t t i t t k i

t k t
k

n
t t i t t k i

t k t
k

n
t t i t t k i

k tt
k

l h u

l h u

l h u

l h u

l h u
x

   



   



   



   



   























 (3.19) 

 

 

 

Nonlinear strain-displacement matrix   

 

  

1,1 2,1 ,1

1,2 2,2 ,2

1,1 2,1 ,1( 1)

1,2 2,2 ,2

1 2

1 1 1

0 0 ... 0

0 0 ... 0

0 0 ... 0

0 0 ... 0

0 0 ... 0

t t t n

t t t n

t t t nt t i
t NL

t t t n

n
t t t

h h h

h h h

h h h

h h h

h h h

x x x

 

 
 
 
 

  
 
 
 
 

B  (3.20) 
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2nd Piola-Kirchhoff stress tensor and vector 

 

( 1) ( 1)
11 12
( 1) ( 1)
21 22

( 1) ( 1) ( 1)
11 12
( 1) ( 1)
21 22

( 1)
33

( ) ( 1) ( 1) (
11 22 21

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

t t i t t i
t t

t t i t t i
t t

i t t i t t i
t t t

t t i t t i
t t

t t i
t

i t t i t t i t t i
t t t t

S S

S S

S S

S S

S

S S S S

   

   

    

   

 

     

 
 
 
 
 
 
  



S

1) ( 1)
33

t t i
t S

   

 (3.21) 

 

In case of the simplified 3D analysis, i.e. elements CCIsoQuad2_5<...>, the equations are further 
extended as follows:  

All element matrices and vectors are computed with respect to element local coordinate 
system ,1 ,2,local localx x using equations in (3.12) through (3.21). They are transformed into 

3D global coordinate system by means of simple transformation: 

 ,T
global local global localv v M T M T T  (3.22) 

where 

, , ,global local global localv vM M are global and local finite element matrices and vectors, 

T  is transformation matrix from local to global coordinate system: 

 
,1 ,1 ,2 ,1

,1 ,2 ,2 ,2

.1 ,3 ,2 ,3

cos( , ), cos( , )

cos( , ), cos( , )

cos( , ), cos( , )

local global local global

local global local global

local global local global

x x x x

x x x x

x x x x

 
   
  

T  (3.23) 

where: 

, ,,local i global ix x  are local and global coordinates (in 2D and 3D space). 

The local element coordinate system (see Fig. 3-5) is defined by local ,1 ,2 ,3, ,local local localx x x  

coordinates. All of them pass through origin of the global (reference) coordinate system. The 
axes ,1localx  and ,2localx  constitute a local coordinates element plane that is parallel to the element. 

The axis ,3localx is perpendicular to the element and the axis ,1localx  is defined as a projection of 

global 1x axis to the local coordinate element plane. An exception to that is, when the element is 

normal to the global 1x .  In this case the local  ,1localx  coincides with the global 2x axis.  

The present definition of local element coordinate system depends on plane of the finite element, 
but it does not depend on its shape itself. This is very important property, as ATENA supports 
use of local (instead of global) nodal degrees of freedom and, (of course) these degrees of 
freedom must refer to a coordinate system common to all elements of the plane, in which they 
lie.    
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Fig. 3-5 Local plane element coordinate system.  

Full 3D formulation of the CCIsoQuad<...> elements is much the same as that for simplified 3D 
elements CCIsoQuad2_5<...>. The only difference is that the matrix 0

t
NLB will include also terms 

related to the „out-of-element-plane“ direction: 

 

1,1 2,1 3,1 ,1

1,2 2,2 3,2 ,2

1,1 2,1 3,1 ,1( 1)

1,2 2,2 3,2 ,2

1,1 2,1 3,1 ,1

1,2 2,2 3,2 ,2

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0
......

0 0 0 00 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

t t t t N

t t t t N

t t t t Nt t i
t NL

t t t t N

t t t t N

t t t t N

h h h h

h h h h

h h h h

h h h h

h h h h

h h h h

 

 




 



 

B










 (3.24) 

3.4 Plane Triangular Elements 
Plane triangular elements in ATENA are coded in group of elements CCIsoTriangle<xxx> ... 
CCIsoTriangle<xxxxxx>. The string in < > describes present element nodes (see Atena Input 
File Format document for more information). These are isoparametric elements integrated by 

Gauss integration at 1 or 3 integration points for the case of bilinear or bi-quadratic interpolation, 
i.e. for elements with 3 or 4 and more element nodes, respectively. They are suitable for plane 



98 

2D, axisymmetric and 3D problems. Geometry, interpolation functions and integration points of 

the elements are given in 

1

2

3

4

5
6

CCIsoTriangle<xxx>
...
CCIsoTriangle<xxxxxx>

r

s

y

x  

Fig. 3-6, Table 3-1, Table 3-2, and Table 3-3.  

1

2

3

4

5
6

CCIsoTriangle<xxx>
...
CCIsoTriangle<xxxxxx>

r

s

y

x  

Fig. 3-6: Geometry of CCIsoTriangle<...> elements. 

 

Table 3-1: Interpolation functions of CCIsoTriangle<...> elements. 

Include only if node i is 
defined 

Node 
i 

Function hi 

i = 4 i = 5 i = 6 

1 1 r s   
4

1

2
h  

 
6

1

2
h  

2 r  
4

1

2
h  5

1

2
h  

 

3 s   
5

1

2
h  6

1

2
h  
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4 4 (1 )r r s      

5 4rs     

6 4 (1 )s r s      

Table 3-2: Sample point for Gauss integration of 3 nodes CCIsoTriangle<...> elements. 

Integration point Coordinate r Coordinate s Weight 

1 1/3 1/3 1/2 

Table 3-3: Sample points for Gauss integration of 3 to 6 nodes CCIsoTriangle<...> elements. 

 

Integration 
point 

 

 

Coordinate r 

 

Coordinate s 

 

Weight 

1 1/6 1/6 1/6 

2 2/3 1/6 1/6 

3 1/6 2/3 1/6 

All the above expressions for the formulation for plane quadrilateral elements remain valid also 
for the triangular elements, including the extension from 2D to simplified and full 3D analysis. 

The expressions only use different approximation functions ( , , )ih r s t  and different integration 

points [ , , ]r s t , see Table 3-1, Table 3-2, and Table 3-3.  

3.5 3D Solid Elements 
ATENA finite element library includes the following group of 3D solid elements: 

tetrahedral elements CCIsoTetra<xxxx> ... CCIsoTetra<xxxxxxxxxx> with 4 to 10 nodes, 
see Fig. 3-7, 

brick elements CCIsoBrick<xxxxxxxx> ... CCIsoBrick<xxxxxxxxxxxxxxxxxxxx> with 8 up 
to 20 nodes see Fig. 3-8 and 

wedge elements CCIsoWedge<xxxxxx> ... CCIsoWedge<xxxxxxxxxxxxxxx> with 6 to 15 
nodes, see Fig. 3-9. 

The string in < > describes present element nodes (see Atena Input File Format document for 
more information). These are isoparametric elements integrated by Gauss integration at 
integration points given in the following tables. Interpolation functions for all variants of the 
elements are also given in the tables below. 
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Fig. 3-7 Geometry of CCIsoTetra<...> elements. 
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Fig. 3-9 Geometry of CCIsoWedge<...> elements. 
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Table  3.5-1 Interpolation functions of CCIsoTetra<...> elements. 

Include only if node i is defined Node 
i 

Function hi 

i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 

1 1 r s t    
5

1

2
h  

 
7

1

2
h  

  
10

1

2
h  

2 r  
5

1

2
h  6

1

2
h  

 
8

1

2
h  

  

3 s   
6

1

2
h  7

1

2
h  

 
9

1

2
h  

 

4 t     
8

1

2
h  9

1

2
h  10

1

2
h  

5 4 (1 )r r s t         

6 4 (1 )rs t        

7 4 (1 )s r s t         

8 4 (1 )rt s        

9 4 (1- )s t r        

10 4 (1- - - )t r s t        

 

Table  3.5-2 Sample point for Gauss integration of 4 nodes CCIsoTetra<...> element. 

 

Integration point 

 

 

Coordinate r 

 

Coordinate s 

 

Coordinate t 

 

Weight 

1 1/4 1/4 1/4 1/6 
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Table  3.5-3 Sample points for Gauss integration of  5 to 10 nodes CCIsoTetra<...> elements. 

 

Integration point 

 

 

Coordinate r 

 

Coordinate s 

 

Coordinate t 

 

Weight 

1 0.13819660 0.13819660 0.13819660 1/24 

2 0.13819660 0.13819660 0.58541020 1/24 

3 0.58541020 0.13819660 0.13819660 1/24 

4 0.13819660 0.58541020 0.13819660 1/24 

 

Table 3-4 Interpolation functions of CCIsoBrick<...> elements. 

 

Include only if node i is defined 

 N
od

e 
i 

 

Function hi 

i = 9 i = 10 i = 11 i = 12 i = 13 

 

i = 14 i = 15 i = 16 i = 17 i = 18 i = 19 i = 20 

1 1
(1 )(1 )(1 )

8
r s t    

9

1

2
h    

12

1

2
h

 

    
17

1

2
h

 

   

2 1
(1 )(1 )(1 )

8
r s t    

9

1

2
h  

10

1

2
h

 

       
18

1

2
h

 

  

3 1
(1 )(1 )(1 )

8
r s t     

10

1

2
h

 

11

1

2
h

 

       
19

1

2
h

 

 

4 1
(1 )(1 )(1 )

8
r s t      

11

1

2
h

 

12

1

2
h

 

       
20

1

2
h

 

5 1
(1 )(1 )(1 )

8
r s t        

13

1

2
h

 

  
16

1

2
h

 

17

1

2
h

 

   

6 1
(1 )(1 )(1 )

8
r s t        

13

1

2
h

 

14

1

2
h

 

   
18

1

2
h

 

  

7 1
(1 )(1 )(1 )

8
r s t         

14

1

2
h 15

1

2
h    

19

1

2
h
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8 1
(1 )(1 )(1 )

8
r s t          

15

1

2
h

 

16

1

2
h

 

   
20

1

2
h

 

9 21
(1 )(1 )(1 )

4
r s t                

10 21
(1 )(1 )(1 )

4
r s t                

11 21
(1 )(1 )(1 )

4
r s t                

12 21
(1 )(1 )(1 )

4
r s t                

13 21
(1 )(1 )(1 )

4
r s t                

14 21
(1 )(1 )(1 )

4
r s t                

15 21
(1 )(1 )(1 )

4
r s t                

16 21
(1 )(1 )(1 )

4
r s t                

17 21
(1 )(1 )(1 )

4
r s t                

18 21
(1 )(1 )(1 )

8
r s t                

19 21
(1 )(1 )(1 )

4
r s t                

20 21
(1 )(1 )(1 )

4
r s t                

Table  3.5-4 Sample points for Gauss integration of 8 nodes CCIsoBrick<...> element. 

Inte-
gration 
point 

Coordinate r Coordinate s Coordinate t  Weight 

1 0.5773502691896
26 

0.5773502691896
26 

0.577350269189626 1. 

2 0.5773502691896
26 

0.5773502691896
26 

-
0.577350269189626 

1. 

3 0.5773502691896
26 

-
0.5773502691896

26 

0.577350269189626 1. 
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4 0.5773502691896
26 

-
0.5773502691896

26 

-
0.577350269189626

1. 

5 -
0.5773502691896

26 

0.5773502691896
26 

0.577350269189626 1. 

6 -
0.5773502691896

26 

0.5773502691896
26 

-
0.577350269189626

1. 

7 -
0.5773502691896

26 

-
0.5773502691896

26 

0.577350269189626 1. 

8 -
0.5773502691896

26 

-
0.5773502691896

26 

-
0.577350269189626

1. 

 

Table  3.5-5 Sample points for Gauss integration of 9 to 20 nodes CCIsoBrick<...> element. 

Inte-
gration 
point 

Coordinate r Coordinate s 

 

Coordinate t  Weight 

1 0.7745966692414
83 

0.7745966692414
83 

0.774596669241483 0.1714677641 

2 0.7745966692414
83 

0.7745966692414
83 

0. 0.2743484225 

3 0.7745966692414
83 

0.7745966692414
83 

-
0.774596669241483

0.1714677641 

4 0.7745966692414
83 

0. 0.774596669241483 0.2743484225 

5 0.7745966692414
83 

0. 0. 0.4389574760 

6 0.7745966692414
83 

0. -
0.774596669241483

0.2743484225 

7 0.7745966692414
83 

-
0.7745966692414

83 

0.774596669241483 0.1714677641 
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8 0.7745966692414
83 

-
0.7745966692414

83 

0. 0.2743484225 

10 0. 0.7745966692414
83 

0.774596669241483 0.2743484225 

11 0. 0.7745966692414
83 

0. 0.4389574760 

12 0. 0.7745966692414
83 

-
0.774596669241483 

0.2743484225 

13 0. 0. 0.774596669241483 0.4389574760 

14 0. 0. 0. 0.7023319616 

15 0. 0. -
0.774596669241483 

0.4389574760 

16 0. -
0.7745966692414

83 

0.774596669241483 0.2743484225 

17 0. -
0.7745966692414

83 

0. 0.4389574760 

18 0. -
0.7745966692414

83 

-
0.774596669241483 

0.2743484225 

19 -
0.7745966692414

83 

0.7745966692414
83 

0.774596669241483 0.1714677641 

20 -
0.7745966692414

83 

0.7745966692414
83 

0. 0.2743484225 

21 -
0.7745966692414

83 

0.7745966692414
83 

-
0.774596669241483 

0.1714677641 

22 -
0.7745966692414

83 

0. 0.774596669241483 0.2743484225 

23 -
0.7745966692414

83 

0. 0. 0.4389574760 
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24 -
0.7745966692414

83 

0. -
0.774596669241483

0.2743484225 

25 -
0.7745966692414

83 

-
0.7745966692414

83 

0.774596669241483 0.1714677641 

26 -
0.7745966692414

83 

-
0.7745966692414

83 

0. 0.2743484225 

27 -
0.7745966692414

83 

-
0.7745966692414

83 

-
0.774596669241483

0.1714677641 

 

Table  3.5-6 Interpolation functions of CCIsoWedge<...> elements. 

1

2

3

4

5

6

1

2

2
3

(1 )

4 (1 )

4

4 (1 )

1

2
1

2

(1 )

hh r s

hh r

hh s

hh r r s

hh rs

hh s r s

t
hv

t
hv

hv t

  



  

  







   
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Include only if node i is defined 
N

od
e

I Function 
hi i = 7 i = 8 i = 9 i = 10 i = 11 

 

i = 12 i = 13 i = 14 i = 15 

1 
1 1hh hv  

7

1

2
h  

 
9

1

2
h  

   
13

1

2
h  

  

2 
2 1hh hv  

7

1

2
h  8

1

2
h  

     
14

1

2
h  

 

3 
3 1hh hv   

8

1

2
h  9

1

2
h  

     
15

1

2
h

4 
1 2hh hv     

10

1

2
h

 
12

1

2
h  13

1

2
h  

  

5 
2 2hh hv     

10

1

2
h 11

1

2
h  

  
14

1

2
h  

 

6 
3 2hh hv      

11

1

2
h  12

1

2
h  

  
15

1

2
h  

7 
4 1hh hv           

8 
5 1hh hv           

9 
6 1hh hv           

10 
4 2hh hv           

11 
5 2hh hv           

12 
6 2hh hv           

13 
1 3hh hv           

14 
2 3hh hv           

15 
3 3hh hv           

Table  3.5-7 Sample points for Gauss integration of 6 nodes CCIsoWedge<...> element. 

 

Integration point 

 

Coordinate r 

 

Coordinate s 

 

Coordinate t  

 

Weight 

1 1/6 1/6 0.577350269189626 1/6 

2 2/3 1/6 0.577350269189626 1/6 

3 1/6 2/3 0.577350269189626 1/6 
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4 1/6 1/6 -0.577350269189626 1/6 

5 2/3 1/6 -0.577350269189626 1/6 

6 1/6 2/3 -0.577350269189626 1/6 

Table  3.5-8 Sample points for Gauss integration of 7 to 15 nodes CCIsoWedge<...> element. 

 

Integration point 

 

Coordinate r 

 

Coordinate s 

 

Coordinate t  

 

Weight 

1 1/6 1/6 0.774596669241483 0.0925925926 

2 2/3 1/6 0.774596669241483 0.0925925926 

3 1/6 2/3 0.774596669241483 0.0925925926 

4 1/6 1/6 0. 0.1481448148 

5 2/3 1/6 0. 0.1481448148 

6 1/6 2/3 0. 0.1481448148 

7 1/6 1/6 -0.774596669241483 0.0925925926 

8 2/3 1/6 -0.774596669241483 0.0925925926 

9 1/6 2/3 -0.774596669241483 0.0925925926 

Formulation of 3D solid elements is given in the following equations:  

Incremental strains:  

      ( ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( ) ( )
, , , , , , , ,

1 11

2 2 2
i i i t t i i t t i i i i

t ij t i j t j i t k i t k j t k j t k i t k i t k ju u u u u u u u         (3.25) 

where indices  , , 1...3i j k    

Displacement derivatives: 

 

 ( ) ( 1)

( )
,

( 1)
( 1)
,

t t i t t i
i ii

t i j t
j

t t i
t t i i

t i j t
j

u u
u

x

u
u

x

  

 
 

 









 (3.26) 

Strains and matrices to calculate them: 
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( ) ( 1) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
11 22 33 12 23 13

( ) ( ) ( 1)

1( ) 1( ) 1( ) 2( ) 2( ) 2( ) ( ) ( ) ( )
1 2 3 1 2 3 1 2 3

2 2 2

...

i t t i i
t t L

i i i i i i i
t t t t t t t

i t t i t t i

i i i i i i n i n i n i

U

U U U

u u u u u u u u u



      

 

  

 

   

   

  

B

 (3.27) 

Linear strain-displacement matrix: 

 ( 1) ( 1)
0 1

t t i t t t t i
t L t L t L

     B B B  (3.28) 

Linear strain-displacement matrix – constant part: 

 

1,1 2,1 ,1

1,2 2,2 ,2

1,3 2,3 ,3
0

1,2 1,1 2,2 2,1 ,2 ,1

1,3 1,2 2,3 2,2 ,3 ,2

1,3 1,1 2,3 2,1 ,3 ,1

0 0 0 0 ... 0 0

0 0 0 0 ... 0 0

0 0 0 0 ... 0 0

0 0 ... 0

0 0 ... 0

0 0 ... 0

t t t n

t t t n

t t t nt t
t L

t t t t t n t n

t t t t t n t n

t t t t t n t n

h h h

h h h

h h h

h h h h h h

h h h h h h

h h h h h h



 




 





B










 (3.29) 

where 

 
,

( ) ( ) ( 1)

i
t i j t

j

i t t i t t i
i i i

h
h

x

u u u  





 

 (3.30) 

 

Linear strain-displacement matrix – non-constant part:  
( 1) ( 1) ( 1) ( 1)
11 1,1 21 1,1 31 1,1 11 2,1
( 1) ( 1) ( 1) ( 1)
12 1,2 22 1,2 32 1,2 12 2,2
( 1) ( 1) ( 1)
13 1,3 23 1,3 33 1,( 1)

1

t t i t t i t t i t t i
t t t t

t t i t t i t t i t t i
t t t t

t t i t t i t t i
t t tt t i

t L

l h l h l h l h

l h l h l h l h

l h l h l h

       

       

     
  B

( 1)
3 13 2,3

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
11 1,2 11 1,1 21 1,2 21 1,1 31 1,2 31 1,1 11 2,2 12 2,1
( 1) ( 1)

12 1,3 13 1,2 22

t t i
t

t t i t t i t t i t t i t t i t t i t t i t t i
t t t t t t t t

t t i t t i t t
t t

l h

l h l h l h l h l h l h l h l h

l h l h l

 

               

    

   
 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1,3 23 1,2 32 1,3 33 1,2 12 2,3 13 2,2
( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

11 1,3 13 1,1 21 1,3 23 1,1 31 1,3 33

i t t i t t i t t i t t i t t i
t t t t t t

t t i t t i t t i t t i t t i t t i
t t t t t t

h l h l h l h l h l h

l h l h l h l h l h l h

          

           

  
   ( 1) ( 1)

1,1 11 2,3 13 2,1
t t i t t i

t tl h l h   












   

 

( 1)
31 ,1
( 1)
31 ,2
( 1)
33 ,3

( 1) ( 1)
31 ,2 32 ,1
( 1) ( 1)
32 ,3 33 ,2
( 1) ( 1)
31 ,3 33 ,1

...

...

...

...

...

...

t t i
t n

t t i
t n

t t i
t n

t t i t t i
t n t n

t t i t t i
t n t n

t t i t t i
t n t n

l h

l h

l h

l h l h

l h l h

l h l h

 

 

 

   

   

   







 



 

 (3.31) 

where 

 ( 1) ( 1)
,

1

n
t t i t t k i

ij t k j t i
k

l h u   



   (3.32) 
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Nonlinear strain-displacement matrix   

 

1,1 2,1 ,1

1,2 2,2 ,2

1,3 2,3 ,3

1,1 ,1

( 1)
1,2 ,2

1,3 ,3

1,1 ,1

1,2 ,2

1,3 ,3

0 0 ... 0 0

0 0 ... 0 0

0 0 ... 0 0

0 0 0 ... 0 0

0 0 0 ... 0 0

0 0 0 ... 0 0

0 0 0 ... 0 0

0 0 0 ... 0 0

0 0 0 ... 0 0

t t t n

t t t n

t t t n

t t n

t t i
t t nt NL

t t n

t t n

t t n

t t n

h h h

h h h

h h h

h h

h h

h h

h h

h h

h h

 















B













 
 



 (3.33) 

 

2nd Piola-Kirchhoff stress tensor and vector 

( 1) ( 1) ( 1)
11 12 13
( 1) ( 1) ( 1)
21 22 23
( 1) ( 1) ( 1)
31 32 33

( 1) ( 1) ( 1)
11 12 13

( 1) (
21

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

t t i t t i t t i
t t t

t t i t t i t t i
t t t

t t i t t i t t i
t t t

t t i t t i t t i
t t t

i t t
t t

S S S

S S S

S S S

S S S

S

     

     

     

     

 S 1) ( 1) ( 1)
22 23

( 1) ( 1) ( 1)
31 32 33

( 1) ( 1) ( 1)
11 12 13
( 1) ( 1) ( 1)
21 22 23
( 1) ( 1)
31 32

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i t t i t t i
t t

t t i t t i t t i
t t t

t t i t t i t t i
t t t

t t i t t i t t i
t t t

t t i t t i
t t

S S

S S S

S S S

S S S

S S

    

     

     

     

    ( 1)
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   
 (3.34) 

3.6 Spring Element 
Spring elements in ATENA are used to model spring-like boundary conditions, i.e. situation 
where external forces acting on boundary of the structure are linearly proportional to the 
associated displacements. Three elements of this type are available, see also Fig. 3-10, Fig. 3-11: 

CCSpring – 2D and 3D element to model spring-like boundary conditions at a point, 

CCLineSpring – 2D element to model spring-like boundary conditions along a line 

CCPlaneSpring – 3D element to model spring-like boundary conditions along a triangular area. 

All these elements are derived from 2D or 3D formulation of the CCIsoTruss<xx> element 
described earlier in this chapter. For example, CCSpring element consists of one 
CCIsoTruss<xx> element. The 1st node of each CCIsoTruss<xx> coincides with one node of the 
CCSpring element, whereas the 2nd node of the CCIsoTruss<xx> is set by direction vector, see 
Fig. 4-4.  Note that as the analysis is nonlinear, length of the direction does matter. This vector is 
specified in ATENA &SPRING_GEOMETRY_SPEC command and is common for all spring 
elements that use this geometry. 
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CCLineSpring and CCPlaneSpring elements were created to enable convenient definition of 
„uniform“ spring-like conditions along the boundaries. The boundary force at a node i of the 
spring element is calculated: 

 i
i

u kA
R

n direction
  (3.35) 

where 

k is spring material stiffness parameter set by &MATERIAL SPRING command, 
(parameter k has character of multi-linear Young modulus), 

iu is displacement at spring element node  i , 

A is the area of CCPlaneSpring element or length of CCLineSpring multiplied by 
thickness (which defaults to 1 if not specified in element geometry) or the area defined in 
element geometry for CCSpring (similarly, with a default of 1 if not specified) for the 
respective element,  

n is number element nodes, i.e. 1, 2 or 3 for CCSpring, CCLineSpring or CCPlaneSpring 
element respectively, 

direction  is Euclidean norm (i.e., length) of the direction vector, see above. 

y

x

CCSpring CCLineSpring

 

Fig. 3-10 Geometry of 2D CCSpring and CCIsoLineSpring.  
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Fig. 3-11 Geometry of 3D CCSpring and CCPlaneSpring. 

 

 

3.7 Quadrilateral Element Q10 

3.7.1 Element Stiffness Matrix 
The quadrilateral finite element Q-10 is derived from a six-node triangle (CCQ10<xxxx>, 
CCQ10Sbeta<xxxx>). The derivation of the stiffness matrix is taken from FELIPPA 1966. The 
position of any internal point P in the element is defined by the triangular coordinates �� (called 
also natural coordinates). These coordinates are expressed by means of areas within the triangle 
as shown in Fig. 3-12.�Sub-areas Ai are subtended by the point P and two corners. A is the area 
of triangular element.  

 

Fig. 3-12 Coordinate systems of the six-node triangular element. 

 1 2 3
1 2 3, ,

A A A

A A A
      (3.36) 

 1 2 3 1      
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Using the quadratic interpolation function, the displacement components u( i ), v( i ) is written 

in the terms of triangular coordinates i  and nodal displacement vectors : 

 ( ) ( ) , ( ) ( )T T
i i i iu v    F u F v  (3.37) 

The displacement vectors u, v contain six components of the nodal displacements and the vector 
F ( )i  contains the quadratic interpolation functions in triangular coordinates: 

    1 2 3 4 5 6 1 2 3 4 5 6,
T T

u u u u u u v v v v v v u v  (3.38) 

  1 1 2 2 3 3 1 2 2 3 3 1( ) (2 1) (2 1) (2 1) 4 4 4
T

i               F  (3.39) 

A general procedure to construct the element stiffness matrix is described by the set of following 
equations: 

(a) The constitutive equation: 

 s D e  (3.40) 

(b) The strain-displacement equations in the Cartesian coordinates: 

 
       , , , ,

, ,x y

u x y v x y u x y v x y

x y y x
  

   
   

   
 (3.41) 

which is written in terms of the natural coordinates i  and the nodal displacements vectors u, v: 

 ( ) T
i  

 
  

 

u
F

v
 (3.42) 

The stiffness matrix: 

 T

V

dV  K F D F  (3.43) 

The matrix F  contains partial derivatives of the interpolation function F and the integral in the 

last equation is made over the element volume V. The details of the derivation can be found in 
FELIPPA 1966 and here only the final matrix equations are presented. 

 

Fig. 3-13 Quadrilateral element (b) composed from two triangular elements (a). 

The quadrilateral finite element is composed from two 4-node triangular elements, as shown in 
Fig. 3-13. Two degrees of freedom in a node are the horizontal and vertical displacements. The 
triangular element is derived from the 6-node triangle by imposing kinematic constraints on two 
mid-side nodes. The resulting strain-displacement matrix relation for the 4-node triangle is: 
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 e Bd                
x

y

   
                

e U O
u

e O V
v

g V U

 (3.44) 

where ex, ey are the normal strain vectors, g is the shear strain vector (engineering type) and O is 
the null matrix. The strain and displacement vectors contain nodal components: 

      1 2 3 1 2 3 1 2 3, ,
T T T

x x x x y y y y x x xg          e e  (3.45) 

    1 2 3 4 1 2 3 4,
T T

u u u u v v v v u v  (3.46) 

The strain interpolation function in the element is linear and is uniquely specified by three nodal 
values in the corners of the triangular element, while the displacement interpolation function is 
quadratic and is specified by three corners and one mid-side nodal displacement. The 
components ui, vi are the horizontal and vertical displacements, respectively, in the node i. The 
indexes 1, 2 and 3 denote the corner nodes of a sub-triangle and the index 4 is for the mid-side 
node, see Fig. 3-13 (a). The strain-displacement sub-matrices in (3.44) are 

 
1 3 2 3 2

1 2 3 3 1

1 2 3

3 2 4
1

3 4
2

.

b b b b b

b b b b b
S

b b b

  
    
  

U  

 
1 3 2 3 2

1 2 3 3 1

1 2 3

3 2 4
1

3 4
2

.

a a a a a

a a a a a
S

a a a

  
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V  (3.47) 

 
1 3 2 1 2 3

2 1 3 2 3 1

3 2 1 3 1 2

a x x b y y

a x x b y y

a x x b y y

   
   
   

 

 3 2 2 32S a b a b   

where xi, yi are the global Cartesian coordinates of the node i in a sub-triangle, S is the area of the 
sub-triangle. 

The element stiffness matrix for the 4-node sub-triangle is 

 uu uv

vu vv

K K

K K

 
  
 

K  (3.48) 

The stiffness matrix K has an order 8 and is so partitioned that the upper four rows correspond to 
the horizontal displacement components (index u) and the lower four rows correspond to the 
vertical displacement components (index v). The integration of the stiffness coefficients is made 
exactly, and the resulting sub-matrices are: 

 11 13 33( )T
uu St d d d     K A H H C  

 22 23 33( )T
vv St d d d     K C H H A  

 12 13 23 33
T

uv St d d d d     K H A C H  (3.49) 
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where t is the thickness of the element, dij are the coefficients of the material stiffness matrix D, 
(3.40). The integration in (3.43) is done explicitly by the following matrix multiplication: 

 , ,T T T  A U QU H U QV C V QV  (3.50) 

Where the area integration matrix Q is: 

 

2 1 1
1

1 2 1
12

1 1 2

 
   
  

Q  (3.51) 

The element stiffness matrix of the 5-node quadrilateral, Fig. 3-13(b), is composed of the two 4-
node sub-triangles by summing the stiffness coefficients of the appropriate nodes. The resulting 
matrix of the 5-node quadrilateral K10 has the order 10. The coefficients of the matrix can be 
rearranged according to the external (index e) and internal (index i) degrees of freedom: 

 10
ee ei

ie ii

 
  
 

K K
K

K K
 (3.52) 

The sub-matrices corresponding to two internal degrees of freedom are eliminated by 
condensation procedure and the final element stiffness matrix K of the order 8 is obtained: 

 1
ee ei ii ie

 K K K K K  (3.53) 

 

Fig. 3-14 Subdivision of quadrilateral element. 

The subdivision of the quadrilateral element into the triangular elements must be done in an 
optimal way and it is preformed automatically by the program. The examples of the subdivisions 
are illustrated by Fig. 3-14. Due to this method of the subdivision, a concave form of the 
quadrilateral element is acceptable. This element form could not be achieved by an isoparametric 
element. 

3.7.2 Evaluation of Stresses and Resisting Forces 
For the given displacement field, the strains and stresses are evaluated in the center of the 
quadrilateral element. The stresses at this point are obtained from material laws as functions of 
strains according to Section 2.1.12. Also, the constitutive law for the element and the matrix D 
are calculated from the stresses and strains at the center of the element. These stresses and strains 
are written in the output file as a part of the results. 

The calculation of resisting nodal forces of the sub-triangle for a current displacement field and a 
constitutive law is done by the following equation: 

 9 9
TtR B Q s  (3.54) 

where R is the vector of nodal forces (same arrangement and numbering as in the vector d in 
(3.44)). The matrix Q9 contains three integration matrices Q in the diagonal. The stress vector  s9 
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(same numbering as the vector e, (3.40), is calculated from the current strains and secant material 
matrix, Section 2.1.12. 

There are two variations of this element in program ATENA: CCQ10<xxxx> and 
CCQ10Sbeta<xxxx>. The main difference between these two elements lies in the way how the 
resisting forces are calculated. In case CCQ10<xxxx>, they are computed as described by 
Equation (3.54). In the second case, however, the material law is evaluated only at the element 
centroid. Based on the current state of damage a secant constitutive matrix is calculated and it is 
used to determine the integration point stresses and resulting resisting forces. This element type 
is almost identical to the element that was implemented in the program SBETA, i.e. the former 
version of this program. Due to this approach, there are some limitations for usage of this 
element with respect to some material models. It can be only used with material models that are 
able to calculate and exact secant constitutive matrix. This means that only the following 
material models can be used with the element CCQ10Sbeta<xxxx>: CCElastIsotropic and 
CCSbetaMaterial. 
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3.8 External Cable 
External pre-stressing cables are reinforcing bars, which are not connected with the most of the 
concrete body, except of limited number of points, so called deviators, as shown in Fig. 3-15. 
This element type is denoted in ATENA as CCExternalCable. 

 

Fig. 3-15 External cable model. 

Each cable has two ends provided with anchors. The anchor, where the pre-stressing force is 
applied is denoted as the active anchor, the anchor on the other side is the passive anchor. The 
points between the anchors are called deviators (or links). After applying pre-stressing the cable 
is fixed at anchors. In the deviators, cable can slide while its movements and the forces are 
governed by the law of dry friction. The slips of the cable in the deviators (the relative 
displacement of the cable ends with respect to the deviators) are denoted as 1 2, ...   They are 

introduced as variables to be determined by the analysis. 

 

Fig. 3-16  Forces at the deviator. 

The forces, F1 and F2 acting on a deviator i are the cable forces at the adjacent cable sections, 
Fig. 3-16. Their difference Pi = F1 -F2, (F1> F2) is the loss of the pre-stressing force due to 
friction in the deviator i. The relation between these forces according to the law of friction is 
expressed as: 

  2 1 ( ) ( )i p
rF F e Q f f r

    (3.55) 
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In this expression i  is the angular change of the cable direction at the deviator i, R is the radius 

of the deviator, (i.e. the product iR  is the length the contact between the cable and the 

deviator.).   is the friction coefficient. The constant part of the friction is i f iQ pc R , where 

fc  is the cohesion (a constant part of the friction) of the cable per unit length and unit perimeter. 

p stands for reinforcement bar perimeter. If the constant part of friction is neglected, the term Q 
is zero. ( ) , ( )rf f r   are user defined function that enable change of deviator's properties 

depending on value of slip   and deviator position coordinate r (measured from its starting 
point).  By default, these functions are set to one.  

Introducing ( ) ( )i pa
i rd e f f r

   and ( ) ( )b
i f i rd pc R f f r   we can simplify (3.55) to 

 

 2 1 1 1
a bF F d d    (3.56) 

 

Fig. 3-17 Forces and displacements in the cable element (cable section). 

A section of the cable between the deviators is considered as the uniaxial bar element, Fig. 3-17. 
The force F in the cable element depends on the pre-stressing force P, the displacements of ends 
u1, u2 due to structural deformation and the cable slips 1 2,   in the deviators. The slips   are 

introduced as an additional variable for the external cables. The equilibrium equation of the 
cable section is: 

 2 1 2 1( )F P K u u        (3.57) 

The element stiffness K = Es A/L, where A, L are the cable’s cross section and length, 
respectively, and Es is the actual secant or tangent modulus derived in the same way as in case of 
other reinforcement using bilinear or multi-linear law. 

The cable forces F1, F2, … are determined by applying the above equations for all cable 
deviators, i.e. an iterative solution is executed for displacements u, (outer iterations loop), and on 
slips i , (inner iteration loop).  

Introduction of pre-stressing is accomplished by applying an initial slip (cable pull-out) at the 
anchor end until a prescribed pre-stressing force is reached. This procedure reflects a real 
process of pre-stressing and considers the loss of pre-stressing due to friction deviators and 
deformation of the structure. 

3.9 Reinforcement Bars with Prescribed Bond 
Reinforcement bars with prescribed bonds are an extension of the external cables described in 
the previous section. The main difference is that they can also account for a bond between the 
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bar and the surrounding concrete body. This connection need not be perfect, because the 
cohesion strength has a limited value. It is inputted in form of a “bond” cohesion stress.  

This type of element is denoted as CCBarWithBond in ATENA. A typical reinforcement bar of 
this type is depicted in the figure below. The detail shows undeformed and deformed shape of a 
segment of the bar. The original length 0l  will change to l  due to displacement u  of the 

surrounding body and bar slips  . 

 

1 2 i m

1 2 i

i+1

i-1 m+1

i-1
c  c



m+1

undeformed truss i

deformed truss i

l

l

o

u
u



i i

i+1

i+1

 

Fig. 3-18 Reinforcement bar with slips. 

 

Normal stress at element i  is calculated by: 

 1( )i i i i i
i

i

u u
E

l

     
  (3.58) 
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Its derivative is compared with the total cohesion stress c , i.e. x
cx

 



. If the cohesion stress 

between the bar and the surrounding concrete is to be exceeded, the bar will slip to reduce this 
stress. Otherwise, the slips   will remain unchanged (or initially equal to zero), which 
correspond to the case of perfect bond.  

The total cohesion stress consists of two parts: base cohesion stress and so-called wobble 
cohesion stress, i.e. an extra cohesion dependent on axial stress in the bar, (see the term x wf  

below). The wobble cohesion is derived as follows: Prestress losses are calculated by: 
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  (3.59) 

 

The wobble related cohesion stress is thus r w rf    .   

Realizing that the cohesion stress can be constant, or it can be defined as a function of   and r , 
we can calculate the total cohesion stress c as follows: 

  0( ) ( ) ( ) ( )
corrc r T c corr c x wf r f T f c f f      (3.60) 

( ) , ( )rf f r   are the same as those described for external cables near (3.55), 0c  is reference 

base cohesion stress due to slipping (to be inputted), c  is total cohesion stress due to slipping 

and wobble cohesion,  p is perimeter of the reinforcement bar, r  is location at the bar. x  is 

normal stress in the bar and wf  states for wobble coefficient. The remaining parameters are: r  

is axial normal stress in the bar in direction of local coordinate axis r (in direction of the bar) and 
,p A  means perimeter and cross-sectional area of the bar, (again similar to r in the case of 

external cable). Function ( )
corrc corrf c  and ( )Tf T  expresses, how the cable’s cohesion depends on 

current temperature and corrosion ratio /curr origA A  at a point of the cable. ,curr origA A  is current 

and original (i.e. before corrosion started) area of cross section of the cable. 

 

Fig. 3-19 Forces at node i. 
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The discretized solution equation for node i, (considering elements 1,i i ), reads (the bars are of 
constant strain type): 
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 (3.61) 

 

If this element acts as the external cable, see the previous section, then 
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  (3.62) 

  

Assembling (3.61) and (3.62) yields final (in)equations for force difference at node i: 
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 (3.63) 
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Note that at this stage we solve for slips  , (while keeping constant cable displacements u ). As 
the reference cohesion stress is a function of  , i.e. 0 ( ...)c co   , in the above equations we 

use its Taylor approximation   
i

c
c

i

 



 


 

The above set of (in)equations is calculated in iterative manner. Assume we know the forces at 
iteration ( 1)k  , then the forces at iteration k are: 
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  (3.64) 

and 
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 (3.65) 

 

If the above equation is written for all nodes on the bar, we obtain a set of inequalities. It has to 
be solved in iterative manner (within each iteration of the main solution loop).  

 

Atena also support so called CCBarWithMemoryBond 2D and 3D elements. They differ from 
their original formulation, (i.e. elements CCBarWithBond), in that they have different function 

( )f   for "loading“ and , ( )unloadf  for "unloading" regime. This means min max( , )   in the 

former and min max( , )   in the latter case.  
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Fig. 3-20 Bond function for CCBarWithMemoryBond element 

 

 

To obtain more realistic shape, the resulting cohesion stresses are prior their output smoothed. 
The smoothing operation for node i is expressed as follows: 
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 (3.66) 

The equation (3.58) together with (3.61) completes the element description. The element can be 
used to realistically model cohesion between reinforcement bar and concrete. Such a model is 
needed for analysis of pullout tests etc. Although the adopted solution is simple, it provides 
reasonable results accuracy at low computation cost. A more elaborate model of cohesion 
between reinforcement bar and surrounding concrete can be achieved by using special interface 
elements that is described in the next section.    

3.10 Interface Element 
The interface elements are used to model a contact between two surfaces. Currently, the 
following element types are available: CCIsoCCIsoGap<xxxx> and CCIsoGap<xxxxxx>, 
CCIsoGap<xxxxxxxx> for 2D and 3D analysis, respectively. These elements use linear 
approximation of geometry. For the case of nonlinear geometry, use element type 
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CCIsoGap<xxxxxx> for 2D and CCIsoGap<xxxxxxxxxxxx> or 
CCIsoGap<xxxxxxxxxxxxxxxx> for 3D. The string in < > describes present element nodes, (see 
Atena Input File Format document for more information). The elements are derived from the 
corresponding isoparametric elements (described in sections 3.3 and 3.4), i.e. they use the same 
geometry and nodal ids etc. Geometry of the supported gap elements is depicted in Fig. 3-21. 
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Fig. 3-21 CCIsoGap elements 

 

The interface is defined by a pair of lines, (or surfaces in 3D) each located on the opposite side 
of interface. In the original (i.e. undeformed) geometry, the interface lines/surfaces can share the 
same position, or they can be separated by a small distance. In this case we speak about the 
interface with nonzero thickness.  

In the following, the interface behavior is explained on a simple 2-dimensional case, see section 
2.6 for a full description of the interface material.  

The interface element has two states:  

 Open state: There is no interaction of the contact sides. 

 Closed state: There is full interaction of the contact sides. In addition, friction sliding of 
the interface is possible in case of interface element with a friction model.   



126 

�  

Penalty method is employed to model the above behavior of the interface. For this purpose, we 
define a constitutive matrix of the interface in the form: 

 
0

0
tt

nn

F K u
F u

F K v




     
           

D  (3.67) 

in which ,u v   are the relative displacements of the interface sides (sliding and opening 

displacements of the interface) in the local coordinate system ,r s  and ,tt nnK K are the shear and 

normal stiffness, respectively. This coefficient can be regarded as stiffness of one material layer 
(real, or fictious) having a finite thickness. The layer is only a numerical tool to handle the gap 
opening and closing. F , F  are forces at the interface, (again at the local coordinate system). 

The actual derivation of gap elements is now demonstrated for the case of linear 2D gap element 
CCIsoGap<xxxx>, see Fig. 3-21. The other elements are constructed in a similar way.  

The element has two degrees of freedom defined in the local coordinate system, which is aligned 
with the gap direction. They are relative displacements ,v u   and are defined as follows: 
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 (3.68) 

The rest of the element derivation is the same as in case of any other elements, i.e. the stiffness 

matrix T dV K Β DB , vector of internal forces TQ FdV Β  etc. A numerical integration in 

two Gauss points is used to integrate the interface element stiffness matrix. The matrix K and the 
vector Q are in local coordinate system and therefore before they are assembled in the problem 
governing equations, they must be transformer in global coordinates.  

The stiffness coefficients depend on the gap state. The interface is considered open, if the normal 
force F >Rti (Rti is the interface tensile strength force) and the corresponding constitutive law is 

(stress free interface): 
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 (3.69) 
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The stiffness coefficients are set to small, but nonzero values ,op op
tt nnK K .  

The interface element is considered closed if F Rti. The stiffness coefficients are set to large 

values ,cl cl
tt nnK K . It should be noted that the stiffness coefficients are defined only for the purpose 

of the numerical iterative solution. (Hint: The values of coefficients in the closed state (the large 
values) are based on thickness comparable to the size of neighbor quadrilateral elements. The 
minimum values in the open state can be about 1000 times smaller. ) 

The interface thickness in the out-of plane direction is normally provided as an input parameter. 
In the case of axi-symmetric analysis it is however calculated using the formula: 

 2t x  (3.70) 

where x  is the distance from the axis of symmetry. 

There are two special options for processing the gap elements: 

Initial gap opening 

It is possible to "open" gap at a particular load step, typically the first step of the analysis, i.e. we 
can introduce to the gaps something like initial element strains in case of ordinary finite 
elements. This is achieved by LOAD INITIAL GAP ... INIT_STEP_ID  step_id command. Upon 
that, during calculation of the (gap) element at the step step_id  an artificial opening of the 
interface is introduced. Its value is the distance between upper and lower element surfaces/lines 
(with reference to undeformed structural shape).  

The GAP element load is typically used as follows: we have a structure with a base and upper 
block. The upper block falls towards the base block that is typically fixed. The structure is solved 
by introducing a layer of gap elements between the base and upper blocks and applying the GAP 
element load (for these gaps elements) in the 1st step. As a result, in the first steps the gaps will 
open to the distance between the blocks. It involves some tensional forces, but as the interface 
material usually sustains only compression forces, they can be neglected. In next steps the upper 
block gradually is falling to the base block until it hits it. At this moment interface gaps get fully 
closed, they change their regime form tension to compression and the upper block gets fully 
supported by the base block.  

Moving gaps3 

Suppose we have a structure has a base block and an upper block sitting on the base block. The 
base block is fixed, the upper block is dragged on the upper surface of the base block. The blocks 
are not mutually interconnected, only some friction and cohesion forces exist between them. 

Such problems can be modelled by the RESET_DISPLS n flag for the CC2DInterface / 
CC3DInterface. If this flag is input, then the upper and bottom surface/lines for all corresponding 
elements are realigned at the end of each step as shown for 2D elements in the following picture. 
The 3D gaps element is realigned in the same way. 

Of course, the boundary surface/lines projection of the gap interface (and thus its "moving" can 
be used in more complex situation, but the essence of the described technique remains the same. 
The layer of interface elements is typically connected to the bottom/ upper block of structure by 
MASTER SLAVE NODAL LISTS boundary conditions, where we must not forget to use the 
flag PROCESS_FLAG USE_CURRENT_COORDS. It will assure that after realigning the 
interface gets properly connected to the rest of the (deformed) structure.                 

                                                 
3 Available starting from ATENA version 4.3.1. 
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Fig. 3-22 Moving gap 2D element 

Note that the option of the gap's initial opening and the reset displacements flag can be 
combined. Both these special processing options are possible, because the ATENA software uses 
incremental approach to solve the structure. Thus, changing shape of the gap (at the end of the 
steps) will not harm governing equilibrium equations.  

3.11 Truss Axi-Symmetric Elements. 
In the following a circumferential truss element for axisymmetric analysis are described. The 
elements call CCCircumferentialTruss and CCCircumferentialTruss2 and they are aimed mainly 
for modeling structural circumferential reinforcement. For radial reinforcement refer to 
CCIsoTruss<xx> and CCIsoTruss<xxx> elements. 

The CCCircumferentialTruss has one node only, whereas the CCCircumferentialTruss2 has 
nodes two. They behave much the same, the difference being only in calculation of their “cross-
sectional area”. In case of the CCCircumferentialTruss element the area is entered directly from 
input data. The CCCircumferentialTruss2 element calculate the area as its thickness (defined in 
its geometry data) multiplied by its length. Unlike isoparametric elements thses elements are 
derived and computed analytically.   

Geometry, interpolation functions and integration points of the elements are given in 

Fig. 3-23. 
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CCCircumferentialTruss2

y
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Fig. 3-23 Geometry of CCCircumferentialTruss and CCCircumferentialTruss2 elements. 
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In the following structural vectors and matrices for the CCIsoTruss element are derived. 
Development of the CCIsoTruss2 is much the same. In fact, it is CCIsoTruss acting at the centre-
point of the CCIsoTruss2 element with its cross-sectional area calculated as explained above. 

The element vectors and matrices for Total Lagrangian formulation (TL), configuration at time t  
and iteration (i)  are as follows. Note that they are equally applicable for Updated Lagrangian 
formulation (UL) upon applying changes related to the element reference co-ordinate system 
(undeformed vs. deformed element axis.).  

The truss element center has at reference time t and ( 1)it t    co-ordinates 1 1[ , ]t t tX x x  and 
( 1) ( 1) ( 1)

1 1[ , ]
i i it t t t t tX x x
     , respectively. The element length (at respective time) is its length is 

12t tl x  and ( 1) 1 1( 1)
1 12 ( )t t i t t t il x u    .   

Increment of Green Lagrange strain ( ) ( ) ( 1)
11 11 11

i t t i t t t t i
t t t        (at time t t  , iteration ( )i with 

to configuration at time t ) is calculated: 
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where truss length ( ) 1 1( 1) 1( )
1 1 12 ( )t t i t t t i i

tl x u u    . Note that 1( )
1

i
t u  is co-ordinate increment 

( ) ( 1)

1 1( )
i it t t tx x

  . Substituting expressions for element length into (3.71)  yields: 
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 (3.72) 

Separating  1( )
1

i
t u  from (3.72) and rearranging in matrix form we obtain: 

 0 1
1

1t t
t L t x

 B  (3.73) 
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 and 
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The 2nd Piola-Kirchhoff stress matrix and tensor are: 

 ( 1) ( 1) ( 1)
11[ ]t t i t t i t t i

t t tS S S        (3.76) 
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The formulation is completed by relationship for element deformation gradient ( )
1,1

t t i
t X , which 

yields:  
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where engineering strain ( )
11

i
t e  is calculated by  
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3.12 Ahmad Shell Element 
This section describes Ahmad shell element implemented in ATENA, see Fig. 3-27. It can be 
used to model thin as well as thick shell or plate structures. It accounts for both plane and 
bending structural stiffness. The element features quadratic geometry and displacement 
approximation and therefore, the element’s shape can be non-planar. It is possible to account for 
structural curvatures. Big advantage of this element is that it is seamlessly connectible to true 3D 
ATENA elements.   

Three modifications of this element are supported, and these are characterized by Lagrangian, 
Serendipity and Heterosis variant of geometry and displacement field approximation. To avoid 
or minimize membrane and shear locking of shell element it is further possible to use full 
integration scheme, as well as reduced and/or selective integration. The problems concerned with 
combination of displacement approximation and integration scheme with respect to locking 
phenomena are discussed.  

The element is derived in a way similar as the other finite elements, which are described in this 
manual. Hence, in the present description will concentrate mainly on features that are specific for 
this element. Following Total Lagrangian formulation of the problem, the principle of virtual 
displacement is used to assemble incremental form of governing equations of structure.  

The present Ahmad element belongs to group of shell element formulation that is based on 3D 
elements’ concept. Nevertheless, it uses some assumptions and restrictions, so that the originally 
3D element is transformed into 2D space only. It saves computational time and it also avoids 
some formulation difficulties pertaining to 3D elements.  

The element’s in-plane integration is carried out in usual way by Gauss integration scheme, 
whilst in the 3rd dimension (i.e. perpendicular to mid surface of element) the integration can be 
done in closed (analytical) form. However, in order to enable accounting for nonlinearity of 
constitutive equations, the so-called layer concept is used instead. Hence, in the 3rd dimension 
simple quadrilateral integration is employed.  

The present degenerate continuum element was originally proposed by Ahmad et al. (Ahmad, 
Irons et al. 1970).  Following general shell element theory concept, every node of element has 
five degree of freedom, e.g. three displacements and two rotations in planes normal to mid-
surface of element. In order to facilitate a simple connection of this element with other true 3D 
elements, the (original) five degrees of freedom are transformed into x,y,z displacement of a top 
node and x,y displacement of a bottom node degrees of freedom. The two nodes are located on 
the normal to mid-surface passing thru the original mid-surface element’s node, see Fig. 3-28.  



ATENA Theory  131 

The essential point in the element’s derivation is that displacements and rotations fields are 
approximated "independently", (see e.g. (Jendele 1981), where similar approach is used for 
plates). This means that they are handled separately. Unlike in true Mindlin theory our 
formulation matches geometric equations automatically. However, a special technique is used to 
improve the element’s shear behavior (Hinton and Owen 1984).  

The first formulation of this element proposed by Ahmad was linear but since that time many 
improvements have been achieved. The most important is the application of reduced or selective 
integration scheme that reduces or totally removes locking of the element. Also, many authors 
extended the original formulation to geometrically and later also materially nonlinear analysis. 
One such an advanced form of the element is the formulation implemented in ATENA.  

On input, the Ahmad element uses the same geometry as 20 nodes isoparametric brick element, 
i.e. CCIsoBrick<xxxxxxxxxxxxxxxxxxxx>, see Fig. 3-27. This is needed, in order to be able to 
use the same pre- and postprocessors’ support for the shell and native 3D brick (i.e. hexahedron) 
elements. After the 1st step of the analysis, the input geometry will automatically change to the 
external geometry from Fig. 3-27. As nodes 17 and 18 contain only so-called bubble function, 
the element is post-processed in the same way is it would be the element 
CCIsoBrick<xxxxxxxxxxxxxxxx>. Internally, all element’s vectors and matrices are derived 
based on the internal geometry as depicted also in Fig. 3-27. 

With shell elements, the best connection at edges is to cut both at 45 degrees, or a different 
corresponding angle if the thicknesses are not the same, or if connected at other than right angle, 
see Fig. 3-24 (a). Another option is to use a volume brick element at the corner, which is the only 
feasible way when more than two shells are connected, see Fig. 3-24 (b). The nodes on the 
surface connected to the volume element have to be listed in the INTERFACE subcommand in 
the shell geometry definition for correct behavior. Connecting like in Fig. 3-25 is not 
recommended, as the master-slave relations induced by the fixed thickness of the shell may 
cause numerical problems.  

(a)  (b) 

Fig. 3-24: Ahmad Shell - recommended connection (a) 2 shells (b) 3 shells 

Shell1

Brick Shell2 

Shell3
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Fig. 3-25: Ahmad Shell - not recommended connection 

3.12.1 Coordinate Systems. 
The essential point in the element’s derivation is to understand coordinate systems that are used 
within the derivation. These are as follows. Note that all vectors indicating coordinate systems’ 
axes are normalized. Thus, any directional cosines are simply computed as scalar products that 
need not be divided by the vectors’ norm. 

Global coordinate system.  

It is used to define the whole FE model. Global coordinates are denoted by 1 2 3, ,t t tx x x , where 

the index t referrers to time. Note that we are using Modified Lagrangian formulation, in which 
model configuration is updated after each time step, while within one step (for iterating) the 
configuration from the step beginning is employed. Thus, 0 0 0

1 2 3, ,x x x are a point global 

coordinates prior any load has been applied. 

Nodal coordinate system 

This coordinate system is defined at each point of element mid-plane surface, i.e. mid-nodes 1-9. 

At a node k it is specified by vectors 1 2 3, ,
t t tk k kV V V , see Fig. 3-26. 
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Fig. 3-26 Ahmad element coordinate systems 
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to 3

t
V  and is parallel to plane of global 

0

1
GX  and  

0

3
GX . Hence: 

 
3 3 3 31 2 3

1 1 1 1 3 31 2 3 3 1

, ,

, , ,0,

t t t t

t t t t t t

V V V V

V V V V V V

   
        

   

     
 (3.79) 

If  3

t
V  is parallel to 

0

2
GX  (i.e. 3 31 3

0
t t
V V   ), 1

t
V   is defined by 

 1 3 2
,0,0

t t
V V   
   (3.80) 

After that, the coordinate system 1 2 3, ,
t t tk k kV V V  itself is defined. The vector 3

t kV  is constructed in 

the same way as was the vector 3

t
V , however, current, i.e. deformed configuration is used. The 

remaining two vectors are defined as vector product: 

 2 3 1

tt tk kV V V    (3.81) 

 1 2 3

t t tk k t kV V V   (3.82) 
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The vectors 1 2 3, ,
t t tk k kV V V  define local nodal shell coordinate system in which the shell rotations 

are specified. As already mention, the original formulation of the element has 5 DOFs per nodes. 
These are 3 displacements, expressed in the global coordinate systems and two rotations ,  . 

They are rotations along the vectors 1 2,
t tk kV V .  It comes from definition that 3

tV  need not be 

normal to the element surface.  It must only connect the top and bottom nodes of the shell.  

Sometimes, it is advantageous to modify the nodal coordinate system so that 3

t kV  remains 

unchanged but 1

t kV  and 2

t kV  are rotated (along 3

t kV ) to a certain direction. Note however, that 

mutual orthogonality of 1 2 3, ,
t t tk k kV V V  must not be damaged. 

Local coordinate system 

Local coordinates are denoted by 1 2 3, ,t L t L t Lx x x . The system refers to coordinate axes 

1 2 3, ,
t t tL L LX X X . It is used mainly at sampling (integration) points to calculate strains and 

stresses. The vector axes 1 2 3, ,
t t tL L LX X X  are defined by: 

 

1 1

2 2
3

3 3

t t

t t
t L

t t

x x

r s

x x
X

r s

x x

r s

    
       
    

        
    
       

 (3.83) 

 

2 3 1

1 2 3

t t tL L k

t t tL L L

X X V

X X X

 

   (3.84) 

As the nodal coordinate system 1 2 3, ,
t t tk k kV V V  can rotate along 3

t kV , the local coordinate system 

would 1 2 3, ,
t t tL L LX X X  rotate simultaneously along 3

t LX . This definition allows for user defined 

shell local coordinate system that is common for all shell elements, irrespective of their 

incidences. Note that unlike 3

t kV  the vector 3

t LX  is always normal to the element mid-plane 

surface. 

Curvilinear coordinate system 

This system is used to calculate derivatives and integration in element integration points. Its 
coordinates are ,r s  for in-plane direction and t  in direction of element thickness, see Fig. 3-26. 

The in-plane displacements are approximated by Lagrange, Hetherosis or Serendipity 
approximation similar 2D isoparametric elements. For the 3rd direction, i.e. through the depth of 
the element. linear approximation is used within the frame of the shell layer concept.  
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Fig. 3-27 Geometry and the element’s nodes 
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Fig. 3-28 Degenerate shell Ahmad element – coordinate systems and degree of freedoms 
(DOFs) 
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3.12.2 Geometry Approximation 
The coordinates of the top and bottom element surface are used to define the element geometry: 

 

, ,
1 1 1

, ,
2 2 2

1 , ,
3 3 3

1 1

2 2

t t k top t k bot

N
t t t k top t k bot

k
kt t k top t k bot

x x x
t t

x x h x x

x x x

      
               
            

  (3.85) 

where N=8 is number of nodes per element, (geometry is always interpolated by 8-nodes 
Serendipity interpolation, irrespective of displacement interpolation), h(r,s) is k-th interpolation 

function, r,s,t are isoparametric coordinates (see Fig. 3-27), 

,
1

,
2

,
3

t k top

t k top

t k top

x

x

x

 
 
 
  

and 

,
1

,
2

,
3

t k bot

t k bot

t k bot

x

x

x

 
 
 
  

 are vector of 

top and bottom coordinates of point k, see Fig. 3-29. 

 

node k

, , , ,
1 2 3[ , , ]t k top t k top t k top t k topX x x x

, , , ,
1 2 3[ , , ]t k bot t k bot t k bot t k botX x x x

, , , ,
1 2 3[ , , ]t k mid t k mid t k mid t k midX x x x

 

Fig. 3-29 Approximation of the element geometry 

Using the above the equation (3.85) can be rewritten in the following form: 

  
, 3 1

1 1
,

2 2 3 2
1 ,

3 3
3 3

2

t k
t t k mid

N
tt t t k mid k

k k
kt t k mid

t k

V
x x

t
x x h x V thick

x x
V



  
     
            
            

  (3.86) 

where  k
thick is element thickness in node k (i.e. distance between top and bottom points) and  

 
1 1 1

2 2 2

3 3 3

1

2

t mid t top t bot

t mid t top t bot

t mid t top t bot

k k k

x x x

x x x

x x x

      
             
            

 (3.87) 

are coordinates of mid surface.  
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3.12.3 Displacement Field Approximation. 
The general concept of displacement approximation is very similar, (although not identical) to 
geometry approximation. As already mentioned, the original version of Ahmad element uses 5 

degrees of freedom per node, see Fig. 3-28. These are 1 2 3, , , ,
Tt mid t mid t mid t tu u u     , where 

1 2 3, ,t mid t mid t midu u u  are displacements of the element’s node at the mid-surface and ,t t   are 

rotations with respect to vectors 1kv  and 2kv  respectively. These degrees of freedoms (DOFs) 

are used throughout the whole element’s development. However, in order to improve 
compatibility of the present shell element with other 3D elements implemented in ATENA, 

externally the element uses 1 2 3 1 2, , , ,
Tt top t top t top t bot t botu u u u u    DOFs, i.e. displacements at the top and 

bottom of the element. The 6th displacement, i.e. 3
botu  is eliminated due to application of shell 

theory that assumes 33 0  .  

Approximation of the original three "displacement" and two rotation degrees of freedom is 
independent. Nevertheless, the curvatures used in governing element equations use all of them in 
the sense dictated by geometric equations. This approach enables to satisfy not only equilibrium 
equations for membrane stresses and in-plane shear (in mid-surface) as it is the case of popular 
Kirchhoff hypothesis, but also to satisfy equilibrium condition for transversal shears (normal to 
mid-surface).  

Note that in the following derivation of the element we will deal with the original set of 
element’s DOFs , see (10). Every point thus has five degree of freedom, 

1 2 3, , , ,
Tt mid t mid t mid t tu u u     . Displacement vector is calculated by: 

  
, 2 11 1

1 1
,

2 2 2 12 2
1 ,

3 3
2 13 3

2

t tk k
t k t k mid

t kN
t tt k t t k mid k k

k t kk
kt k t k mid

t tk k

V V
u u

t
u u h u thick V V

u u
V V




       
                               

  (3.88) 

The original displacement vector at point k has the form 1 2 3, , , ,
Tt mid t mid t mid t tu u u     . Unlike in the 

case of geometry approximation, were N=8, displacements approximation accounts also for 
displacement in the element mid-point, i.e. N=9. The ninth function h is so called bubble 
function. 

node k

, , , ,
1 2 3[ , , ]k mid t k mid t k mid t k midu u u u

1

t kV

2

t kV

3

t kV

t k
t k

 

Fig. 3-30 Displacement approximation 
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3.12.4 Strain and Stresses Definition. 
The 2nd Piolla Kirchhoff tensor and Green Lagrange strain tensor is used. They are calculated 
and printed in the local coordinate system '1t x , '2t x  and '3t x . 

Green - Lagrange tensor. 

The general definition for Green-Lagrange strain tensor has the form (see eq. (1.8)): 

  0 0 , 0 , 0 , 0 ,

1

2
t t t t t

ij i j j i k i k ju u u u     (3.89) 

Using the above equation and applying the Von-Karman assumption, Eqn. (3.89) can be written 
as: 
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 (3.90) 

The Von-Karman assumptions simplify the calculation of strain by accepting that: 

� All strains are relatively small, 

� The deflection normal to mid surface of shell is of order of thickness, 

� The both curvatures are much smaller than 1., 

� The in-plane displacements are much smaller than transverse displacement and thus their 
derivatives in 2nd order terms can be neglected. 

0
t

L  and 0
t

NL  represents linear and nonlinear part of strain vector, respectively. More 

information about their calculation is beyond the scope of this publication. It is available e.g. in 
(Jendele 1992). 

2nd Piolla Kirchhoff tensor. 

Energetically conjugated with Green - Lagrange tensor is 2nd Piolla Kirchhoff tensor, and this 
tensor is used by the present shell element. Remind that we account for all stresses with 
exclusion of normal stress which is perpendicular to shell mid surface (as it is usual practice in 
shell analysis). This is the reason, why we introduced local coordinate system and all expression 
are derived with respect to it.  

Obviously, the local coordinate system varies depending on element deformation and thus it is 
necessary to re-compute (each iteration) the transformation matrix T (that relates local and 
global coordinate systems).  
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To compute internal forces, we will use 2nd Piolla Kirchhoff tensor in vector form (in a node k): 

 0 0 11 0 22 0 12 0 13 0 23
t t t t t t

k k
S S S S S S        (3.91) 

Note that that it is possible to abbreviate full 3 by 3 element tensor to the above vector, because 
of adopting Von Karmann simplifying assumption. 

3.12.5 Serendipity, Lagrangian and Heterosis Variant of Degenerated Shell 
Element. 

 Until now no information about interpolation function h and number of integration points were 
given. The present shell element analysis uses Serendipity interpolation functions. Note that 
bubble function 9h  (used in displacement approximation only) represents relative departure of 

approximated function with respect to the function value calculated by previous eight 
approximation functions. 

The interpolation functions ih  read:   
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 The actual values in center point can be calculated by: 

 
8

9 9
1

( 0, 0)i i
i

a a h r s a


      (3.93) 

where ih  are values of interpolation function at point (0,0), ia  are corresponding node values, 

9a  is departure in the center (i.e. computed value corresponding to degree of freedom at center) 

and 9a  is total value in center. 

Depending on combination how many nodes and integration points are used, we distinguish the 
Serendipity, Lagrange and Heterosis degenerated element variants, see Fig. 3-31. 
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Serendipity element. 

This element was used in the original Ahmad work. It comprises eight nodal points (center point 
corresponding to bubble function is omitted).  

Gauss integration scheme is used for integration. It can be integrated by full, reduced, or 
selective integration procedure. Using full integration, i.e. at three by three sample points, 
element exhibits shear locking for thin and even moderately thick element. If reduced integration 
is used. the problem of locking is significantly improved without creating spurious energy modes 
on structure level. However, in case of thin element there are two non communicable spurious 
energy mode on element level. 

It should be noted that there were reported some difficulties if some unfavorable constraints are 
applied. Nevertheless, the element is popular. If reduced integration is used the provided results 
are relatively good. 

 

Fig. 3-31 Node notation for element variants of the Ahmad shell element 

Nine node Lagrangian element. 

The nine-point Lagrangian element is still considered to be the best variant of the degenerated 
element. This is especially because of its versatility. For full integration scheme there is no 
problem with membrane and shear locking in very thin plate and shell application. If element is 
moderately thick, shear locking can be improved by reduced integration scheme. However, in 
that case the element exhibits rank deficiency. 
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Heterosis element. 

The Heterosis element is very similar to Lagrangian element. The difference is that it assumes 
first three DOFs at the element centre to be constrained, (i.e. only the rotations are retained)  

The element exhibits better behavior compared with previous quadratic elements and especially 
in combination with selective integration scheme no locking is produced. With reduced 
integration the element provides results better than Lagrangian element. In that case there are 
some spurious mechanisms, but for practical solution there are not probable.  

 

Fig. 3-32 Summary of locking and spurious energy modes 

Problem of membrane and shear locking in linear analysis are summarized in Fig. 3-32. In the 
case of nonlinearity, the situation is much more complicated and depends primarily on the 
material state at the sampling points. For more information refer to (Jendele, Chan et al. 1992)  

Element’s integration 

In previous paragraphs we mentioned many time full, reduced, and selective integration scheme. 
The sense of these procedures is best to demonstrate in Fig. 3-33. 
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Fig. 3-33 Integration schemes and sampling point notation  

The steps during selective integration of shear can been explained on example of integration 
arbitrary function ( , )f r s : 

1/ First we calculate the value of f at sampling points that corresponds to two-by-two integration 
rule, i.e  

 (-0.5773,-0.5773),  (-0.5773,0.5773),  (0.5773,-0.5773),  (0.5773,0.5773)f f f f  

2/ Using bilinear approximation we calculate the values of f at points that correspond to three-
by-three integration rule. There are two possibility to that. 

The first one is based on original approximation area and the main idea is that we calculate the 
value of function f at "corners" of isoparametric element (i.e. 1., 1.r s    ): 
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 (3.94) 

where if  are element nodal values of function f and '
ih  are interpolation functions corresponding 

to two-by-two interpolation and a node i. 

 

Fig. 3-34 Extension of bilinear approximation function for arbitrary rectangular 

The set of equation (3.94) can be solved for if . Having these value, we can bi-linearly 

approximate function f and compute function value at any point, i.e. also at sampling points 
corresponding to three by three integration rule.  

The second and more elegant solution is direct approximation. The interpolation function ih  are 

presented for a square area of the size 2x2 units, but they can be extended to a rectangular of any 
size, as shown in Fig. 3-34. 

Since the functional values for the 2x2 sampling points in the corner of the square 
2 0.5775r sl l x   are available, the approximation functions '

ih  can be used directly to calculate 

the values of the function f at sampling points corresponding to the 3x3 integration rule. 

For integration in direction perpendicular to r - s plane, that is in t coordinate it is also possible to 
use Gauss integration, but due to material nonlinearity there is more advantages to use direct 
rectangular integration. This concept is called the Layered model, see Fig. 3-35. 

The main idea of it is to divide the element along the thickness to layers whereby in particular 
layer the values of strain and stresses are expected to be constant and equal to their value at 
weight point of layer. Hence the integration in t direction is computed as a sum of integrated 
expressions multiplicated by adequate area of layer for all layers from bottom to top of element. 
It was found that to achieve good accuracy it is necessary to about six to ten layers. 

This concept. i.e. layer model is advantageous because it enables us to create for example 
reinforcing layers in element and also we can use finer division near top and bottom of shell, 
where higher stress level can be expected. 
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Fig. 3-35 The layer model 

3.12.6 Smeared Reinforcement 
The ATENA implementation of the Ahmad shell element supports embedding of smeared 
reinforcement layers. In this concept, reinforcement bars with the same coordinate z, (see Fig. 
3-35), material and the same directions are replaced by a layer of smeared reinforcement. Such a 
layer is placed at the same elevation z as the original reinforcement bars and its thickness is 
calculated so that sum of cross-sectional area of the bars and the replacing smeared 
reinforcement layer is the same. The layer is usually superimposed over existing concrete layers 
and it employs CCSmeardReinforcement material law, which makes possible to account for the 
original reinforcement bars’ direction. 

Because each layer of the Ahmad shell can use a distinct material model, concrete and smeared 
reinforcement layers are treated in similar way. (Constitutive equations, i.e. material law are 
placed outside of ATENA finite elements’ code). Description of syntax of related input 
commands is beyond scope of this document, but it can be found in the “ATENA Input File 
Format” document.  

Note that the support for smeared reinforcement does not exclude use of structural discrete 
reinforcement. Both the type of reinforcement can be combined in one model to achieve the best 
likeness of the the real structure with its numerical model.         

3.12.7 Transformation of the Original DOFs to Displacements at the Top and 
Bottom of the Element Nodal Coordinate System 

This section describes in detail the whole procedure of transforming Ahmad elements from its 
original formulation to the new one used by ATENA SW. Just to remind you: The original 
formulation (described in the previous sections) differs from the new one in selection of element 
degree of freedom, see Section 3.12.3. 

Let us start to work in nodal coordinate system first. The following equation states 
transformation rules for transforming three global displacements and two nodal rotations at the 
element mid-plane, (i.e. the original DOFs at a node k), to 6 displacements at nodal coordinate 
system, three at the top and three at the bottom surface of the shell. Note the right superscripts 
“N” that indicate nodal coordinate system.  
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V
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         

 
 
  

1T  (3.95) 

 

Transformation from nodal to global coordinated system 

The next step in the element’s derivation is to write transformation of the left-hand side vector of 
(3.95) from nodal to global coordinate system. It reads:  

 

1 2 31 1 1
,

1
1 2 3, 2 2 2

2
,

1 2 33 3 33
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   
   
   
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 
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, , , ,
3 3

, , , ,
1 1

, , , ,
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, , , ,
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t k N top t k N top
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   
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

2T  (3.96) 

 

Complete transformation of the original DOFs to the new element formulation DOFs 

The final transformation from the original to the new element DOFs at a node k is obtain by 
substituting (3.95) into (3.96). Thus, we can write 

 

,
1 , ,

1 1,
2 , ,

2 2,
3 , ,

3 3,
1

,
2

,
3

t k top
t k mid t k mid

t k top
t k mid t k mid

t k top
t k mid t k mid

t k bot
t k t k

t k bot
t k t k

t k bot

u
u u

u
u u

u
u u

u

u

u

 
 

 
    
    
    
     
    
    
          

2 1T T T  (3.97) 

where  T 

  

In a very similar way, we can define inverse transformation, i.e. from the new DOFs to original 
one. Without any derivation the matrix reads: 
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,
1,

1 ,
2,

2 ,
3,

3 ,
1

,
2

,
3
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t k mid
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u

u
u

u
u

u

u

u




 
   
   
   
    
   
   
       

T'  (3.98) 

where 

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 11 1 1 13 31 2 1 2

22 2 2 231 2 1 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2
t tt t t tk kk k k k

k k k k k k

tt t t tkk k k k

k k k k

T T T T T T

T T T T T T

T T T T T T

V VV V V V

thick thick thick thick thick thick
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

 

 

T'

2 3

t k

k k

V

k thick

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Constraining the redundant DOF to comply with shell theory 

As noted earlier, the original set of DOFs at a node comprises 5 DOFs, whilst the new one has 

six DOFs. Consequently, one DOF from , , , , , ,
1 2 3 1 2 3, , , , ,

Tt k top t k top t k top t k bot t k bot t k botu u u u u u    must be 

fixed.  The presented  work prefers to constrain ,
3

t k botu  but ,
1
k botu  or ,

2
k botu  are also good 

candidates, if ,
3

t k botu  can not be fixed due some numerical problems, usually due to a special 

position of the element with respect to global coordinate system. 

Derivation of the constrain is now demonstrated on the case of ,
3

t k botu . Using (3.97) 

 

       
, , , ,

3 3 3 3

, , ,
3 16 13 1 26 23 2 56 53

,
3 1 23 3

( )

....

t k bot t k top t k bot t k top

t t tt k top k mid k mid k

t t t tt k top k k k k k k

u u u u

u T T u T T u T T

u thick V thick V



 

   

      

 

 (3.99) 

Now in (3.99) eliminate k  and t k  using (3.98). Thus, we obtain one equation relating 

, , , , , ,
1 2 3 1 2 3, , , , ,

Tt k top t k top t k top t k bot t k bot t k botu u u u u u   , which is then used to constrain ,
3

t k botu  as a linear 

combination of  , , , , ,
1 2 3 1 2, , , ,t k top t k top t k top t k bot t k botu u u u u : 

 , , , , , ,
3 1 1 2 2 3 3 1 1 2 2
k bot top t k top top t k top top t k top bot t k bot bot t k botu c u c u c u c u c u      (3.100) 

where: 
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 

 
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2

3

2

2 3
1

tk kV 
 (3.101) 

The DOFs ,
1
k botu  or ,

2
k botu  can be eliminated in the same way. During the execution of the 

element, it is recommended to constrain one of  , , ,
1 2 3, ,t k bot t k bot t k botu u u  based on which solution is 

the most stable, (i.e. maximum denominator in (3.101)).  

Constraining DOFs at the centre of Hetherosis element 

A special attention needs to be paid to the 9th mid-plane node of Hetherosis element when we 

have to additionally constrain , , ,
1 2 3, ,t k mid t k mid t k midu u u . Thus, of the 6 DOFs we need to constrain 4 

of them. 

For example, suppose we want to keep free  ,
2

t k topu  and ,
3

t k topu  and we need to 

fix , , , ,
1 1 2 3, , ,t k top t k bot t k bot t k botu u u u .  Equation (3.99) from the previous paragraph needs to be added by 

three more equations. These are: 
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, ' ' ' ' ' ' 3
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, ' ' ' ' ' ' 1

3 31 32 33 34 35 36 ,
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,
3
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0

0
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t k top
t k mid
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u

u
u T T T T T T

u
u T T T T T T

u
u T T T T T T

u

u

 
 
                               
 
  

 (3.102) 

Equations (3.99) and (3.102) are then solved for , , , ,
1 1 2 3, , ,t k top t k bot t k bot t k botu u u u  as a linear 

combination of ,
2

t k topu  and ,
3

t k topu . 
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 
 
 
 
 

  

 (3.103) 

Again, there are several alternatives regarding of which of the 6 DOFs to keep and which to 
eliminate. The best option is chosen the same way as described in Section 0.  

3.12.8 Shell Ahmad Elements Implemented in ATENA 
Several modifications the Ahmad shell elements are implemented in ATENA. They are listed 

in the following table: 

Table 3-5 Ahmad shell elements. 

Element name Type of 
approximation 

Number of 
in-plane 
integration 
points per 
axis direction 
for bending 

Number of 
in-plane 
integration 
points per 
axis direction 
for shear 

Comment 

CCAhmadElement33L9 Lagrange 3 3 No spurious 
modes, locking 
in this shells 

CCAhmadElement32L9 Lagrange 3 2  

CCAhmadElement33H9 Heterosis 3 3  

CCAhmadElement32H9 Heterosis 3 2 Good 
compromise 
between locking 
and spurious 
energy modes 

CCAhmadElement22S8 Serendipity 2 2 Fast, but 
spurious modes 

 

 

3.13 Curvilinear Nonlinear 2D Isoparametric Layered Shell 
Quadrilateral Elements 

This section describes shell elements that model a structure by a curvilinear 2D surface. The 
element uses hierarchical geometry and displacement interpolation. It can have from 4 to 9 
nodes, each of them having 5 DOFs: 3 displacements in direction of global X,Y,Z axis and 2 
rotations along user defined vectors 1 2,V V  . If the shell is in the XY plane, then typically 

1 2,V X V Y  .  
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The element uses linear geometry and displacement interpolation in the direction of its thickness 
and quadratic or linear approximation in the element's plane. If quadratic approximation is used, 
behavior of the element resembles behavior of Ahmad shell element described in the previous 
section. 4 nodes version of this element, i.e. the element with linear approximation, does not 
perform well, (the element is too stiff), and thus it is recommended only for some local links etc. 
On the other hand, both bending and membrane behavior of 8-9 nodes version of the elements is 
great.   

The elements are derived based on the Shell theory, (similarly to Ahmad element). As a result, it 
is assumed 0,t t   is negligible and the element cannot change its thickness. (t indicates local 

axis in the shell's thickness).  

Depending on number of element nodes these finite elements call CCIsoShellQuad<xxxx> ... 
CCIsoShellQuad<xxxxxxxxx>  

 

 

Fig. 3-36 CCIsoShell2D elements 

 

 

3.13.1 Geometry and displacements 
 

The shell’s geometry at the configuration t and t dt  is defined by: 
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 

   
 

 (3.104) 

where i=1,2,3 is index relating  to  global axes  1 2 3, ,x x x  , (i.e. x,y,z), 1... Gk n , Gn = number of 

the element's nodes used to approximate geometry, typically 8 or 9.  Note that due to Shell 

theory the shell thickness at node k  0 ( 1) ( )t t t i t t i
k k k k ka a a a a      . The symbol ,( )kn it t

iV  is 

ith coordinate, ( 1,2,3i   for coordinate , ,x y z  ), of the vector nV  at node k  at time t t  , 

iteration ( )i . The vector nV  is normal to the shell. Later we will also use vectors  1 2,V V , 
1 2( )nV V V  . They will constitute base vectors for shell's bending rotations ,  .  

Similarly, displacements at time t t  , iteration (i-1):  

 ( 1) ( 1)t t i t t i t
i i iu x x       (3.105) 

Substituting  (3.104) into (3.105) 

 

   

,( 1)( 1) ,( 1)

,( 1),( 1)

2 2
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    

     
 

  (3.106) 

Note that in this case 1...k n , n is number of nodes to approximate displacements. Current 

implementation of the shell elements assumes gn n  , (which differs for Ahmads elements).  

Displacement increments within an iteration (at time t t  ) are: 

 
   
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,( ) ,( 1),( ) ,( 1)

,( ) ,( 1)

2

2

k k
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     
 

    
 

  (3.107) 

 

At each node, the element has 5 DOFs: 3 displacements k
iU  and two rotations ,k k   described 

below: 

Let us define at each node of the shell a local coordinate system  specified by three vectors 
1 ,( 1) 2 ,( 1) ,( 1), ,k k ki i n it t t t t t

i i iV V V      ,  see Fig. 3-36. The last vector is vector normal to surface of 

the shell at node k and the first and second vectors are calculated as follows: 

 
 1 ,( 1) ,( 1) ,( 1)

2 2

2 ,( 1) ,( 1) 1 ,( 1)

/k k k

k k k
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V V V

    

    

  

 
  (3.108) 
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For the next derivation let us assume a general vector 1 2 3, ,
T

L L L Lv v v v    with unit length that is 

subject to rotations  

[ , , ]T
L L L    , (where the subscript L indicates that both the vector and the rotations are defined 

with respect to the local coordinate system (defined by 1 ,( 1) 2 ,( 1) ,( 1), ,k k ki i n it t t t t t
i i iV V V     ). The 

rotations of the vector will produce displacements, (all in the local CS) 
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  (3.109) 

 

Transforming the displacements from local to global coordinate system 
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 (3.110) 

 Now assume the same behavior for a vector normal to the shell's surface (again in the local CS 
and unit length), i.e.  ,( 1) 0,0,1kn it t

L iLv V   . When this vector gets rotated, it produces 

displacements, (see (3.110): 

 

 

   
   
   

1 ,( 1) 2 ,( 1)
1 1 1

1 ,( 1) 2 ,( 1)
2 2 2

1 ,( 1) 2 ,( 1)
3 3 3

k k

k k

k k

i it t t t
L L

i it t t t
L L

i it t t t
L L

u V V

u V V

u V V

 
 
 

  

  

  

   
       
       

  (3.111) 

 

Substituting now ,( 1) ,( 1),t t k i t t k i
L L          and ,( 1) , 1..3kn it t

k iu V k   we can write 

final equations for displacements due to rotations, (for iteration (i-1) and (i) and the difference): 
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 

,( 1) 2 ,( 1) 1 ,( 1),( 1) ,( 1)

,( ) 2 ,( 1) 1 ,( 1),( ) ,( )

,( ) ,( 1) 2 ,( 1),( ) ,( 1)

k k k

k k k

k k k

n i i it t t t k i t t t t k i t t
i i i

n i i it t t t k i t t t t k i t t
i i i

t tn i n i it t t t t t k i t t k i t
i i i

V V V

V V V

V V V

 

 

 

        

     

     

  

  

      1 ,( 1),( ) ,( 1)

2 ,( 1) 1 ,( 1)

k

k k

t t it k i t t k i
i

i ik t t k t t
i i

V

V V

 

 

   

  



  

  

 (3.112) 

 

Hence, they represent rotation along two user defined vectors ,( 1)kn it t
iV  . It is important to note 

that the vectors ,( 1)kn it t
iV   moves as the structure deforms. 

Using (3.112) in (3.107) yields (and assuming shell thickness at a node k ) 

  2 ,( 1) 1 ,( 1)

2
k ki ik k t t k t t

i k i k i i

t
u h U a V V        

 
  (3.113) 

 

Note that the vectors 1 ,( 1) 2 ,( 1) ,( 1), ,k k ki i n it t t t t t
i i iV V V      must be normalized. Also note that 

(3.111) should be used to connect dofs of shell and solid elements. 

 

3.13.2 Connection of the shell2D to an ambient solid element 
 

Connection of the shell2D element to an ambient structure consists of two part:  
1. fix a FE node with [ , , ]u v w  displacement within the shell2D element, 

2. fix two rotation dofs of the shell2D element within ambient elements.   

3.13.2.1 Fixing a FE node with [ , , ]u v w  displacement within the shell2D element 

Using the shell2D approximation the shell's displacement at the bottom bot
iu  and at the top top

iu  

are: 

 

 

 

 

2 ,( 1) 1 ,( 1)

2 ,( 1) 1 ,( 1)

2 ,( 1) 1 ,( 1)

2

2

k k

k k

k k

i ibot k k t t k t tk
i k i i i

i itop k k t t k t tk
i k i i i

i itop bot k t t k t t
i k k i i

a
u h U V V

a
u h U V V

u h a V V

 

 

 

  

  

   

     
 
     
 

  

  (3.114) 

 

The index i is 1..3 for x..z displacements. Using the shell3D approximation displacement at the 
same locations can be calculated by: 
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,

,

bot bot bot l
i l i

top top top l
i l i

top bot top bot
i i i

uu hh UU

uu hh UU

uu uu uu





 

  (3.115) 

where bot
lhh  and top

lhh  are the solid's shell3D interpolation functions at location top and bottom 

of the shells at node i, , ,,bot l top l
i iUU UU  are corresponding nodal displacements of the solid 

element. Comparing (3.115) and (3.114) it can be shown that  

 

 
top bot

k k k

top bot
k k k

h hh hh

t h hh hh

 

 
  (3.116) 

 

Thus, to fix [ , , ]u v w  doffs of a node with shell2D elements we first calculate ihh  values for the 

case of shell3D approximation. Then, these are used to get ih  , (see (3.115), comprised in the 

shell2D approximation. It remains to compute shell2D rotation ,i i   and this is (again) done by 

comparing 2D and 3D approximation in (3.114) and (3.115). After some mathematical 
manipulation we will arrive to the final expressions: 

   

   

   

2 1

1
2 1

2

3
2 1

0 0
2 2

0 0
2 2

0 0
2 2

k k

k k

k k

top bot top bot top botk k
k k x k k x k k

top bot top bot top botk k
k k y k k y k k

top bot top bot top botk k
k k z k k z k k

a a
hh hh V hh hh V hh hh

u
a a

u hh hh V hh hh V hh hh

u
a a

hh hh V hh hh V hh hh

     
   
          
   

    
 

k

k

k
k

k

k

u

v

w




 
 
 
 
 
  
   

  

(3.117) 

3.13.2.2 Fixing two rotation dofs of the shell2D element within ambient elements 

 

Derivation of expressions to fix shell2D rotations in ambient elements is based (similarly to the 
previous section) on comparing the shell2D and shell3D approximation of top and bottom nodes. 
What we do is we first we fix the top and bottom in the ambient element using (solid) 3D 
approximation. It yields expression something like: 

 
,

,

......

......

top top top l
i l i

bot top bot l
i l i

uu hh UU

uu hh UU

 

 
  (3.118) 

Note that rhs of (3.118) may also include rotations. The resulting equations for shell2D rotation 
,   are: 
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cf V V V V V V V V V V

cf V V V V V V V V V V

cf V V V V V

D

D
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 (3.119) 
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(

(

top bot
k l i l i

top bot
k l i l i
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l i k i

top top l bot bot l
l i k i

hh UU hh UU

hh UU hh UU

k number of approximation shell D nodes

i x z

l number of approximati

cf cf

cf cf

  

  

 



 

 


 
 3on solid D nodes

   (3.120) 

 

where ,
1 2

,1 2k k
k i k ii iV VV V  . 

Note that displacement dofs are fixed by (3.117).  

If either bottom or top node gets outside the ambient element, the middle point is used instead. 

Equation (3.120) is still valid but it is necessary to use 
1

2
D D


that replaces D to calculate the  

,1 ,3...top bot
k kcf cf   coefficients. 
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3.13.3 Green-Lagrange strains 
 

The elements are derived using Green-Lagrange strains and 2nd Piola Kirchhoff stresses.  Green-
Lagrange strains  at (i-th iteration), i,j-axis x,y,z are calculated as follows : 

 

 
 

( ) ( ) ( )

( 1)

( ) ( ) ( ) ( )
, , , ,

( 1) ( 1) ( 1) ( 1)
, , , , , , , ,
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t i j t i j t j i t j i t m i t m i t m j t m j

t t
t ij t ij t ij

u u u u

u u u u u u u u

e



 


    

       



  

      

  

  (3.121) 

where: 
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  
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 
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1
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i
t m i
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u

u u





  (3.122) 

 

Element's displacements u are approximated by isoparametric interpolation. Hence, it is simple 
to calculate their derivatives with respect to local coordinate r,s,t. Using an arbitrary function 
f(x,y,z) Eqn. (3.123) to (3.125) show, how to compute its derivatives with respect to global x,y,z  
axis.  

Calculation of derivatives: 

 

f x y z f f

r r r r x x
f x y z f f

s s s s y y
f x y z f f
t t t t z z

           
                 

                       
                 
                 

J   (3.123) 

 1

f f

x r
f f

y s
ff
tz



   
       
        
      
     

J   (3.124) 
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Derivatives of coordinates at t with respect to r,s,t to calculate J: 
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      

  (3.125) 

 

Derivatives of displacement increments at time ( 1)... it t t    with respect to r,s,t: 
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  (3.126) 
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  (3.127) 

 

Derivatives of displacement increments at time t t  within iteration i with respect to r,s,t: 
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 

  (3.128) 
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To proceed further in the derivation of the 3D isoparametric element, we need to calculate 

derivatives of the displacement increments with respect to  1 2 3, ,t t t tx x x x . This is achieved 

using  (3.124)  thru (3.128). 

Derivatives of displacement increments at time ( 1)... it t t    with respect 1 2 3, ,x x x : 
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Derivatives of displacement increments at time t t  within iteration i with respect to 1 2 3, ,x x x : 

 , , ,
1 2 3

t inv k t inv k t inv ki i i i
j j jt

j

u u u u
J J J

x r s t

   
  

   
  (3.131) 
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After some rearrangement Eqn. (3.155) yields: 

 



ATENA Theory  159 

 

, ,
1 2

2 ,( 1) , , ,
1 2 3

1 ,( 1) , , ,
1 2 3

2

2

k

k

k t inv k t inv ki k k
i j jt

j

ik t t t inv k t inv k t inv kk k k
i j j j k

ik t t t inv k t inv k t inv kk k k
i j j j k

k t
i

u h h
U J J

x r s

a h h
V t J J J h

r s

a h h
V t J J J h

r s

U h









        

           
           

 1 ,( 1) 2 ,( 1)

1 ,( 1) 2 ,( 1)

2 ,( 1) 1 ,( 1)

2

2

k k

k k

k k

i ik k t t t k k t t t k
j i j i j

i it t t tk
i i

i it t t tk
i i

g G g G

a
g V

a
g V

   

  

  

 





  (3.133) 

At this place, we can derive final expression to compute linear and nonlinear strains increments.  

Linear strains ( )i
t ije  are calculated as follows: 
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where 

 ( ) ,( ) ,( ) ,( ) ,( ) ,( )
1 2 3, , , ,

Ti k i k i k i k i k i
k U U U     u


 at node k. 

The second part of L
kB  , i.e. 1L

kB , is derived from 11 ( )2 L i
t ij k ke  B u


 , at node k: 
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we can write 
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The energy of nonlinear strains: 

Let ( 1)t t i
t S

   is a matrix storing stresses ijs  at time t t  , iteration (i-1): 

 

11

11

11

12 22
( 1)

12 22

12 22

13 23 33

13 23 33

13 23 33

0

0 0

0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

t t i
t

S

S

S SYM

S S

S S S

S S

S S S

S S S

S S S

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (3.139) 

Then matrix  1 ... ...NL NL NL NL
k n   B B B B  is composed so that (at a node k) 
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where   states for variation of the following entity. It can be shown that the matrix NLB can be 

set in the following shape: 
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  (3.141) 

 

Having the matrices (3.135), (3.138), (3.139) and (3.141) these are used to compute the element's 
stiffness matrix, mass matrix, element loads etc. in exactly the same way as it is done for other 
ATENA's element.  

 

3.14  Curvilinear Nonlinear 2D Isoparametric Layered Shell 
Triangular Elements 

This section describes triangular shell finite elements. Their properties and their derivation are 
much the same as that for quadrilateral shell finite elements CCIsoShellQuad<xxxx> ... 
CCIsoShellQuad<xxxxxxxxx> described in the previous chapter. The only difference in that 
they feature triangular shape. Their geometry is depicted in the figure below  
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Depending on number of element nodes these finite elements call CCIsoShellTriangle<xxx> ... 
CCIsoShellTriangle<xxxxxx>. 

 

 

 

 

Fig. 3-37 CCIsoShell2D triangular elements 

 

3.15 Curvilinear Nonlinear 3D Isoparametric Layered Shell 
Hexahedral Elements 

 

A family of 3D isoparametric shell elements is presented, see the figure below. Their properties 
lie between degenerated Ahmad shell elements from Section 3.12 and full 3D brick elements 
from Section 3.5.  

Shape and kinematic behaviour resembles that of the shell's element. All points through the 
shell's thickness remain located on a line passing thru the corresponding top and bottom nodes of 
the shell, however unlike in the classical shell theory, their distance can change. As for degrees 
of freedom, (DOFS), a typical 3D isoparametric shell element has 9 nodes at the top and nine 
nodes at the botom surface, each of them having 3 DOFS, (i.e. 3 displacements). A similar 2D 
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shell element would feature 9 nodes located at the shell's midplane, each of them having  5 
DOFS, (3 displacements plus 2 rotations).  

The new elements use full 3D static equations. i.e. the elements consider all 6 components of 3D 
stress and strain vector. Geometrical and material nonlinearity is supported. The governing 
equations are calculated and integrated in material points. Gauss integration is used in shell's 
plane direction, whilst layered concept is employed throughout the thickness of the shells, (i.e. 
rectangur quadrature). As each layer can use different material model, some layers can be 
employed for modelling of embedded reinforcement. The elements typically use 3 x 3 x 
number_of_layers integration (i.e. material) points. 

The elements are suitable for both shallow and deep shells and are extremely simple for use, 
because they can be input and output as usual 3D solid hexahedral elements with 8, 20 or 27 
nodes. Hence, these shells can be hadled with most 3D pre- and post-processors. They also use 
standard 3D material models, element loads and other boundary conditions designed for 
hexahedral elements.  

The presented shell elements are particularly useful for structures that combine solid 3D 
elements and shell elements, because they do not imply any additional shell kinematic constraint 
that would harm an anjancent 3D solid elements. (Typical shell elements assume 0t  that 

enforces the same displacements of the corresponding top and bottom nodes in direction of their 
connecting line). They are designed for bent shells and to analyze these structures (with the same 
accuracy) they require far less finite elements compared to a similar analysis using standard 
hexahedral elements. On the other hand, the 3D behaviour of these elements involves a small 
overhead, so that standard 2D shell elements (with only 5 stress/strain components per material 
point) can perform in some cases slightly better. Nevertheless, the overhead is well paid off by 
easy of use of the presented elements, their nice 3D visualization, simple connection to adjacent 
3D solid parts of the structure etc. In addition, the hiearchical isoparametric space interpolation 
(used for the presented 3D shell elements) ensures that finer and coarser meshes are easy to 
connect. Of coarse, this feature must be supported by pre- and postprocessor being used.   
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Fig. 3-38 Isoparametric 3D shell element -  coordinate systems 

 

 

Geometry and displacements are approximated by hiearchical isoparametric spatial interpolation, 
(similar to other 2D and 3D elements defined in previous sections). The elements have at 
minimum 4 points at its top and 4 points at its bottom surface. It corresponds to linear 
approximation and the element's name CCIsoShellBrick<xxxxxxxx>. The most accurate version 
of the elements uses nodes 1 to 16 and 21,22, see the figure above. Its name is 
CCIsoShellBrick<xxxxxxxxxxxxxxxxxx>. Such element can have curvilinear shape and features 
quadratic displacement approximation. Hierarchical concept the shell element is employed. 
Hence, the 3D shell element can have from 8 to 18 nodes. The nodes 1-8 are compulsory. Nodes 
9-16 and 21,22 are optional. Nodes 17 to 22 are automatically removed from the element's 
incidences. They are considered only for the sake of compatibility with input data preprocessor. 
The <xxxxx..> string in the element name (following CCIsoShellBrick) specifies, which of the 
element's node is (or is not) included. An included node is market as "x", a node not included is 
marked as "_", (underscore). The shell's nodes are maped into the string as follows: 
<1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,21,22>. For example, 
CCIsoShellBrick<xxxxxxxxx_x_x_x_xx> uses nodes 1-8,9,11,13,15,21,22. Note that the bottom 
and top surface must use the same number and location of the optional nodes. Hence, if node 9 is 
included, node 13 must be included, too.        
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3.15.1 Geometry and displacements 
 

The shell’s geometry at the configuration time t and t dt , (iteration (i-1) and (i)), is defined by: 

 
( 1)

( )

, ,
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, ( ) , ( )

1 1

2 2
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2 2
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2 2

i
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i k i i

t t t t k top i t t k bot i
i k i i
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i k i i

t t
x h X X

t t
x h X X

t t
x h X X

    

  

    
 

    
 
    

 

  (3.142) 

 

where i=1,2,3 is index relating  to  global axes  1 2 3, ,x x x  , (i.e. x,y,z), ( , )k kh h r s is k-th 

interpolation function, (see Table 3-4), 1... Gk n is number of the shell's nodes, Gn = number of 

the element's nodes used to approximate geometry, typically 8 or 9.  t
ix  represents  i-th 

coordinate of a node of the element (at the specified time).  

Displacements at time ( 1)it t   , i=1,2,3 for global axes x,y,z, at iteration ( 1)i  reads :  

 ( 1) ( 1)t t i t t i t
i i iu x x       (3.143) 

 

Substituting (3.142) into (3.143), i=1,2,3 for global axes x,y,z,  we can derive 
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 
 
 

   

 (3.144) 

 

Displacement increments within i-th iteration are calculated as ( ) ( ) ( 1)t t i t t i t i
i i iu x x    : 

 ( ) , ( ) , ( )1 1

2 2
i t t k top i t t k bot i

i k i i

t t
u h U U     

 
  (3.145) 
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where , ( ) , ( ) ( 1) , ( ) , ( ) ( 1),t t k top i t t k top i t k i t t k bot i t t k bot i t k i
i i i i i iU X X U X X         . In the above ,k top

iX  

and ,k bot
iX is top and bottom nodal coordinate of node i. Similarly, , ( 1)t t k top i

iU  , , ( 1)t t k bot i
iU   

denotes displacements at the same node. 

 

 

3.15.2 Green-Lagrange strains 
 

The elements are derived using Green-Lagrange strains and 2nd Piola Kirchhoff stresses.  Total 
Lagrangian formulation is employed, but after each load step we transform the analyzed model 
(and its stress and other tensors) to the coordinate system defined by the current shape of the 
model. (The standard Total Lagrangian formulation calculates all with respect to the original 
coordinate system without any transformation; Updated Lagrangian formulation carries all the 
transformation each transformation, BATHE(1982). ) 

The shell's total strains at time t t  , i-th iteration, are calculated: ( i, j=1..3 for axis x,y,z) 
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t t i i i
t ij t ij t ij

u u u u

u u u u u u u u

e


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 

  

      

  

  (3.146) 

 

where ( )
,

t t i
t i ju  is derivative of displacement ( )t t i

iu  with respect to axis t
jx  at time t, i.e. at the 

beginning of time step.  (i) refers to iteration number.  Similarly, ( )
,
i

t i ju  denotes displacement 

increment at the current iteration. 

Subtracting  ( 1) ( 1) ( 1) ( 1) ( 1)
, , , ,

1

2
t t i t t i t t i t t i t t i

t ij t i j t j i t k i t k ju u u u             from (3.146) we can calculate 

linear and nonlinear strain increments  ( )i
t ije  and ( )i

t ij : 
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( ) ( ) ( ) ( 1) ( ) ( 1) ( )
, , , , , ,

( ) ( ) ( )
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i i i
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e u u u u u u

u u

      


  (3.147) 

 

Derivatives with respect to global  1 2 3, ,x x x x  are calculated in standard way from derivatives 

with respect to curvilinear isoparametric coordinates    1 2 3, , , ,r r s t r r r  . For example, 

derivatives of a function 1 2 3( , , )f x x x  is:  
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J   (3.148) 
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J   (3.149) 

 

The presented shell elements employs isoparametric hierarchical interpolation. Hence, 
coordinates t x  of a point are calculated by: 

 , ,1 1

2 2
t t k top t k bot

i k i i

t t
x h X X

    
 

  (3.150) 

where the interpolation functions ( , )kh r s  are enlisted in Table 1-3-1 and their derivatives 
t

i

i

x

r




 

with respect to r,s,t  (to calculate J) are: 
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  (3.151) 

 

The above expressions are employed to obtain derivatives of (total) displacements ( 1)t t i
iu   with 

respect to r,s,t. They are needed to calculate strains (3.147).  
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Derivatives of displacement increments with respect to r,s,t: 

 

 

( )
, ( ) , ( )

( )
, ( ) , ( )

( )
, ( ) , ( )

1 1

2 2

1 1

2 2

2

t t i
t t k top i t t k bot ii k

i i

t t i
t t k top i t t k bot ii k

i i

t t i
t t k top i t t k bot ii k

i i

u h t t
U U

r r

u h t t
U U

s s

u h
U U

t


 


 


 

         
         


 


  (3.153) 

 

To proceed further in the derivation of the 3D isoparametric element, we need to calculate 

derivatives of the displacement increments with respect to  1 2 3, ,t t t tx x x x . This is achieved 

using (3.149) and (3.153): 
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  (3.154) 
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After some rearrangement Eqn. (3.155) yields: 
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  (3.156) 

where 

, 1 2 3 , 1 2 3

1 1 1 1
,

2 2 2 2 2 2
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At this place, we can derive final expression to compute linear and nonlinear strains increments.  

Linear strains ( )i
t ije  are calculated as follows, see (3.147): 
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where ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( )
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we can write 
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Finally, matrix 1LB yields   
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Assembling stresses at time t t   , iteration (i-1) into matrix ( 1)t t i
t

 S


, participation of nonlinear 

strains ( )i
t ij  is, see (3.147) 

  

 

     

 

( 1) ( ) ( 1) ( ) ( 1) ( ) ( )
, ,

( 1) ( ) ( ) ( ) ( )
, , , ,

( 1) ( ) ( )
, ,

( )
11

( )

( )

1

2

1

2

...

...

t t i i t t i i t t i i i
t ij t ij t ij t ij t ij t k i t k j

t t i i i i i
t ij t k i t k j t k i t k j

t t i i i
t ij t k i t k j

i

i
k

i
n

S S S u u

S u u u u

S u u

    

 









     

 

 

    
 

   
 







u

u

u







 

( )
11

( 1) ( )

( )

...

...

T i

TNL t t i NL i
t k

i
n

 

  
   
   
   
   
   
      

u

B S B u

u



 



  (3.162) 

  

 

1

,1 ,1

,1 ,1

,1 ,1

,2 ,2

,2 ,2

,2 ,2

,3 ,3

,3 ,3

,3

... ...

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

NL NL NL NL
k n

top bot
t k t k

top bot
t k t k

top bot
t k t k

top bot
t k t k

NL top bot
k t k t k

top bot
t k t k

top bot
t k t k

top bot
t k t k

top
t k

h h

h h

h h

h h

h h

h h

h h

h h

h

  



B B B B

B

,30 0 bot
t kh

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (3.163) 



ATENA Theory  171 

( 1)
11

( 1)
11

( 1)
11

( 1) ( 1)
12 22

( 1) ( 1) ( 1)
12 22

( 1) ( 1)
12 22

( 1) ( 1) ( 1)
13 23 33

0

0 0

0 0

0 0 0

0 0 0 0

0 0 0 0

0

t t i
t

t t i
t

t t i
t

t t i t t i
t t

t t i t t i t t i
t t t

t t i t t i
t t

t t i t t i t t i
t t t

t t
t

s

s symmetric

s

s s

s s

s s

s s s

 

 

 

   

     

   

     



S


( 1) ( 1) ( 1)
13 23 33

( 1) ( 1) ( 1)
13 23 33

0 0 0 0

0 0 0 0 0 0

i t t i t t i
t t

t t i t t i t t i
t t t

s s s

s s s

    

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.164) 

 

Using (3.148) and (3.149) it follows to present final expression for computation of space 

derivatives of 1 2 3( , , )f x x x : 
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Having all the matrices and relationships above, the rest of derivation of the presented 
isoparametric shell elements is straightforward. Simply use the matrices 0LB ,  1LB ,  NLB  and  

( 1)t t i
t

 S


 to calculate structural stiffness matrices  ( 1), t t i
t L t NL

 K K  , vectors of nodal forces 
( 1) ,t t iF    and loads t tR  as described in the Section Problem Discretisation Using Finite 

Element Method earlier in this document.   

 

3.16 Curvilinear Nonlinear 3D Isoparametric Layered Shell Wedge 
Elements 

This section describes wedge shell finite elements. Their properties and their derivation are much 
the same as that for hexahedral shell finite elements CCIsoShellBrick<xxxxxxxx> ... 
CCIsoShellBrick<xxxxxxxxxxxxxxxxxx> described in the previous chapter. The only diference 
in that they feature wedge shape. Their geometry is depicted in the figure below  
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Depending on number of element nodes these finite elements call CCIsoShellWedge<xxxxxx> 
... CCIsoShellWedge<xxxxxxxxxxxx>. 

 

Fig. 3-39 CCIsoShell3D wedge elements 
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3.17 Curvilinear Nonlinear 3D Beam Element 
A curvilinear 3D beam finite element CCBeamNL is described here. The element is based on a 
similar beam element from BATHE (1982). It is fully nonlinear, in terms of its geometry and 
material response. It uses quadratic approximation of its shape, so it can be curvilinear, twisted, 
with variable dimensions of the cross-sections. Moreover, beam’s cross-sections can be of any 
shape, optionally even with holes. 

The element belongs to the group of isoparametric elements with Gauss integration along its axis 
and trapezoidal (Newton-Cotes) quadrature within the cross-section. The integration (or 
material) points are placed in a way similar to the layered concept applied to shell elements, 
however, the “layers” are located in both “s,t”  directions.  

3.17.1 Geometry and Displacements and Rotations Fields 
Geometry of the element is depicted in Fig. 3-40. The depicted brick nodes specification is 
employed to ensure compatibility of the element with ATENA preprocessor. The beam 3D nodes 
definition is used by ATENA postprocessor. The element response is computed within the 1D 
beam geometry. Thus, on input the element has 20 nodes, while during the calculation it has only 
15 nodes, i.e. 12 nodes for 3D beam shape definition and 3 nodes for the 1D beam geometry. 
Any of the 15 nodes can be subject to a kinematic or static constraint. The 1D beam nodes have 
6 degrees of freedom (dofs) – three displacements and three rotations with respect to global 
coordinate axes. The 3D beam nodes allocate only the three displacement dofs per node. The 
redundant brick nodes are ignored, and they allocate no dofs.   

The element uses three configurations. The reference configuration corresponds to shape of the 
beam at the beginning of the step, i.e. prior any load in the current step is applied was employed. 
It is used as a reference coordinate system for all calculation within a loading step t, with respect 
to which all derivatives are computed. This configuration is denoted by a t superscript left to a 
referred symbol, e.g. t x . The element shape after all previous iterations within the current step 
and prior the current iteration is denoted by t dt  superscript, t dt x . Increments within the 
current iteration do not use any superscript, e.g. x. 
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The beam’s geometry at the configuration t and t dt  is defined by: 
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 
    
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 (3.166) 

In the above i refers to axial nodes, i.e. 1..3i   for the nodes 13,14,15, see the 1D beam nodes. 

( )i ih h r  is i-th nodal interpolation function i described in Section 3.2.  , ,
Tt t t

i i iX Y Z    are 

global coordinates of a node i  at time t.  The vectors , , , , ,y yx xz z
T Tt st st st t t t t t

i i i i i iV V V V V V   
    are the 

vectors  ,t t
t sV V  depicted in Fig. 3-40, in a cross section i, at time t, which define local coordinate 

axis s,t.   The symbols ,t t
i ia b  refers to dimensions of the cross section i, time t; see the figure, 

too.  

Geometry of the beam at time t dt  is defined in a similar way: 
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 (3.167) 

The element’s displacements at time t dt  is calculated as follows: 
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w z z
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 (3.168) 

 and displacement increments within a iteration: 
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In the above equation the vectors ,t s
i iV V  are t t dt t t t

i i iV V V   and s t dt s t s
i i iV V V   are 

approximated by   
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The parameters , ,x y z
i i i    are rotations around the global axis, with respect to beginning of the 

current load step. Note that (3.170) is valid only approximately.  

3.17.2 Strain and Stress Definition 
The element uses Green-Lagrange strain and Piola-Kirchhof stresses, see Section 1.4.2 and 
Section 1.3.2. transformed to the local isoparametric r,s,t coordinate system. As the beam theory 
implies, only normal strain component r  and shear components ,rs rt   are considered. The 

stress vector includes the corresponding , ,rr rs rt    entries, whereby the remaining strains have 

to remain zero.  The procedure of calculation stress-strain response is as follows: 

1. Calculate all 6 components of Green-Lagrange strains (1.8) and their increments within 
global coordinate systems. The increments are computed with respect to the beginning of 
the current load step. 

2. Transform the strains increments into local r,s,t coordinate system. 

3. Zeroise components , ,ss tt st     . 

4. Execute material law to compute corresponding stresses. 

5. Transform the stresses to the global coordinate system. 

The following expressions are used to calculate displacement derivatives needed for calculation 
of the strains: 
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 (3.171) 

 where f is a displacement function to be derived. 

3.17.3 Matrices Used in the Beam Element Formulation 
Substituting equations (3.166) to (3.171) into the expressions for calculating element matrices 
(1.31) to (1.34) all important matrices and vectors of the beam element can be calculated. Their 
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explicit presentation is beyond the scope of this document. Nevertheless, the most important 
ones are now given: 

The Jacobian matrix: 
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The matrix t dt
t NLB : 

It is constructed in the way that 
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 (3.173) 

The detailed expressions for calculating t dt
t NLB  are given in (3.176) and (3.177).  The equations 

are important because they present the way, how spatial derivatives of all the displacements are 
calculated. The entries in  t dt

t NLB  are thus used to setup also the matrix 0
t dt

t LB  and 1
t dt

t LB .  

These matrices are computed as follows: 
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The stress matrix t t
t ij

 S  from (1.34) has he form: 

.
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t t t t
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t t t t t t
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 
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S  (3.178) 

 

As already mentioned, stress-strain relations are calculated in r,s,t coordinate system, hence we 
need equations for their transformations from global x,y,z coordinate system to the isoparametric 
system with r,s,t coordinates and vice versa. 

Let us denote ,t dt t dtT T 
   transformation matrices for strain and stress transformation from 

global to isoparametric coordinate system, so that: 
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 (3.179) 

Then the transformation matrices are calculated by: 

     22 2
2y yx xz

y y y yx x x xz z

y y y yx x x xz z

r rr rrt dt t dt t dt t dt t dt
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 (3.180) 
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 (3.181) 

where vectors yx z
ss st dt s t dt t dt t dtV V V V       , yx z

tt tt dt t t dt t dt t dtV V V V        are 

vectors of unity length from Fig. 3-40. The remaining vector is calculated as a vector product of 
the previous two vectors: 

 yx z
rr rt dt r t dt t dt t dt t dt s t dt tV V V V V V           (3.182) 

Inverse transformation matrices are calculated as: 

 

1

1

t dt t dt T

t dt t dt T

T T

T T

 

 

  

  





 (3.183) 

3.17.4 The Element Integration 
The element is integrated numerically. Along its longitudinal axis the element is integrated by 
standard two to six nodes Gaussian integration. The table below lists r coordinates and 
associated weights for utilized integration points: 

Table 3-6: Gaussian integration of the beam element along the longitudinal axis   

Number of 
integ. points 

 

Integrat
ion 

point 

 

 

Coordinate r 

 

Weight 

1 0.577350269189626 1. 
2 

2 -0.577350269189626 1. 
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1 0.774596669241483 0.555555555555556 

2 0. 0.888888888888889 3 

3 -0.774596669241483 0.555555555555556 

1 0.861136311594053 0.347854845137454 

2 0.339981043584856 0.652145154862546 

3 -0.339981043584856 0.652145154862546 
4 

4 0.861136311594053 0.347854845137454 

1 0.906179845938664 0.236926885056189 

2 0.538469310105683 0.478628670499366 

3 0. 0.568888888888889 

4 -0.538469310105683 0.478628670499366 

5 

5 -0.906179845938664 0.236926885056189 

1 0.932469514203152 0.171324492379170 

2 0.661209386466265 0.360761573048139 

3 0.238619186083197 0.467913934572691 

4 -0.238619186083197 0.467913934572691 

5 -0.661209386466265 0.360761573048139 

6 

6 -0.932469514203152 0.171324492379170 

In most cases the 2-nodes integration should be sufficient, for a higher order integration schemes 
oscillatory shear stresses and forces may be observed along the length of the beam.    

As for integration within the cross-section, i.e. in s,t coordinates, trapezoidal quadrature is used. 
The element cross-section is subdivided into ,s tn n  “strips” as depicted in the following figure. 

s

t

2

2

dt1

dt2

dtnt

ds1
dsns

ds2

individual weight
and material

“ “

 

Fig. 3-41 The beam cross section integration 
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The integration is then carried out by summing functional values in center of all quadrilaterals 
multiplied by their area.   

Note that the element is integrated within the isoparametric coordinate system, hence we have to 
use det( )dx dy dz J dr ds dt , see (3.171).  

Nice feature of the ATENA’s implementation of the beam is that each of the quadrilaterals in a 
cross section adopts an artificial input weight factor. By default, such a “weight” is equal to one, 
however, if we set its value to zero, essentially a hole is introduced. This mechanism, together 
with possibility of defining a customized material law in each of the quadrilaterals facilitates to 
analyze beams that have a arbitrary shape of cross-sections. 

The present beam implementation supports also smeared reinforcement. This is done in the same 
way as it was for the Ahmad elements described in the previous section.   

 

3.18 Curvilinear Nonlinear 3D Isoparametric Beam Element 
CCIsoBeamBrick20_3, CCIsoBeamBrick12_3D and CCIsoBeamBrick8_3D are beam curved 
isoparametric elements similar to the previous CCBeamNL_3D element. They use similar 
geometry, node numbering etc., but differ from CCBeamNL_3D in that they account for all 6 
components of 3D strains and stress vectors. They comply with all 3D static equations and no 
additional static or kinematic constrains are imposed. The comparison of CCBeamNL_3D vs. 
CCIsoBeamBrick12_3D resembles that of CCAhmad vs. CCIsoShell elements described above. 
The CCIsoBeamBrick20_3, CCIsoBeamBrick12_3D and CCIsoBeamBrick8_3D are easy to use, 
they preserve their 3D volume and they are nicely visualized during pre and post processing. 
They can be input, loaded, and output in the same way as CCIsoBrick hexahedral elements.  
CCIsoBeam8_3D features linear geometry and displacement approximation, (i.e. it has nodes 
1...8, see the figure below), whilst CCIsoBeam12_3D has reduced quadratic approximation, (i.e. 
it has nodes 1...12). CCIsoBeam20_3D comprises 20 nodes as shown in the sub-figure “Brick 
nodes” below and it has full serendipity displacements approximation. 
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Fig. 3-42 CCIsoBeamBrick12_3D and CCIsoBeamBrick8_3D elements 

 

Shape of cross section can be any quadrilateral, i.e. it need not be only a rectangle as depicted 
above. The elements are particularly useful for analyses of structures, where beam elements must 
be combined with 3D solid and/or shell elements.  

Derivation of the element is much the same as that for CCIsoShell element, i.e. Equations  
(3.143) and (3.145) thru (3.165) remain valid. Geometry and displacement approximation 
(3.144) is replaced by: 

( 1)

( )

, , , ,

, ( 1) , ( 1) , ( 1) , ( 1)

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1

2

i

i

t t k front t k back t k top t k bot
i k i i i i

t t t t k front i t t k back i t t k top i t t k bot i
i k i i i i

t t t
i k

s s t t
x h X X X X

s s t t
x h X X X X

ds
x h

        



         
  

         
  


 , ( ) , ( ) , ( ) , ( )1 1 1

2 2 2
t k front i t t k back i t t k top i t t k bot i

i i i i

s t t
X X X X          

  

  (3.184) 

( )k kh h r  are 1D interpolation functions, see the interpolation function for CCIsoTruss 

elements. The same notation is used for CCIsoShell Elements.  
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The element is calculated in integration points, (i.e. material points) that are located similar to 
CCBeamNL_3D elements, refer to Fig. 3-41.  The element can use any 3D material model. 
Different materials can be specified for each material points, (or points in cross section). Some 
of them can be used for modelling of embedded reinforcement. (Btw. discrete reinforcement can 
be employed, too). The elements support both material and geometric nonlinearity.    

  

3.19 Curvilinear Nonlinear 1D element 
The elements CCIsoBeamBar<xx> and CCIsoBeamBar<xxx> are from the point of view of 
mechanics nearly identical to the element described in Section 3.13, the difference being only in 
that that these elements are specified by their axis as 1D beams. The first element has 2 nodes 
(and uses linear interpolation of its geometry and displacements). The latter element has 3 nodes 
(and uses quadratic interpolation of its geometry and displacements, which is identical to 
CCBeamNL element referred above). The elements can be curved and can have variable height, 
width and orientation of their cross section. All these parameters are input in CCBeam1D 
geometry in form of algebraic expressions. The expression are functions of beam's coordinates 
x,y,z. Similar to CCBeamNL element, these elements are also integrated by Gauss integration 
along the beam's axis while grid quadrature is used for the remaining 2 directions (within cross 
sections). The elements support embedded reinforcements, holes different materials in different 
integration points etc. in the same way as it is the case of CCBeamNL element. They are suitable 
for modeling of both shallow and deep beams. Note that CCIsoBeamBar<xx> has far worse 
properties compared to CCIsoBeamBar<xxx>. Hence, the linear element should be used only to 
model some links and connections within the structures.    
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Fig. 3-43 CCIsoBeamNLBar<xxx> element 

 

3.19.1 Connection of the beam1D to an ambient solid element 
 

The procedure to connect beam1D's dofs to an ambient element is like that for shell2D elements, 
see 3.13.2. Again, it consists of two parts: 

1. fix a FE node with [ , , ]u v w  displacement within the beam1D element,  
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2.  fix three rotation dofs of the beam1D element within ambient elements 

3.19.1.1 Fixing a FE node with [ , , ]u v w  displacement within the beam1D element 

 

Using (3.169) and (3.170) write expression for beam1D displacements at the top top
iu and bottom 

bot
iu  , i.e. 0, 1s t    of a cross section.  Do the same for right right

iu and left left
iu point, i.e. 

1, 0s t   .  

Write 3D solid approximation for the same 4 nodes.  Then, if we compare the 1D and 3D 
approximation, after some mathematical manipulation we derive  
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  (3.185) 

3.19.1.2 Fixing three rotation dofs of the beam3D element within ambient elements 

Similarly, to the expressions for shell2D the resulting equations for beam1D rotation , ,x y z    

are 

  

1 2 3 1 2 3 1 2 3 1 2 3

x
Ttop top top bot bot bot right right right left left left

y

z

UU UU UU UU UU UU UU UU UU UU UU UU





 
      
  

MM  

 (3.186) 
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 (3.187) 

 

where , , , ,k kr s
i i kk i k i kV V V a ar Vs b b     

Note that displacement dofs are fixed by(3.185).  

If either bottom or top node gets outside the ambient element, the middle point is used instead. 
Equations (3.186) and (3.187) are still valid but it is necessary to use 

1
( , ) ( , ), 1..6, ( , ) ( , ), 7..12

2
MM i j MM i j j MM i j MM i j j         to calculate 

T

x y z     . 

Similarly, if either right or bottom node gets outside the ambient element, the middle point is 
used instead. Then, it is necessary to use 

1
( , ) ( , ), 1..6, ( , ) ( , ), 7..12

2
MM i j MM i j j MM i j MM i j j         to calculate 

T

x y z     . 

3.20 Integrated forces and moments for shells 
Integrated forces for shells are computed as follows: 
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The above forces and moments act on planes indicated below: 
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The actual values of the forces and moments are calculated by extrapolation of stresses from IPs 
into finite element nodes, (please refer to Section "Extrapolation of Stress and Strain to Element 
Nodes" in Chapter CONTINUUM GOVERNING EQUATIONS. The process is as follows: 

 

Let us take an example of 'xN  that is calculated by integration of ' 'x x  thru element's thickness. 

The stress ' 'x x  at element nodes is extrapolated from stresses in IPs ' 'ˆ x x  by  
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where eV  stands for element volume. Using  (3.188) and writing (3.189) for extrapolation within 

shell mid-plane e  , (i.e. integration over e instead of eV ) we can write 
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  (3.190) 
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 where ( , )t t r s  is element thickness at r,s. The integration for extrapolation is carried out over 

e , because the forces and moments are the same through shell thickness. Note that 

( , )k kh h r s  is interpolation function in the shell mid-plane and it is independent of t coordinate, 

(unlike ( , , )i ih h r s t in (3.189)). Therefore, we can write, (see the last equation in (3.190): 
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3.21 Integrated forces and moments for beams 
Integrated forces for beams are computed as follows: 
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The forces and moments act on the plane (x'y'). They are calculated similar way to (3.190), 

however, 
1

e e
ij i j i j el V

MM h h dr h h dV
bh

   , where bh is area of the beam's cross section and 

el  is element length. 

 

3.22 Global and Local Coordinate Systems for Element Load 
Most element loads can be defined in global or local coordinate system. Global coordinate 
system is always available, hence using it is usually the safest way to input a desired element 
load. Nevertheless, some elements are internally defined in a local coordinate system and it can 
be employed for an element load definition, too. Location of such a local system, (if it exists) has 
been described together with description of the associated finite element. For example, local 
coordinate systems are defined for plane 3D isoparametric elements, shell, and beam elements 
etc. On the other hand, elements such as tetrahedrons, bricks and others are defined in directly in 
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global coordinate system and therefore a local element load is treated as if it were input as a 
global element load. 

An exception to the above are truss elements. Although they are defined in global coordinate 
system, they do support local element load. Their local coordinate system (for element loading 
only) is defined as follows:  

 local X axis points in direction of the truss element,  

 local Y axis is normal to local X axis and lies in the global XY plane, 

 its positive orientation is chosen so that the local X and local Y forms a right-hand (2D) 
coordinate system in the plane defined by these local axes, 

 local Z axis is vector product of the local X and local Y axes, (for 3D case only). 

 if the truss is parallel to global z, then local X points in direction of global Z, local Y 
coincides with global Y and local Z has opposite direction of the global X, (for 3D case 
only). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-44 Local and global coordinate systems for truss element N1-N2, (e.g.  loaded element edge)   

Specification of a boundary load deserves slightly more attention. Firstly, it is applied only to an 
element’s edge or an element’s surface, (see also the note below), as opposed to e.g. an element 
body load that is for the whole element. Local coordinate system is thus defined by location of 
the loaded edge or surface. Secondly, a boundary load definition must include a reference to a 
selection, which contains nodes to be loaded. Their order in the list is irrelevant, as what really 
matters is the order in which they appear in the element incidences. When processing a boundary 
load, ATENA loops thru all element’s surfaces and edges, (in the order specified in the table 
below) and checks appropriate incidental nodes. If the tested node is present in the list of loaded 
boundary nodes, it is picked up and put into incidences of a new planar or line element. This 
element is later used to process the boundary load. It is its local coordinate system, that is 
(possibly) used to deal with local/global load transformations.   

The table below defines the orders, in which element surfaces and edges are tested for a surface 
or edge element load. (It is assumed that element incidences are 1 2 _ _( , , ... )num elem nodesn n n ). It 

describes linear elements, but surfaces and edges of nonlinear elements are treated in the same 
order.   
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Table 3-7: Order of element surface and nodes as they are tested within a boundary load definition.  

Element shape Type Surface/node incidences 

Truss Edge 
1 2( , )n n  

Surface 
1 2 3( , , )n n n  Triangle 

Edge 
1 2 2 3 3 1( , ); ( , ); ( , )n n n n n n  

Surface 
1 2 3 4( , , , )n n n n  Quad 

Edge 
1 2 2 3 3 1 4 1( , ); ( , ); ( , ); ( , )n n n n n n n n  

Surface 
1 2 3 4 5 6 7 8 1 4 8 5 2 3 7 6

1 2 6 5 4 3 7 8

( , , , ); ( , , , ); ( , , , ); ( , , , );

( , , , ); ( , , , );

n n n n n n n n n n n n n n n n

n n n n n n n n
 

Hexahedron, 
(brick) 

Edge 1 2 2 3 3 4 4 1

5 6 6 7 7 8 8 5

1 5 2 6 3 7 4 8

( , ); ( , ); ( , ); ( , );

( , ); ( , ); ( , ); ( , );

( , ); ( , ); ( , ); ( , )

n n n n n n n n

n n n n n n n n

n n n n n n n n

 

Surface 
1 2 3 1 2 4 1 3 4 2 3 4( , , ); ( , , ); ( , , ); ( , , )n n n n n n n n n n n n  Tetrahedron 

Edge 
1 2 2 3 3 1

4 1 4 2 4 3

( , ); ( , ); ( , );

( , ); ( , ); ( , )

n n n n n n

n n n n n n
 

Surface 
1 2 3 4 5 6

1 2 5 4 6 5 2 3 4 6 3 1

( , , ); ( , , );

( , , , ); ( , , , ); ( , , , )

n n n n n n

n n n n n n n n n n n n
 

Wedge 

Edge 1 2 2 3 3 1

4 5 5 6 6 4

1 4 2 5 3 6

( , ); ( , ); ( , );

( , ); ( , ); ( , );

( , ); ( , ); ( , );

n n n n n n

n n n n n n

n n n n n n

 

Note that only one surface or one edge of each element can be loaded in a single boundary load 
specification. If more element’s surfaces or edges are to be loaded, use more boundary load 
definitions. Violation of this rule causes an error report and skipping of the offending boundary 
load.  
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LX

LY

LZ

LZ

GX

GZ

GY

1n

2n 3n

5n
6n

LX LY

2D edge load
planar element

3D edge load
planar element

3D edge load
solid element 3D surface load

solid element

 

Fig. 3-45 Examples of positioning local coordinate system used by surface and element load for 2D 
and 3D elements 

Transport analysis does not distinguish between local and global element loads. Hence, a local 
element “load” is treated as being a global load. The actual load value is always scalar, (unlike 
vectors in statics) and it is assumed positive for flow out of the element.  

 

3.23 Digital printing of concrete structures4 
Digital 3D printing of concrete and reinforced concrete structures seems to be an innovated, 
progressive, and economically effective method for building civil engineering structures in 
future. It has several advantages in comparison to the traditional methods in building industry. 

                                                 
4 Not available in ATENA version 5.7.0 and older 
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For example, it allows for miscellaneous shapes of the structures, so that they can be designed 
more favorably for their static and functional behavior, architectonic design etc. It enables better 
optimization of the structures resulting in reduced cost, less labor-intensity, less waste produced, 
greater integration of function and increased speed of the whole construction process. Although 
most printing methods have not yet showed their full potentials, most engineers agree that they 
are the right way for civil engineering in near future, because they contribute to better design of 
the structures and their higher industrialization. 

There exists a variety of 3D printing methods used at construction scale, name e.g. 3D extrusion, 
powder/particle bed printing, 3D block assembling, spraying etc. This Section presents ATENA 
support for analyses of printed structures using 3D extrusion and describes, how such a 
construction process can be modelled by this software. It is characterized by printing the 
structure by layers, i.e. pressing concrete mix thru the nuzzle moving alongside a stepwise linear 
polygon line that corresponds to individual walls of the structure. Often, some walls are too wide 
to be printed by one pass of the nuzzle and two or more (parallel) printing passes are needed. 
Once the current layer has been completed, the printing head returns to its origin, moves one 
layer upwards and starts printing next layer until full height walls of the structure is produced. 

 

3.23.1 Simplified strength and stability assessments of extruded structures 
This section brings preliminary considerations and requirements that should be addressed in 
design and fabrication of extruded concrete structures. Some derivations below are inspired by 
papers (Roussel 2018) and (Wolfs at.al. 2018). 

 

3.23.1.1 Material model for stability assessments 

Material behavior used for digital fabrication of concrete structures can be modelled by 
viscoplastic and elastoplastic materials. The former model is suitable for times when the material 
is being pumped and is flowing to a place of its final position. This time period is not addressed 
here. We will rather concentrate on the later times, when the material is still fresh, but it is 
already in rest. At that time, the material features approximately elastoplastic behavior. 

There exist several kinds of yield surfaces that define threshold between elastic and fully plastic 
behavior. Using a few material parameters that are typically obtained from laboratory tests they 
define general 3D stress-strain conditions when the material start to yield. Uniaxial tensile 
strength, shear tensile strength etc. are examples of such parameters.  

Stress-strain conditions in printed walls are close to 1D conditions, (with self-weight body load 
only) and thus, throughout all the derivation here we assume 1D elastic behavior up to the 
material compression cf . Nevertheless, as some people prefer to measure and use the material 

shear strength shf  , we will show how to convert 1D material strength 1Df  to shf  and vice versa. 

Using e.g. Mises yield surface, https://en.wikipedia.org/wiki/Von_Mises_yield_criterion 

       2 2 2 2 2 2
2 11 22 22 33 33 11 23 31 12

1
3 6

2v J                       
  (3.193) 

calculate equivalent von Mises stress v  ( 2J  is the second invariant of stress deviator tensor) for 

uniaxial test conditions 1 11 0, 0 for ( 1) ( 1)D ijf i j        and pure shear test conditions 

https://en.wikipedia.org/wiki/Von_Mises_yield_criterion�
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12 21 0, otherwise 0sh ijf       . By comparing the corresponding equivalent von Mises 

stresses, we get the required strength conversion formula: 

 

11 1

12

1

3 3

3

v D

v sh

D sh

f

f

f f

 

 

 

 



  (3.194) 

Another option is to use maximum shear stress theory, see 
http://thegateacademy.com/files/wppdf/Theories-of-failure.pdf. It defines yield surface by 
constraining maximum shear  

1 2 2 3 3 1
,max max abs( ), abs( ), abs( )

2 2 2sh

            
    (3.195) 

where 1 2 3, ,    are principal stresses. Substituting the above two stress test conditions in 

(3.195) we get 

 

11 1
1 11 2 3 ,max

12 12
1 2 12 3 12 ,max 12

1

, 0
2 2

( )
0, ,

2
2

D
sh

sh sh

D sh

f

f

f f

    

       

     

 
       



  (3.196) 

 

Total strain theory postulates, see also the above reference:  

  2 2 2
1 2 3 1 2 2 3 1 32tst                  (3.197) 

Then 

    
 

1 11 2 3 11 1

1 2 12 3 12 12

1

, 0

0, , 2 1 2 1

2 1

tst D

tst sh

D sh

f

f

f f

     

        



     

        

 

 (3.198) 

 

Of course, a more elaborate and precise yield surface can be employed but we believe that for 
the preliminary assessment the above simple expressions serve enough accuracy. After all, in 
ATENA computer analyses one can use any material model suitable for cementitious material. It 
is more accurate but at the same time also computationally expensive. 

  

 

3.23.1.2 Strength-based stability of an individual layer 

Let as assume a simplified time development of material yield stress ( )cf t   

 ,0 ,max( ) min( , )c c c cf t f f t f     (3.199) 

http://thegateacademy.com/files/wppdf/Theories-of-failure.pdf�
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where ,0cf  is yield stress at time 0t  , (i.e. initial value just after material depositing), ,maxcf is 

maximum cf  and  cf
  is structuration rate. The layer is loaded primarily by its gravity self-

weight and therefore 

 ,0cf h g   (3.200) 

Maximum height of one printed layer is     

  

 ,0cfh
g

   (3.201) 

If surface tension   is considered, it produces stresses of order st h

   . Comparing with 

(3.201) we get  

 

h g
h

h
g









  (3.202) 

 

 

For example, for 
Pa

0.1
m

   , (=water) we calculate 
0.1

0.002m
2300 10

h   . Therefore, for 

printed structures stability contribution of ,0cf  is more important than contribution of surface 

tension. 

   

3.23.1.3 Collective strength-based stability of more layers  

 

If we consider the case of several printed layers, the lowest layer must resist vertical load H g , 
where H  is total height of the structure.  

 

11

,0

,0

c

c c c v

c
c v

H g f

f f f t H g v t g

f
f v g

t

 

 



 

   

 





  (3.203) 

where vv  is vertical printing speed. The last expression in (3.203) states minimum structuration 

rate f  for being able to print the top layer at time t. 

The total time tott  for printing height H of the structure is  
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 l h
tot

v h

l

l
H

H H H t v H l
t

hv h h v h
t

       (3.204) 

In the above lt  is time to print a single layer, i.e. time necessary for printing head’s move along 

the printing polygon that has total length l. 

 

3.23.1.4 Collective plastic collapse criterion implemented in ATENA  

 

This section describes steps that are executed to estimate plasticity-based criterion in ATENA. 
The procedure is inspired by (Suiker 2020) presentation at DC2020 conference in Eindhoven in 
2020.  

3.23.1.4.1 Linear material curing function 

 

The stability criterion is similar to that presented in the previous section; however, it is expressed 
in slightly different form. It assumes linear material curing function, i.e.  

  

 ,0( ) (1 )p pt t      (3.205) 

 

where ( )p t is material yield strength at time t, ,0p  is its initial value at 0t    and  represents 

material linear curing rate of the yield stress.  

Vertical stress v  at the bottom of the wall is, (H  is the wall height,   is concrete density and g  

states for gravity acceleration) 

 v H g    (3.206) 

and we require 

 p v    (3.207) 

For the following derivation, lets introduce dimensionless parameter  

 

 
,0p

vgv 


 


   (3.208) 

 Note that vertical printing speed vv  is in the (Suiker 2020) paper (and Atena) denoted as l  . 
Substituting vH v t  into (3.206) we get 

 

 ,0 * (1 )p p vt v g        (3.209) 
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After some mathematical manipulation it yields  

 

 
,0

1

1p

p

p p

l

l l
g












  (3.210) 

  

where pl  is the maximum wall height before the collapse.  

If ,0 0p   , then the wall is stable for p
vv g

t








, i.e. the case, when time rate of increase of 

material strength is higher than the rate of increase of vertical stress during printing of the wall. 
This condition also indicates unlimited wall height.  

The paper (Suiker 2020) also discusses, how to calculate p  . For the case of pressure-

dependent shear failure, they recommend Mohr-Coulomb theory 

 

 
2 cos( )

1 (1 )sin( )p

c

K K





  

  (3.211) 

 In the above   is material frictional angle, c states for material cohesion and min( , )y zK K K  

is minimum of coefficient of lateral stresses / , /y y x z z xK K      , (axis x is vertical, axes 

y,z are lateral, i.e. horizontal. 

Substituting (3.211) into (3.205) yields 

 

 ,0 ,0 ,0
,0

1
(1 ) 1p p p p

p p p p p
p

c c
t t t

t c t t c t

        
  

          
                       

 (3.212) 

 

From the above 

 
,0

1 p p
p

p

c

t c t

 
 

   
      

  (3.213) 

where 

 

2

2

2 sin( ) 2 cos( ) (1 )

1 (1 )sin( ) (1 (1 )sin( ))

2cos( )

1 (1 )sin( )

p

p

c c K

K K K K

c K K

  
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 



  
 

      



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  (3.214) 

 

3.23.1.4.2 Exponential material curing function 
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This section describes a similar stability assessment; however, exponential decaying curing 
process is assumed now. This means that Eqn. (3.205) changes to 

 ,0( ) ( (1 )e )t
p p p pt         (3.215) 

where 
,0

( )p
p

p







  and  is now coefficient of compression strength exponential curing rate. 

 

 

 

Substituting (3.215)  into (3.206) and (3.207) yields 

 
  0

0

0
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W e

p p
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p p gv

collaps v p p
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et gv
v g gv

  
 


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  
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  

  
    

    
 (3.216) 

 

W(z) states for Lambert W(z) function. The maximal wall height at collapse is  

 p collapse vl t v  (3.217) 

 

3.23.1.5 Buckling stability 

Buckling stability of the printed structures may limit the structure even more that strength-base 
stability. It is computed using Euler Buckling Theory, see 
http://www.continuummechanics.org/columnbuckling.html. Let us start our derivation with 
classic beam bending equation that reads  

 E I u M   (3.218) 

where E, I state for Young modulus and quadratic moment of inertia, x is longitudinal coordinate 

of the beam with its origin at the bottom, ( )u u x  is deformation and 
2

2

d u
u

dx
  is its second 

derivation with respect to x. M is loading moment. Let us assume 1m long section of the wall. It 
can be modelled by a vertical beam supported at the bottom and loaded by a vertical force P at 
its top, i.e.  M Pu  . Solving differential equation (3.218) yields 

 sin cos
P P

u A x B x
E I E I

   
       

   
  (3.219) 

A, B  are two constants to be solved from the beam’s boundary conditions (0) ( ) 0u u H   and 
(0) ( ) 0u u H    . It yields 0B   and when looking for a nontrivial solution, we get 

P
H

E I
 , from which we derive the well-known final expression for critical force 

 
2

2

E I
P

H


   (3.220) 

http://www.continuummechanics.org/columnbuckling.html�
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The same applies for boundary conditions (0) (0) ( ) 0u u u H     and ( ) 0u H   . For a general 
case 

 
2

2( )

EI
P

kH


   (3.221) 

 

Substituting P H g A , (A is cross section of the 1m long wall section), we get 
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  (3.222) 

Equation (3.222) states critical height of a printed wall to prevent its collapse due to losing 
stability. W states for the wall width. 

 

Finally, using (3.222) and (3.203) calculate a threshold H, below which the strength-based 
stability criterion (3.203) is dominant whilst above it the buckling limit is more restrictive. 
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  (3.223) 

 

3.23.1.6 Elastic buckling collapse criterion implemented in ATENA 

  

The paper by (Suiker 2020), (Suiker 2018) also presents an estimation of elastic buckling 
stability of the printed walls. It is more accurate than the criterion from the previous section 
because it allows for clamp or simple support boundary conditions along the wall vertical edges. 

 

3.23.1.6.1 Linear material curing function 

 

Like 3.23.1.4.1 the material linear curing rate is assumed  

 

 0( ) (1 )EE t E t    (3.224) 

  

where ( )E t  is material Young modulus at time t, 0E  is its initial value at 0t    and 

E represents material linear curing rate of  elasticity modules.  



202 

 

The employed method is in detail derived in (Suiker 2018). It presents a semi numerical-
analytical solution expressed in forms of easily useable plots. The recommended procedure is 
implemented in ATENA. 

 

The solution uses three dimensionless parameters 
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  (3.225) 

In the above equations , ,crl b h  is critical buckling height, horizontal length, (i.e. width), and 

thickness of the wall, respectively. Vertical printing speed is: 

 l
v

n l l

q t
v l

v hT T
     (3.226) 

with n lq v h t  being the material volume discharged from the printing nozzle per unit time, lT  is 

the period required for printing an individual layer and lt  is height, (i.e. thickness) of the printed 

layer, see the figure below 

 

Fig. 3-46 The buckling wall 

 

0D  states for initial wall bending stiffness defined by 
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3

0
0 212(1 )

E h
D





  (3.227) 

 

where  0E is initial Young modulus and  is Poisson ratio of the material. 

The procedure to calculate critical wall height crl  is as follows 

1. Calculate 0D  , (3.227). 

2. Calculate E , crb , (3.225). 

3. For the particular support conditions along vertical edges of the wall use 
Fig. 3-47 and find crl  that corresponds to the above   E  , crb . 

4.  Using inverse of the expression for crl calculate crl , (3.225). 

 

If the printed wall is not supported along its vertical edges, use the dash line for free wall in Fig. 
3-47, (i.e. for crb   ). The dash lines for the case of clamped and simply supported wall yield 

the same the same crl . 

Alternatively, (Suiker 2020) recommends  0.7931.98635 0.996cr El    . 
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Fig. 3-47 Critical dimensionless buckling length versus dimensionless linear curing rate for the case 

of fully clamped and simply supported wall. 

 

3.23.1.6.2 Exponential material curing function 

 

This section provides solution for buckling stability subject to exponential material curing rate 

 0( ) ( (1 )e )Et
E EE t E       (3.228) 

Notation used is similar to the above, i.e. 
0

( )
E

E

E
 

  and E  is now coefficient of exponential 

Young modulus curing rate. 
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The overall solution is the same as it was for the case of linear curing, only instead of Fig. 3-47 
the solution with exponential curing rate requires to use plots Fig. 48 thru Fig. 50. These plots 
also comes from (Suiker 2018).  

 

 

 

Fig. 48 Critical dimensionless buckling length versus dimensionless exponential curing rate for the 
case of free wall. 

 

Note that (Suiker 2018) provides the above plots only for {2..10}E  . It is sufficient for 

modelling some laboratory experiments, but practical analyses typically require values of P  

much higher. 
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Fig. 49 Critical dimensionless buckling length versus dimensionless exponential curing rate for the 
case of simply supported wall. 
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Fig. 50 Critical dimensionless buckling length versus dimensionless exponential curing rate for the 
case of fully clamped wall. 
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3.23.1.7 Comparison of buckling stability results provided in Section3.23.1.5 and 
Section 3.23.1.6 – linear material curing rate 

  

If we assume c pf  , then the previously presented strength stability criteria in Section 3.23.1.3 

and Section 3.23.1.4 yield the same results. However, the buckling stability criterion in Section 
3.23.1.6 is more sophisticated than that from Section 3.23.1.5. It is mainly improved in that it 
can account for additional boundary conditions along the printed wall’s vertical edges. 
Nevertheless, for the case of unsupported, (i.e. free) vertical edges the two models should yield 
similar results. This is checked here. 

  

Using Young modulus from (3.224) and vertical printing speed vv  from (3.226) we can write, 

(see Section 3.23.1.5) 
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where the wall width w h , see Fig. 3-46. Solving the above equation for t yields critical wall 
height crl   
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(3.230) 

 

Example:  substituting wall parameters 
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

   (3.231) 

   

the expression (3.230) and (3.225) calculates critical wall height 0.188m an 0.1825m 
respectively. For the case of 0.1mh   the expression (3.230) and (3.225) results in 0.305m and 
0.292 m.  

 

3.23.2 Steps to carry on analyses of extruded structures 
A typical analysis of a structure built by 3D extrusion slightly differs from usual analyses. All 
the required steps are now described: 

 

Step 1. Prepare a FE model of the structure neglecting the printing process: 

 

The analysis starts by creating a full FE models whereby the process of the printing is ignored. It 
means that we model the final geometry, properties, and conditions of the structure. Any 
available FE preprocessor can be used to achieve the goal. Use appropriate (time independent) 
material model and supply parameters that correspond to the final (long age) material properties.     

  

Step 2. Calculate time of construction constr
it   of each part of the structure, i.e. for each individual 

element: 

Use ATENA UPDATE_ELEMENT_CONSTRUCT_TIME command to accomplish this step. It 
requires the following data: 

 List of element groups that are printed. It is assumed that all elements of the groups are 
constructed in this way. Actual group’s ids are entered via an ATENA selection list.  

 Horizontal velocity of the printing head hv , about 1-10 cm/s. 
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 Thickness of one printed layer h, usually 1-10 cm. 

 Width of the printed layer w, typically 5-25 cm 

 Vector of vertical move from one layer to the next layer n .  

 Track polygon of the printing head’s motion. It is specified as an ATENA selection 
containing ids of FE nodes thru which the printing head passes. The track consists of any 
number of linear segments. If some segments are not mutually connected, i.e. the track is 
broken, separate the corresponding segments by inserting id=0 between their adjacent 
end nodes.  

 Set start time startt  of the track polygon. Typically, 0startt  , however if the structure is 

printed using several track polygons (with e.g. different width), then startt  of the current 

polygon equals to time corresponding to the last point of the previous polygon.  

 

Having all the above it follows to calculate time constr
it  of each element. Let  TECP x y z  are 

coordinates of center of the element. The element is printed when the head is at the closest 
position. The track polygon of the moving head is input by setting location of its bottom right 
edge. Hence, in the following derivations we work with a point P, (instead of ECP ): 

 

 
 
 

/ 2

/ 2

/ 2

x x

y y

z z

x hn wv

P y hn wv

z hn wv

  
 

   
   

  (3.232) 
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Fig. 3-51 Calculation of age of a particular printed element. 

 

 

Element construction time is calculated as follows: 
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  (3.233) 
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The element is printed as a part of a segment AB


 , if point Q AB
 

 and its distance 

/ 2PR h


 . It is printed in a layer id  int / 1l QR t 


 and has construction time  

   _ _1constr
i layer prev segs cur seg

AR
t l t t t

AB
   



   (3.234) 

where layert is total time to print one layer, i.e. its length divided by hv , _prev segst  is time to print 

element in the current layer up to point A and _cur segt is time to print the current segment AB


. 

The symbol   and    stand for cross and dot product, respectively. The remaining symbols in 
the equations are depicted in Fig. 3-104.   

 

3. Account for construction time constr
it  during the analysis: 

ATENA calculates structures step by step. Each step has its time t and it stepwise increases. 
When executing an analysis step, its time is compared with constr

it  of each printed element. If 
constr
it t , then the element’s contribution is assembled as usually, i.e. at its full values. For 

elements with constr
it t ATENA offers two options: 

 The element is calculated as usually, i.e. neglecting its constr
it .  It yields unreduced stresses 

(corresponding to deformation), vector of element forces and matrix of element stiffness. 
However, before their assembly into global data structures, the vector and matrix is 
multiplied by a reduction coefficient 1  . This simulates that the element does not yet 
exist. The coefficient is defined by ATENA command 
NEGLIGIBLE_ELEMENT_CONTRIBUTION_COEFF  . If 0  , the element does 
not contribute at all. 
Although this approach is simple, it has several disadvantages: it is computationally 
inefficient because it calculates at each time step all elements despite their contribution to 
the whole structure is possibly later minimized by the coefficient   . The next 
disadvantage is that it involves some element forces’ redistribution, (i.e. some additional 
iterations), when the element transfers from constr

it t  to constr
it t status. Note that it 

happens in spite of ATENA uses incremental solution technique.  
As discussed previously, the stresses are computed always in full value, i.e. neglecting  

constr
it . Now at constr

it t  we calculate element forces by something like 

 1

T T

i i i i ii i
F dV dV      B E B  . If the structures does not exhibit any 

deformation increment at the current step, then 10
T

i i i i
F dV       B  , which is 

differs from what we used in the previous step, (= 1 1

T

i i i
F dV    B )!  

On the other hand, this solution approach simulates better the case, when we require print 
layers having a constant height, (although not quite exactly). 

 The second method is to mark all elements active only on condition constr
it t .  Use an 

ATENA command something like 
 SELECTION "SOLID_BOX_ELEMENTS" 
CONSTRUCT_TIME_DEPENDENT_ACTIVE GROUP 1  
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It ensures that elements with constr
it t are skipped. They are not computed, not assembled, 

they don’t contribute the structure. They also do not deform, unless dictated by their 
adjacent elements. This solution is more effective because it calculates only “printed” 
parts of the structure. Also, no additional iterations are needed. It corresponds to the case 
when we keep constant top position of each layer, (while its height slightly increases). 
This method is preferable over the previous one. 

 

 

4. Account for time dependent material behavior 

For this kind of analysis, it is essential to use a material model whose properties vary in time.  
Mechanical properties of a fresh concrete are certainly significantly different from those for the 
mature material. For this purpose, ATENA offers CCMaterialWithVariableProperties material 
model. It builds up on any ATENA material model, but it updates its parameters using explicitly 
given time functions. Of course, CCMaterialWithVariableProperties  accounts for constr

it , i.e. the 

time functions receive ( )constr
it t  argument. If creep and shrinkage analysis is required, one 

should use ATENA MATERIAL id  MAT_CONSTR_TIME t  command. The material model 
then calculates behavior of the material being by t  younger, i.e. current and load time , 't t  is 
replaced by , 't t t t    .   

 

5. Loading 

A structure produced by digital 3D extrusion requires typically three kinds of boundary 
conditions: 

 Kinematic boundary condition, i.e. definitions of supports etc. They are much the same as 
for traditionally built structure. 

 Self-weight loading: This is modelled by element BODY LOAD option. Use its new 
“INSIDE_T_TDT_ONLY” flag to add the element’s weight only once and at the proper 
time.  For example, use the command something like  
LOAD BODY group 1 INSIDE_T_TDT_ONLY VALUE  Z -0.023  ; 

 Material shrinkage: This loading is input as element INITIAL STRAIN load, whereby we 
must consider element construction time  constr

it . It is achieved by using a new element 

load’s flag  CONSIDER_CONSTR_TIME VALUE. At a particular time, younger 
elements will exhibit a smaller shrinkage than the older ones. For example, use the 
command something like LOAD TOTAL FUNCTION 100 INITIAL STRAIN group 1 
CONSIDER_CONSTR_TIME VALUE  X 1.   Y 1.000   Z 1.000  ; 
Note that for the sake of convenience it is recommended to input the load as total load. 
Therefore, the loading function is defined as TOTAL. (By default, ATENA assumes 
incremental load, i.e. LOAD INCREMENTAL FUNCTION….). 

 

6. Visualization of printing process 

By default, ATENA draws only elements that are active and/or elements active on condition 
provided constr

it t . However, it can be overridden by checking a special switch, in which case 

ATENA draws active element only if constr
it t  and/or it draws conditionally active elements 
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despite their constr
it t status. As such, it is always possible to view full or only printed part of the 

structure. 
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4 SOLUTION OF NONLINEAR EQUATIONS 
The main objective of this chapter is to review methods for the solution of a set of nonlinear 
equations. Several methods, which are implemented in ATENA are described later in this 
Chapter. However, all of them need to solve a set of linear algebraic equations in the form   

 x bA  (4.1) 

where , ,x bA  stands for a global structural matrix and vectors of unknown variables and rhs of 
the problem, respectively. Hence, this problem is discussed first. 

4.1 Linear Solvers   
Two types of solvers are supported: direct and iterative, each of them having some pros and 
cons. Without going into details, a direct solver is recommended for smaller problems or 
problems. It is more robust and manages better ill-posed equations systems. On the other hand, 
iterative solvers are typically more efficient to solve large (well-posed) 3D analyses. In addition, 
two sparse direct solvers are provided. They intend to borrow advantages from both direct and 
iterative solvers.  

The two approaches (i.e., direct and iterative) differ in the way they store the structural matrix 
A . It comes from the nature of FEM that the structural matrices have sparse character, with most 
of nonzero elements located near the diagonal. The matrix has banded pattern and ATENA 
works with band of variable width. 

If a direct solver is used, then each column of matrix A  stores all entries between the diagonal 
element and the last nonzero element in the column. This structure is sometimes called sky-line 
profile structure. The matrix A  

 

11 12 13 15

21 22 23 24 25

31 32 33 34 35

42 43 44 45 46

51 52 53 54 55 56

64 65 66 67

76 77

a a a a

a a a a a

a a a a a

a a a a a

a a a a a a

a a a a

a a

 
 
 
 
   
 
 
 
  

A  (4.2) 

is thus stored in three vectors , ,d u l  with actual data and one vector p  with information about 

matrix’s profile: 

 

 
 
 

 

11 22 33 44 55 66 77

12 13 23 13 24 34 15 25 35 45 46 56 67

21 31 32 13 43 43 51 52 53 54 64 65 76

0 1 3 5 9 11 12

T

T

T

T

d a a a a a a a

u a a a a a a a a a a a a a

l a a a a a a a a a a a a a

p









 (4.3) 

For each column i  of the matrix A  the vector p  stores location of ( 1)i ia   within the array u , 

resp. l . If A  is symmetric, then u l  and only l  is stored. Note the a direct solver we have to 
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store all elements within the bandwidth, even though some of them may be equal to zero, 
because that they can become nonzero in the process of solution, (i.e., matrix factorization).  

 Iterative solver can store only true nonzero elements, irrespective of whether they are located 
above or below the skyline. Suppose the matrix A  from (4.2) that stores some zero elements 
below the skyline 

 

11 13 15

22 23 24

31 32 33 34

42 43 44 46

51 55

64 65 66 67

76 77

0

0 0

0

0

0 0 0 0

a a a

a a a

a a a a

a a a a

a a

a a a a

a a

 
 
 
 
   
 
 
 
  

A  (4.4) 

 All iterative solvers would store the matrix A  in three vectors. All the data are stored in a vector 
a  and location of the stored element is maintained in vectors ,r c . The above matrix is stored as 

follows: 

 

 

 
 

11 31 51 22 32 42 33 13 23 43 77 67...

1 3 5 2 3 4 3 1 2 3 ... 7 6

1 4 7 21 23

a a a a a a a a a a a a a

c

r







 (4.5) 

 

The vector a  stores for each column of A  first diagonal element, followed by all nonzero 

elements, from the top to the bottom of the column. The vector c  stores row index of each entry 

in the vector a . r  stores location of all diagonal elements iia  within a  appended by an artificial 

pointer to 1 1n na   , where dim( )n  A .   

4.1.1 Direct Solver 
The well-known Cholesky decomposition is used to solve the problem. The matrix A  is 
decomposed into 

 A LDU  (4.6) 

where ,L U  is lower and upper matrix and D  is diagonal matrix. The method to compute the 
decomposition is described elsewhere, e.g. (Bathe 1982). Equation (4.1) is then solved in two 
steps: 

 
 

1

1

v b

x v









L

DU
 (4.7) 

Both of the above equations are computed easily, because the involved matrices have triangular 
pattern. Hence, the solution of (4.7) represents back substitution only. If A  is symmetric, (which 
is usually the case), then  
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 TU L  (4.8) 

4.1.2 Direct Sparse Solver 
Direct sparse solvers are similar to the above Direct solvers; however, they should work more 
economically both in terms of RAM and CPU requirements. They belong to a group of direct 
(i.e., non-iterative) solution methods. They are based on matrix decomposition similar to (4.6). 
The decomposition can be LU or LDU for non-symmetric matrices and/or LLT or LDLT 
decomposition for symmetric matrices.  

The main difference between these solvers and those from Section 4.1.3 is that they run the so-
called pre-factorization procedure before the actual factorization is executed. Such a pre-
factorization has two jobs: 

1. Find out, what initially zero ija  entries of the matrix A (that are stored below the skyline) 

become nonzero due to factorization of A. Such entries are called fill-in. 

2. Per mutate lines and columns of A so that the filling gets minimum. 

Once a map of fill-in is known, it is added to the originally nonzero data of A and only these data 
are to be stored and maintained in the next operations. Hence, as it is not necessary to store and 
work upon all data below the skyline of A (as it is he case of solvers in Section 4.1.1); we can 
use here a sparse matrix storage scheme. The incurred savings in both RAM and CPU resources 
is significant and it pays off well for a computation overhead caused by the pre-factorization 
phase and a bit more complicated storage scheme in use.  

It is beyond the scope of this document to describe all details about the implementation of this 
solver. It is based on (Vondracek, 2006) and (Davis et. al, 1995). A number of optimization 
techniques are used to speed up the solution procedure, such as the problem (4.6) can be solved 
using a block structure. This applies to pre-factorization, factorization as well as for 
backward/forward substitution phases. The typical size of such a block is 2x2 .. 6x6. The bigger 
block size, the smaller overhead for pre-factorization and mapping of the matrix and the faster 
the operation to actually factorize and solve the problem (4.6). Use of a bigger block, however, 
results also in a higher waste of RAM because all nonzero data and fill-in are rounded into a 
storage with block pattern.  

Direct sparse solvers are a compromise between Direct Solvers and Sparse Solvers. They 
typically need more RAM and CPU than Sparse solvers do (and less than Direct Solvers), 
however, they never diverge and bring uncertainties as what precoditioner to use, etc.  Therefore, 
they are recommended for middle size (may-be ill-conditioned) problems, the solution of which 
would not fit into RAM subject a Direct Solver is used, and for which Sparse solvers are not 
sufficiently robust.  

4.1.3 Iterative Solver 
The table below lists all solvers in ATENA that can solve the problem (4.1) iteratively. Although 
the list is long, from the practical point of view only a few of them are recommended, see the 
column “Description”. In addition, only the methods DCG and ICCG are designed to take full 
advantage of symmetry of A (if present). The remaining solvers would store only the symmetric 
part of  A, however, they will operate on it in the same way as it is not symmetric. Therefore, for 
symmetric problems, the solvers DCG and ICCG are preferable.  

Each of the iterative solvers typically consists of two routines, one for “preparation” of the 
solution and the other for the solution itself, i.e., “execution” phase. The former routine is 
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particularly important for the case of preconditioned iterative solvers. This is where a 
preconditioning matrix is created.  

The most efficient preconditioning routine are based on incomplete Cholesky decomposition 
(Rektorys 1995). The preconditioning matrix A'  is decomposed in the same way as (4.6), i.e. 

 A' L'D'U'  (4.9) 

Comparing  A and A' , it can be written 

 
0 '

0 '

ij ij ij

ij ij ij

for a a a

for a a a

 

 
 (4.10) 

The incomplete Cholesky decomposition is carried out in the same way as complete Cholesky 
decomposition (4.6), however, entries in A , which were originally zero and became nonzero 
during the factorization are ignored, i.e., they stay zero even after the factorization. The incurred 
inaccuracy is the penalty for memory savings due to usage of the iterative solvers’ storage 
scheme. For symmetric problem, use ssics routine, for non-symmetric problems the ssilus is 
available to construct  TA' L'D'(L')  or A' L'D'U' .   

Last but not least, note that each solver needs some temporary memory. Such requirements are 
included in the table below. Typically, the more advanced the iterative solver, the more extra 
memory it needs and the fewer the number of iterations needed to achieve the same accuracy.  

 

Table 4.1-1 SOLVER TYPES. 

Type D/I Prep. 
phase 

Exec. 
phase 

Sym/N
on-
sym 

Temporary memory 
required 

Description 

LU D --- --- S,NS ----- For smaller or ill-
posed probems 

JAC I ssds   sir S,NS 4*(11)+8*(1+4*n) Simple, not 
recommended 

GS I --- sir S,NS 4*(11+nel+n+1)+8*(1+3
*n+nel) 

 

ILUR I ssilus sir S,NS 4*(13+4*n+nu+nl)+8*(1
+4*n+nu+nl) 

 

DCG I ssds scg S 4*(11)+8*(1+5*n) For large symmetric 
well-posed problems 

ICCG I ssics scg S 4*(12+nel+n)+8*(1+5*n
+nel) 

For large symmetric 
problems, 
recommended 

DCGN I ssd2s scgn S,NS 4*(11)+8*(1+8*n) For large non-
symmetric well-
posed problems 

LUCN I ssilus scgn S,NS 4*(13+4*n+nl+nl)+8*(1
+8*n+nl+nu) 

For large non-
symmetric problems, 
recommended 
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DBCG I ssds sbcg S,NS 4*(11)+8*(1+8*n)  

LUBC I ssilus sbcg S,NS 4*(13+4*n+nl+nu)+8*(1
+8*n+nu+nl) 

 

DCGS I ssds scgs S,NS 4*(11)+8*(1+8*n)  

LUCS I ssilus scgs S,NS 4*(13+4*n+nl+nu)+8*(1
+8*n+nu+nl) 

 

DOMN I ssds somn S,NS 4*(11)+8*(1+4*n+nsave
+3*n*(nsave+1)) 

 

LUOM I ssilus somn S,NS 4*(13+4*n+nu+nl)+8*(1
+nl+nu+4*n+nsave+3*n
*(nsave+1)) 

 

DGMR I ssds sgmres S,NS 4*(31)+8*(2+n+n*(nsav
e+6)+nsave*(nsave+3)) 

 

LUGM I ssilus sgmres S,NS 4*(33+4*n+nl+nu)+8*(2
+n+nu+nl+n*(nsave+6)+
nsave*(nsave+3)) 

 

In the above:  

n is the number of degree of freedom of the problem. nel is the number of nonzeros in the lower 
triangle of the problem matrix (including the diagonal). nl and nu is the number of nonzeros in 
the lower resp. upper triangle of the matrix (excluding the diagonal). 

 

Table 4.1-2: EXECUTION PHASES. 

Phase name Description 

sir Preconditioned Iterative Refinement sparse Ax = b solver. Routine to solve a 
general linear system  Ax = b  using iterative refinement with a matrix 
splitting. 

scg Preconditioned Conjugate Gradient iterative Ax=b solver. Routine to  solve a  
symmetric positive definite linear system    Ax = b    using the Preconditioned  
Conjugate Gradient method. 

scgn Preconditioned CG Sparse Ax=b Solver for Normal Equations. Routine  to 
solve a general linear system Ax = b using the Preconditioned Conjugate 
Gradient method  applied to the normal equations AA'y = b, x=A'y. 

sbcg Solve a Non-Symmetric system using Preconditioned BiConjugate Gradient. 

scgs Preconditioned BiConjugate Gradient Sparse Ax=b solver. Routine to solve a 
Non-Symmetric linear system Ax = b using the Preconditioned BiConjugate 
Gradient method. 

somn Preconditioned Orthomin Sparse Iterative Ax=b Solver. Routine to solve a 
general linear system  Ax = b  using the Preconditioned Orthomin method. 
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sgmres Preconditioned GMRES iterative sparse Ax=b solver. This routine uses the 
generalized minimum residual (GMRES) method with preconditioning to 
solve non-symmetric linear systems of the form: A*x = b. 

 

Table 4.1-3: PREPARATION PHASES. 

Phase name Description 

ssds Diagonal Scaling Preconditioner SLAP Set Up. Routine to compute the 
inverse of the diagonal of a matrix stored in the SLAP Column format. 

ssilus Incomplete LU Decomposition Preconditioner SLAP Set Up.Routine to 
generate the incomplete LDU decomposition of a matrix.  The  unit lower 
triangular factor L is stored by rows and the  unit upper triangular factor U is 
stored by columns.  The inverse of the diagonal matrix D is stored. No fill in 
is allowed. 

ssics Incompl Cholesky Decomposition Preconditioner SLAP Set Up. Routine to 
generate the Incomplete Cholesky decomposition, L*D*L-trans, of  a 
symmetric positive definite  matrix, A, which  is stored  in  SLAP Column 
format.  The  unit lower triangular matrix L is  stored by rows, and the inverse 
of the diagonal matrix D is stored. 

ssd2s Diagonal Scaling Preconditioner SLAP Normal Eqns Set Up. Routine to 
compute the inverse of the diagonal of the matrix A*A'.  Where A is stored in 
SLAP-Column format. 

 

As for the solution procedure, i.e., the latter of the two solution phases, the most commonly used 
method is the Conjugate gradient method (with incomplete Cholesky preconditioner) (Rektorys 
1995). The flow of execution is as follows:   
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 (4.11) 

This solution procedure is implemented in scg routine. 

The iterative solvers in ATENA are based on SLAP package (Seager and Greenbaum 1988) that 
were modified to fit into ATENA framework. The authors of the package refer to (Hageman and 
Young 1981), where all of the implemented solution techniques are fully described.     

4.1.4 Parallel Direct Sparse Solver PARDISO5 
This solver uses PARDISO parallel direct sparse solver from the Math Kernel Library (MKL) 
provided by Intel together with Intel Composer XE 2011. The solver has been developed within 
the PARDISO Project, (see for example http://www.pardiso-project.org/).  It is aimed for large 
sparse symmetric and un-symmetric linear systems with shared memory. It offers direct or 
iterative solver algorithms. The solver is well established and used by many software packages. 
A lot of literature is related to the PARDISO project. For more information, refer to 
http://fgb.informatik.unibas.ch/people/oschenk/index.html. Also, basic information is given in 
the Intel Composer XE 2011 manuals. 

A simplified version of this solver is also included in Atena. For the sake of simplicity, most 
solution parameters are kept with their default value. The exception to that is the parameter 
"PARDISO_REQUIRED_ACCURACY". It is input via the Atena "SET" input command. It 
specifies, whether use of direct method with LU decomposition or iterative method with CGS 
preconditioning is preferred. In the latter case, it also set a required solution accuracy. (For more 
information refer to the Atena Input File Manual). 

The following solver description is taken from the MKL manual provided by with Intel 
Composer XE 2011, (also at http://software.intel.com/sites/products/documentation/hpc/ 
mkl/mklman/GUID-7E829836-0FEF-46B2-8943-86A022193462.htm. 

Symmetric Matrices:  

The solver first computes a symmetric fill-in reducing permutation P based on either the 
minimum degree algorithm (Liu, 1985) or the nested dissection algorithm from the METIS 
package (Karypis, 1998)  (both included with Intel MKL), followed by the parallel left-right 
looking numerical Cholesky factorization (Schenk, 2000)  of PAPT = LLT for symmetric 

                                                 
5 Available starting from ATENA version 5. 
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positive-definite matrices, or PAPT = LDLT for symmetric indefinite matrices. The solver uses 
diagonal pivoting, or 1x1 and 2x2 Bunch and Kaufman pivoting for symmetric indefinite 
matrices, and an approximation of X is found by forward and backward substitution and iterative 
refinements. 

Whenever numerically acceptable 1x1 and 2x2 pivots cannot be found within the diagonal super-
node block, the coefficient matrix is perturbed. One or two passes of iterative refinements may 
be required to correct the effect of the perturbations. This restricting notion of pivoting with 
iterative refinements is effective for highly indefinite symmetric systems. Furthermore, for a 
large set of matrices from different application areas, this method is as accurate as a direct 
factorization method that uses complete sparse pivoting techniques(Schenk, 2004). 

Another method of improving the pivoting accuracy is to use symmetric weighted matching 
algorithms. These algorithms identify large entries in the coefficient matrix A that, if permuted 
close to the diagonal, permit the factorization process to identify more acceptable pivots and 
proceed with fewer pivot perturbations. These algorithms are based on maximum weighted 
matchings and improve the quality of the factor in a complementary way to the alternative idea 
of using more complete pivoting techniques. 

The inertia is also computed for real symmetric indefinite matrices. 

Unsymmetric Matrices:  

The solver first computes a non-symmetric permutation PMPS and scaling matrices Dr and Dc 
with the aim of placing large entries on the diagonal to enhance reliability of the numerical 
factorization process (Duff and Koster 1999). In the next step the solver computes a fill-in 
reducing permutation P based on the matrix PMPSA + (PMPSA)T followed by the parallel 
numerical factorization 

QLUR = PPMPSDrADcP 

with super-node pivoting matrices Q and R. When the factorization algorithm reaches a point 
where it cannot factor the super-nodes with this pivoting strategy, it uses a pivoting perturbation 
strategy similar to (Li and Demmel 1999). The magnitude of the potential pivot is tested against 
a constant threshold of alpha = eps*||A2||inf , where eps is the machine precision, A2 = 
P*PMPS*Dr*A*Dc*P, and ||A2||inf is the infinity norm of the scaled and permuted matrix A. 
Any tiny pivots encountered during elimination are set to the sign (lII)*eps*||A2||inf, which 
trades off some numerical stability for the ability to keep pivots from getting too small. Although 
many failures could render the factorization well-defined but essentially useless, in practice the 
diagonal elements are rarely modified for a large class of matrices. The result of this pivoting 
approach is that the factorization is, in general, not exact and iterative refinement may be needed. 

Direct-Iterative Preconditioning. 

The solver enables to use a combination of direct and iterative methods (Sonneveld 1989) to 
accelerate the linear solution process for transient simulation. Most of the applications of sparse 
solvers require solutions of systems with gradually changing values of the nonzero coefficient 
matrix, but the same identical sparsity pattern. In these applications, the analysis phase of the 
solvers has to be performed only once and the numerical factorizations are the important time-
consuming steps during the simulation. PARDISO uses a numerical factorization A = LU for the 
first system and applies the factors L and U for the next steps in a preconditioned Krylow-
Subspace iteration. If the iteration does not converge, the solver automatically switches back to 
the numerical factorization. This method can be applied to un-symmetric and structurally 
symmetric matrices in PARDISO. For symmetric matrices, Conjugate-Gradients method is 
applied. You can select the method using only one input parameter.  
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Separate Forward and Backward Substitution. 

The solver execution step can be divided into two or three separate substitutions: forward, 
backward, and possible diagonal. This separation can be explained by the examples of solving 
systems with different matrix types. 

A real symmetric positive definite matrix A  is factored by PARDISO as A = L*LT . In this case 
the solution of the system A*x=b can be found as a sequence of substitutions: L*y=b (forward 
substitution) andLT*x=y (backward substitution). 

A real unsymmetric matrix A is factored by PARDISO as A = L*U . In this case the solution of 
the system A*x=b can be found by the following sequence: L*y=b (forward substitution) and 
U*x=y (backward substitution). 

Note that different pivoting (1x1, 2x2...) produces different LDLT factorization. Therefore results 
of forward, diagonal and backward substitutions with diagonal pivoting can differ from results of 
the same steps with Bunch and Kaufman pivoting. Of course, the final results of sequential 
execution of forward, diagonal and backward substitution are equal to the results of the full 
solving step regardless of the pivoting used. 

Sparse Data Storage. 

Sparse data storage in PARDISO follows the scheme described above.  

4.2   Full Newton-Raphson Method 
Using the concept of incremental step by step analysis, we obtain the following set of nonlinear 
equations: 

 ( ) ( )p p q f p  K  (4.12) 

where: 

q  is the vector of total applied joint loads, 

( )f p is the vector of internal joint forces, 

p is the deformation increment due to loading increment, 

p are the deformations of the structure prior to load increment, 

 ( )pK is the stiffness matrix, relating loading increments to deformation increments. 

The R.H.S. of (4.12) represents out-of-balance forces during a load increment, i.e., the total load 
level after applying the loading increment minus internal forces at the end of the previous load 
step. Generally, the stiffness matrix is deformation dependent, i.e., a function of p , but this is 

usually neglected within a load increment in order to preserve linearity. In this case, the stiffness 
matrix is calculated based on the value of p  pertaining to the level prior to the load increment. 

The set of equations (4.12) is nonlinear because of the nonlinear properties of the internal forces: 

 ( ) ( )f kp kf p  (4.13) 

and nonlinearity in the stiffness matrix 

 ( ) ( )p p p  K K  (4.14) 

where k is an arbitrary constant. 
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The set of equations represents the mathematical description of structural behavior during one 
step of the solution. Re-writing equations (4.12) for the i-th iteration within a distinct loading 
increment we obtain: 

 1 1( ) ( )i i ip p q f p   K  (4.15) 

All the quantities for the (i-1)-th iteration have already been calculated during previous solution 
steps. Now we solve for 

i
p at load level q  using: 

 1i i ip p p    (4.16) 

As pointed out earlier, equation (4.15) is nonlinear, and therefore it is necessary to iterate until 
some convergence criterion is satisfied. The following possibilities are supported in ATENA 
( k marks k -th component of the specified vector):  
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 (4.17) 

The first one checks the norm of deformation changes during the last iteration whereas the 
second one checks the norm of the out-of-balance forces. The third one checks out-of-balance 
energy, and the fourth condition checks out-of-balanced forces in terms of maximum 
components (rather than Euclid norms). The values of the convergence limits   are set by 
default to 0.01 or can be changed by the input command SET. 

The concept of solving nonlinear equation set by Full Newton-Raphson method is depicted in 
Fig. 4-1: 
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Fig. 4-1 Full Newton-Raphson method. 

4.3 Modified Newton-Raphson Method 
The most time-consuming part of solution (4.15) is the re-calculation of the stiffness matrix 

1( )ip K  at each iteration. In many cases this is not necessary and we can use matrix 0( )pK  from 

the first iteration of the step. This is the basic idea of the so-called Modified Newton-Raphson 
method. It produces very significant time saving, but on the other hand, it also exhibits worse 
convergence of the solution procedure. 

The simplification adopted in the Modified Newton-Raphson method can be mathematically 
expressed by: 

 1 0( ) ( )ip pK K  (4.18) 

The modified Newton-Raphson method is shown in Fig. 4-2. Comparing Fig. 4-1 and Fig. 4-2 it 
is apparent that the Modified Newton-Raphson method converges more slowly than the original 
Full Newton-Raphson method. On the other hand, a single iteration costs less computing time, 
because it is necessary to assemble and eliminate the stiffness matrix only once. In practice, a 
careful balance of the two methods is usually adopted in order to produce the best performance 
for a particular case. Usually, it is recommended to start a solution with the original Newton-
Raphson method and later, i.e., near extreme points, switch to the modified procedure to avoid 
divergence.  

q
Loading

Loading increment

Deformationp0 p1 p2 p3 p4

 

Fig. 4-2 Modified Newton-Raphson method 
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4.4 Arc-Length Method 
Next to the Modified Newton-Raphson method, the most widely used method is the Arc-length 
method. This method was first employed about fifteen years ago to solve geometrically nonlinear 
structures. Because of its excellent performance, it is now quite well established for geometric 
nonlinearity and for material nonlinearity as well. Many workers have been interested in using 
and improving Arc-length procedures. In Atena, it can be used within CCStructures module, i.e. 
for static analysis. 

The main reason for the popularity of this method is its robustness and computational efficiency 
which assures good results even in cases where traditional Newton-Raphson methods fail. Using 
an Arc-length method stability problems such as snap back and snap through phenomena can be 
studied as well as materially nonlinear problems with non-smooth or discontinuous stress-strain 
diagrams. This is possible due to the changing load conditions during iterations within an 
increment. 

The main idea of this method is well explained by its name, arc-length. The primary task is to 
observe complete load-displacement relationship rather than applying a constant loading 
increment as it is in the Newton-Raphson method. Hence this method fixes not only the loading 
but also the displacement conditions at the end of a step. There are many ways of fixing these, 
but one of the most common is to establish the length of the loading vector and displacement 
changes within the step.  

From the mathematical point of view, it means that we must introduce an additional degree of 
freedom associated with the loading level (i.e., a problem has n displacement degrees of freedom 
and one for loading) and in addition, a constraint for the new unknown variable must be 
introduced. The new degree of freedom is usually named . There are many possibilities for 
defining constraints on  and those implemented in ATENA are briefly reviewed in the 
following sections.  

To derive the Arc-length method, we re-write the set of equations (4.12) in the form of (4.19), 
where  defines the new loading factor: 

 ( ) ( )p p q f p  K  (4.19) 

Now re-writing (4.19) in a form suitable for iterative solution: 

 1 1 1( ) ( )i i i ip p q f p q f       K  (4.20) 

 

 1 1 1 1i i i i i ip p p p           (4.21) 

  

 1 1 1i i i ip p         (4.22) 

 

 1 1i i i       (4.23) 

The notation is explained in Fig. 4-3. The matrix K  can be recomputed for every iteration 
(similar to the Full Newton-Raphson method) or it can be fixed based on the 1st iteration for all 
subsequent iterations (Modified Newton Raphson method). The vector q  does not mean in this 

case the total loading at the end of the step but only a reference loading "type". The actual 
loading level is a multiple of this. 
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The scalar   is an additional variable introduced by the Line-search method, which will be 
discussed later. The scalar   is used to accelerate solutions in cases of well-behaved load-
deformation relationships or to damp possible oscillations if some convergence problems arose, 
e.g., near bifurcation and extreme points. 
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Fig. 4-3 The Arc-length method 

Additional notation is defined as follows: 

Out-of-balance forces in i-th iteration: 

 1 1( ) ( )i i i i i i ig p g f q f q           (4.24) 

R.H.S vector in i-th iteration: 

 1 1 1i i i i iRHS q f q g         (4.25) 

Substituting (4.21) through (4.25) into (4.20), the deformation increment 1i   can be calculated 

from: 

 11 1 1ii i iRHS q g      K  (4.26) 

 Hence: 

 11 1ii i T        (4.27) 

where 
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                                                            (4.28) 

It remains only to set the additional constraint for 1i   and 1i  and the whole algorithm is 

defined. Thus compared to the Newton-Raphson methods in which we solve n dimensional 
nonlinear problem, the Arc-length method need to solve a (n + 2) dimensional problem, where 
the first n unknowns correspond to deformations and the last two are 1i   and 1i  . 
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If we set 1 1i   , then we deal with an (n + 1) dimensional problem that corresponds to the pure 

Arc-length method, otherwise, a combination of Arc-length and Line search must be employed. 
The Line search method is discussed later in this chapter. Note that all vectors including 1i  , 

T are of order (n + 1). Their (n + 1)-th coordinate corresponds to the loading dimension   and 
it is set to zero.  

Now, introduce two new vectors 1it and 1in  as shown in Fig. 4-4. There are defined by: 

 1 1 1( )i i i startt p          (4.29) 

 1 1 1i i in         (4.30) 

where: 

 is scalar that relates dimensions of  to size of deformation space, 

1i  is a (n + 1) dimensional vector with its firth n coordinates set to zero (deformation 

space) and its      (n + 1)-th coordinate equal to 1i  .  

start is a (n+1) dimensional vector similar to 1i  , however its (n + 1)-th coordinate equal 

to start . 

p

n1
n2 n3

t1 t2

t3



 

Fig. 4-4 The vectors it and in and scalar  . 

It is then obvious that    

 1 1i i nt t n    (4.31) 

Defining the residual R : 

 1 1 1i i iR t n    (4.32) 

equations (4.20) through (4.32) lead to the final expression for the unknown 1i   (noting that 

1 1 1 1 0T T
i i i ip p        ): 
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To obtain 1i   by (4.33) the residual 1iR   must be defined. In fact, it also defines the type of 

Arc-length constrain being used. The types supported in ATENA are described below. 

4.4.1 Normal Update Method 
Vector 1it   and 1in   are normals in this case, hence residual 1 0iR   , see Fig. 4.4-3. 
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Fig. 4.4-3 Normal update method. 

The main advantage of this method is its simplicity. The Normal update plane is relatively 
reliable, but it can fail if the l-p diagram suddenly changes its slope or turns back or down (snap 
back and snap through). Nevertheless, if these special conditions are treated by this method, then 
a very significant reduction in step length is unavoidable. 

4.4.2 Consistently Linearized Method 
The residual 1iR   is defined in this case by 

 1 1 1 1 1 1 1cos( ) ( )T
i i i i i i iR t n t n t t s            (4.34) 

The step length s  and angle  are depicted in Fig. 4.3-4. The norm of the vector 1it is 

calculated using (4.29): 
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1 1 1 1( )T
i i i i startt p p            (4.35) 
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Fig. 4.4-4  Consistently linearized method. 

Substituting (4.34) and (4.35) in (4.33) we obtain the final expression for 1i  . It should be 

noted that the scalar s  is set 'a priori' and governs the actual step length. Of course, the proper 
choice of this parameter is essential for the solution and therefore it will be discussed later in 
more detail. 

This method is especially suitable for solutions that embrace p   diagrams with sudden breaks 

and discontinuities, e.g. for materially nonlinear problems.   

4.4.3 Explicit Orthogonal Method 

The basic constraint for 1i   in this case is that 1i it t s   , where s is some distinct 'a priori' 

set step length. Similar to the previous method, we also have to evaluate the residual 1iR  : 

 1 1 1 1 1 1 1cos( )T
i i i i i i iR t n t n t r           (4.36) 

Based on the similar triangles (see Fig. 4.4-), the following can be derived: 
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 ' '
1 1i i it t n    (4.39) 

 
2 2 2' ' 2 2 2

1 1 1i i i it t           (4.40) 

The vector '
1it  is calculated using (4.35). By substituting the above equations into (4.33) the 

final expression for 1i   is obtained. 

From the above derivation, it is clear that in practice we at first employ Normal Update Method 
(Chapter 4.4.1) to solve for '

it  and '
1in   and thereafter, we correct the 1i   in order to satisfy 

the constraint 1i it t s   . 
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Fig. 4.4-5 Explicit orthogonal method. 

 This method is usually utilized to analyze geometrically nonlinear structures, particularly 
stability problems. Its main feature is robustness and compared with the "classical" Crisfield 
cylinder method (see below) it avoids the problem of the choice of the proper 1i  root (the 

condition 1i it t s    while expressing vector length analytically). As for convergence, the 

method is comparable to the method 4.4.3, but has the advantage that it preserves the step length. 

4.4.4 The Crisfield Method. 
The Crisfield method is derived directly from the constraint of constant step length 

1i it t s    The residual 1iR   is not used in this case and we substitute equations (4.20) 

through (4.31) straight into the above constraint. It leads to the following equation for 1i  : 

 2
1 1 2 1 3 0i ia a a        (4.41) 
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Equation (4.41) has generally two roots 1i   and hence we must decide which of them to use. 

There exist several strategies but ATENA chooses that root 1i  , for which 1cos( , ) 0i it t   (or 

higher of them), i.e., direction of new increment as close as possible to direction of the previous 
increment (within the same step). 
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4.4.5 Arc Length Step  
The proper step length is of essential importance for good execution performance. It directly 
influences the convergence radius on the one hand and the number of required steps on the other. 
ATENA uses the following procedure to set (or optimize) s : 

(1) Set loading vector q  and thus define a reference loading level (within one load 

increment). 

(2) Structural response to this load in the 1st execution step, the 1st iteration defines step 
length 1s  in the 1st step. In the subsequent steps, the step length is kept fixed or optimized 
(based on SET ATENA input command, subcommand 
&ARC_LENGTH_OPTIMISATION: 

 1
1

i
i i

n
s s

n


  (4.43) 
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where  

is  and 1is   is Arc length step length in the current and the previous load increment, 

respectively. 

 n  and 1in  is desired number of iterations and number of iterations in the previous step. 

n is typically 5-6. 

4.5 Line Search Method 
The objective of this method is to calculate the parameter   that was already introduced in the 
Chapter 4.4 Arc-Length Method The method can be used either independently or in combination 
with Arc length method. The primary reason for introducing a new parameter (i.e. a new degree 
of freedom to the set of equations) is to accelerate or to damp the speed of analysis of the load-
displacement relationship.  

The basic idea behind   is to minimize work of current out-of-balance forces on displacement 
increment.  

Let us assume that we have already solved already two points 0p  and 0 'p   p and thus we 

have also calculated out-of-balance forces 0( )g p  and 0( ' )g p   at these points. The aim of 

this method is to set the parameter   so that the work being done by out-of-balance forces at 

point 0p  is minimum. 

The work of out-of-balance forces is: 

 0( ) ( ) ( )
o

p
T

p
p p g p dp minimum     (4.46) 

Hence: 
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Interpolating linearly out-of-balance forces between points 0p  and 0 'p    
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  (4.48) 

and using : 

 
0p p
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 






 (4.49) 

The final expression for ' can be derived: 

 0

0 0

( )
'

( ) ( ' )

T

T T

g p

g p g p


 

   


 
 (4.50) 

Thus, the Line search method can be summarized: 

Use any method to calculate displacement increment  , (see Fig. 4-3 and (4.28)). The 
parameter '  can be set from the last load increment or simply to unity. 

Calculate out-of-balance forces for both 0( )g p  and 0( ' )g p   .  

Use (4.50) to calculate new value for  . 

As all the above equations are nonlinear, the parameter   must be solved by iterations until 

0

0

(

( )

g p

g p


  a specified energy drop, typically < 0.6 – 0.8 >. 

Practical experience suggests that the value of parameter   should be kept in interval < 0.1 – 5>. 

4.6 Parameter   
The parameter   scales the deformation space p to the loading dimension  . If 0  , the 

solution for 1i  is searched on an area of a cylindrical shape of radius equal to step length 

s (Crisfield method) and the axis normal to the p (deformation) space. The solution is the point 

of intersection of this area and the line, defined by the energy gradients of structure and by the 
applied load at point p . If 0  , the solution is carried out in the same way on ellipsoidal or 

spherical space. 

The higher value of  , the higher "weight factor" for changes in loading space compared to 
displacement increments.  

ATENA currently supports the following formulae for setting and optimization of   (for current 
step j ). They are reviewed below.  
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The first strategy requires the “load to displacement” increment ratio (4.51) is constant 
throughout all steps, (e.g., input value req ) 

 
( )

req
p

 
   


 (4.51) 

 Then, at the end step j-1 we can calculate 

 1 1
1

1( )
j j

j

j p

  





 


 (4.52) 

This value (due to nonlinearities) will not match req . Therefore, for step j we will modify j   

as follows: 
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 (4.53) 

The above optimization process is initialized in the first step by assuming that 

0 0 11, 1, ( )j Tp        , where T  is displacement corresponding to master Arc-length 

load increment defined earlier in this chapter.  Hence 
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 (4.54) 

The parameters j in all subsequent steps are calculated using (4.53). If the ratio of 

displacements changes ( )j p  to load changes ( )j in the last load step increase, then the 

equation (4.54)(4.55) increases  in the current step, thereby puts higher „weight factor“ on 
loads compared to displacements. Hence, the equation (4.54) tends to keep constant importance 
of loading space irrespective of displacements. Note that the equation (4.54) corresponds to 
BETA_FORCES_DISPLS_RATIO_CONSTANT. 

The second supported strategy is different. In ATENA, it is referred to as 
BETA_RATIO_CONSTANT method and it tries to keep constant   coefficients, whilst 
managing the coefficients  . Thus, it works in the opposite way as compared to the first strategy 
described above. 

From (4.52) we can write for steps (j-1) and j  
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Now requiring 1j j   we have 
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and if we assume 1
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If 
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 in subsequent steps changes, the procedure is trying to compensate for that by re-

adjusting the coefficients  . In other words, this strategy is trying to keep 
( )p






 constant, 

(i.e., the relative importance of load vs. displacement spaces).  

4.7 Band Width Optimization 
The way in which individual structural degrees of freedom (dofs) are mapped into the global 
structural matrices has a significant impact on their size and cost of the solution in terms of 
required CPU and RAM resources.  

Let us assume the 2D example of the 3 bars element from Fig. 4-5. The structure consists of 
three beam elements 1,2,3. It has four global nodes with three degrees of freedom in each of 
them, i.e., two displacements and one rotation. Suppose the structure is solved by a direct solver, 
i.e., we use half-band skyline storage scheme (4.4).  

By default, i.e., without any optimization, the structural degrees of freedom are allocated 
sequentially starting from the node 1 up to the last node n, i.e., 4. Hence, the jth degree of 
freedom at the node i  has number ( 1)ndof i j  , where ndof is number of dofs per node. 
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If the structural nodes are numbered as indicated, then the beam 1,2 and 3 have nodal incidences 
1-3,  3-4 and 4-2, respectively and the final stiffness matrix K has the pattern from the left-
bottom part of Fig. 4-5. Note that the matrix K must also store the entries depicted as circles 
without filling. Although they are initially zero, they may turn nonzero during the matrix 
decomposition needed to solve the problem, i.e., we must store the matrix with 69 entries and 
maximum half-band width 9. 

On the other hand, if nodal degrees of freedom are numbered as shown in the right-bottom part 
of Fig. 4-5, then the matrix K must store only 51 entries and has maximum half bandwidth only 
6.   

The two examples document, how important efficient numbering of the degrees of freedom of 
the structure is. If the structure (to be solved) is simple, then a suitable dofs' numbering can be 
done manually by appropriate numbering of the structural nodes. However, in the more complex 
cases (and in particular if a model of the structure is generated automatically), an optimal dofs 
mapping must be calculated. 

There are number of algorithms that deliver more or less efficient dofs mapping.  Probably the 
best established algorithm of that kind is Cuthill-McKee algorithm (Cuthill, McKee 1969). This 
is not due to its superior property, but due it has been developed as first. The algorithm produces 
an ordered n-tuple R of vertices which is the new order of the structural vertices. It numbers the 
vertices according to a particular breadth-first traversal, where neighboring vertices are visited in 
order from lowest to highest vertex order. 

The reverse Cuthill–McKee algorithm (RCM) is the alternative of the Cuthill-McKee algorithm, 
in which the vertices are visited in reverse order, i.e. form the highest to the lowest vertex.   

ATENA implements Gibbs and Sloan dofs optimization algorithms:  

   

http://en.wikipedia.org/wiki/Breadth-first_search�
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Fig. 4-5 Optimization of dofs numbering 

 

The Sloan algorithm (Sloan, Randolf (1983) 

In an effort to obtain an optimum elimination order, the algorithm first renumbers the nodes, and 
then uses this result to resequence the elements. This intermediate step is necessary because of 
the nature of the frontal solution procedure, which assembles variables on an element-by-
element basis but eliminates them node by node. To renumber the nodes, a modified version of 
the King’ algorithm is used. In order to minimize the number of nodal numbering schemes that 
need to be considered, the starting nodes are selected automatically by using some concepts from 
graph theory. Once the optimum numbering sequence has been ascertained, the elements are 
then reordered in an ascending sequence of their lowest-numbered nodes. This ensures that the 
new elimination order is preserved as closely as possible. For meshes that are composed of a 
single type of high-order element, it is only necessary to consider the vertex nodes in the 
renumbering process. This follows from the fact that mesh numberings which are optimal for 
low-order elements are also optimal for high-order elements. Significant economies in the 
reordering strategy may thus be achieved. 
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The Gibbs et. al. algorithm (Gibbs et. al. 1976)  

This algorithm typically produces bandwidth and profile, which are comparable to those of the 
commonly-used reverse Cuthill–McKee algorithm, yet it requires significantly less computation 
time.  Nevertheless, it delivers dofs mapping that is usually slightly less efficient than that by the 
Sloan algorithm and therefore, it is less preferred option the optimization. 

Note that the above algorithms optimize dofs numbering by reordering the structural nodes. They 
do not account for possible different number of dofs within a particular node. Note also that in 
order to minimize cost of the dofs remapping, the optimization is carried out before assembling 
the structural global matrices and vectors. Thus, they are assembled directly into their final, 
optimized location. 

Iterative solvers use data storage scheme (4.3). As the storage scheme stores only nonzero 
elements, the solution is less sensitive to a bad dofs mapping. For huge analyses it is nevertheless 
suggested to carry out a dofs mapping optimization, as it typically yields individual elements 
entries stored closer to each other with positive effect on solution convergence and RAM data 
management.  

A detailed description of the above algorithms is above scope of the publication. For more 
information the reader is suggested to study the given references. 
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5 CREEP AND SHRINKAGE ANALYSIS 
Creep and shrinkage are undoubtedly features that have a significant influence on concrete 
behaviour. Although creep and shrinkage analysis can be neglected in the design of most civil 
structures, there exist cases when these phenomena have to be accounted for. The Ref. (Bazant 
and Baweja 1999) provides a five levels classification of structures that can serve as simple 
guidelines for making a decision, when creep and shrinkage analysis is needed and when it is not 
needed. The recognized levels of structures are as follows:  

Level 1: Reinforced concrete beams, frames, and slabs with span under 20m and heights of up to 
30m, plain concrete footings, retaining walls. 

Level 2. Prestressed beams or slabs of spans up to 20m, high-rise building frames up to 100m 
high. 

Level 3. Medium-span box girder, cable-stayed or arch bridges with spans of up to 80m, 
ordinary tanks, silos, pavements. 

Level 4. Long-span prestressed box-girder, cable-stayed or arched bridges; large bridges built 
sequentially in stages by joining parts, large gravity, arch or buttress dams, cooling towers, large 
roof shells, very tall buildings. 

Level 5. Record span bridges, nuclear containments and vessels, large offshore structures, large 
cooling towers, record-span thin roof shells, record-span slender arch bridges.  

Full creep and shrinkage analysis is mandatory for the design of structures level 4 and 5 and it is 
recommended also for the level 3 structures.  

5.1 Implementation of Creep and Shrinkage Analysis in ATENA 
ATENA software provides a powerful method for creep and shrinkage analysis for most 
problems from engineering practice. It is based on the so-called cross-sectional approach, 
meaning that the analysis builds upon creep and shrinkage behavior of the whole cross-section 
rather than the behavior of individual material points only. The reason for choosing this method 
is that at this moment, there are available numerous models for predicting creep and shrinkage 
behavior of a concrete cross-section, whereas there is very low evidence about the same behavior 
at the material point level. The second reason is that its accuracy suffices for most analyses from 
engineering practice, and it is much less expansive in terms of computational cost.  

5.1.1 Basic Theoretical Assumptions 
The implemented creep and shrinkage analysis is based on the assumption of linear creep, which 
in other words means that the material compliance function ( , ')t t  and accompanying function 

for shrinkage 0 ( )t  depends only on material composition, temperature, shape, and time at 

observation t  and at loading 't . It does not depend on stress-strain conditions. In spite of the 
simplifications, the provided analysis is sufficiently accurate in most practical cases and it is fast 
and efficient. On the other hand, it is applicable only for structures, where the stress value does 
not exceed about 60% of the ultimate strength of concrete. For higher load levels, the material 
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nonlinearity becomes significant and a more elaborate solution has to be employed. The above 
simplification applies to time-dependent (i.e., long-term) material behavior only. For short-term 
behavior of the material, model retains its nonlinearity, i.e., it accounts for phenomena such as 
cracks, plasticity. 

 The creep and shrinkage analysis is based on the assumption of Stieltjes integral, which is 
written for the case of 1D analysis in the following form:   

 0

'
( ) ( , ') ( )

t

t
t t t d t

  



  

  (4.58) 

where: 

t = observation time, 

't = loading time, 

( )t =stress at the time t , 

0 ( )t = initial stress-independent strain such as concrete shrinkage, 

( , ')t t = compliance function of concrete. 

 

Fig. 5-1 Decomposition of stress history into stress steps (left) or impulses (right). 

The sense of Stieltjes integral is given in the above figure.  

Equation  (4.58) has to be modified for the case of 2 and 3D analyses for practical analyses. This 
is done below. It is important to note that (4.58) applies to any stress and strain history, and it is 
defined in incremental form. It means that at a particular time t  , stress at t t   depends only 

on the current material state at time t and stress increment at a time t t  , i.e. d
 



 


. 

The final form of the above equations reads:    
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t t d t

         
 

        
B

B  (4.59) 

where: 

( )t = is stress vector at a time t , (note the bar atop of a symbol indicates vector), 

0 ( )t = vector of initial strains, such as shrinkage, 

( ( )) B = matrix accounting for multiaxial stress-strain conditions, including all material 

short-term nonlinearities. 
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Notice the way the equation (4.59) is written. Long-term and short-term material behavior is 
separated. The former is encapsulated in the compliance function ( , ')t t , whereas the short-

term behavior is comprised in the matrix ( ( )) B . This assumption brings significant 

simplification of the creep and shrinkage analysis, and it is believed that for most practical 
analysis, the induced inaccuracy is acceptable. 

Substituting ' , 0t t t t     into (4.59)  and applying load increment  ( ') ( ')t t    (i.e., 

loading from the zero level) at a time 't , it can be derived  

 0( ' ) ( ' , ') ( ( ')) ( ') ( ' )t t t t t t t t t           B  (4.60) 

Comparison of (4.60) with similar equations for constitutive relations for short-term loading 
conditions, i.e. ' 't t t  , yields instantaneous secant material rigidity matrix: 

    1
( ') ( ( ')) ( ', ')t t t t D  = B  (4.61) 

The matrix ( ')tD  corresponds to the reciprocal value of the well-known secant Young modulus 

( ')E t  in the case of 1D stress-strain conditions. In the case of plane stress conditions, the matrix  

( ( )) B reads (4.62), etc. 
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 
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B =  (4.62) 

5.2 Approximation of Compliance Functions ( , ')t t  by Dirichlet 
Series. 

Ref. (Bazant and Spencer 1973) and others show that significant improvement of computational 
efficiency can be obtained if the original material compliance function ( , ')t t  is during the 

creep solution approximated by Dirichlet series '( , ')t t  as follows: 
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where : 

 = are so-called retardation times, 

n = number of approximation functions, i.e., this parameter is related to the input parameter 
number of retardation times. 

( ')E t = instant Young modulus at the time 't , 

( ')E t =coefficients for the approximation functions.  
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Fig. 5-2 Approximation of compliance (or retardation) function curve at age t' at loading by a sum of  
exponentials used as shape functions of Dirichlet series  

The effect of the use of Dirichlet series approximation is depicted in the above figure. A single 
approximation exponential is drawn in sub-figure (a), while the whole process of decomposition 
of compliance and retardation curves is depicted in the sub-figures (b), (c), respectively. 

The incorporation of the Dirichlet series '( , ')t t  brings the following benefits: 

- Creep analysis is independent of the material creep prediction model. 

- Time integration is exact; hence, fewer temporal increments are necessary.  

- Less demand of computer storage needed for storing data from the previous temporal 
steps of the analysis. It suffices to store data from the previous analysis step only, rather 
than the complete stresses-strain history of the analyzed structure.  

5.3 Step by Step Method 
Equation (4.59) (upon substitution (4.63) is solved numerically. The structure is discretized in 
space by the finite element method (described elsewhere in this document). As for time, the 
solution is carried out by the Step-by-step method (SBS) (Bazant 1988).  The structural behavior 
is analyzed in several time steps, i.e. in time increments, as it corresponds to (4.59). After some 
mathematical manipulations (Jendele and Phillips 1992), the final solution equations read: 

    1
1/ 2 -1/ 2 (r rr r rE  
   B - )  (4.64) 

 1( )r r r rt        (4.65) 

 1( )r r r rt        (4.66) 

   ,
1/ 2 11/ 2 , 1/ 2

1 1 1
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r
r r rE EE


 


  

    (4.67) 
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 1( )r r r rt        (4.70) 
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In the above the following notation is used: 

r  = identification of temporal increments,  1..r N , where N is number of time 

increments for the analysis, 

1r r rt t t    = time increment, 

1r r r      = stress increment in time rt , 

* *( )r rt   =internal variables at time  rt , 

0 0

( )r rt  = shrinkage at time rt , 

 1/ 2 1

1
( ) ( )

2r r rE E t E t   = constant average secant Young modulus at time incremenent 

rt , 

   
11/ 2 1

1 1
( ) ( )

2 2 r rr r rE E t E t E E           = constant average value of Dirichlet 

coefficient E  at  rt , 

 1/ 2 1

1
( ) ( )

2r r rt t  B B B = average value of the matrix B  at rt . 

Equation (4.64) thru (4.71) defines all necessary relations to complete the creep and shrinkage 
analysis in ATENA. Of course, they are supplemented by relations used by the short-term 
material constitutive model, i.e., equations for calculating the matrix B.  

At each time increment, a typical short-term alike analysis is carried. The difference between the 
short-term analysis and the described analysis of one step of the creep and shrinkage is that the 

latter one uses especially adjusted Young modulus  1/ 2rE   and initial strain increments 
r  to 

account for creep and shrinkage. After each step, these have to be updated. It involves mainly 

update of  
r

 and  
r . With these values, a new  1/ 2rE   is calculated and the next temporal 

analysis step is carried out.      

5.4 Integration and Retardation Times 
Appropriate selection of retardation and integration times is of crucial importance for accurate 
and efficient creep and shrinkage analysis. The choice of retardation times has a direct impact on 
the accuracy of approximation of an original compliance function by Dirichlet series, see 
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Equation (4.63) and Fig. 5-2, whilst the choice of integration times affects the accuracy of the 
approximation of loading function of the structure, see Equation (4.58) and Fig. 5-1. If the 
number of times is too low, some important features of concrete behavior can be disregarded. 
The opposite extreme, i.e., using too many retardation or integration times results in worthless 
lengthy solution of  the problem.   

The ATENA software respects recommendation in (Bazant and Whittman 1982).  Retardation 
times are spread uniformly in log( )t  space and they are automatically calculated as follows: 
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 

 (4.72) 

In the above m  is the number of retardation times per log( )t  unit, 1m  .  By default, this 

constant is in ATENA set to 1. If required, a more detailed approximation is possible, i.e., any 
value 1m   can be used. In the program, this parameter is input as a number of retardation times 
per time unit in logarithmic scale. For a typical concrete creep law, a certain optimal value can 
be determined, and it is independent of a structure being analyzed. Note, however, that the value 
depends on the choice of time units. 

Example: If the retardation times parameter is set to 2, the creep law will be approximated by 
two approximation points for the time interval between 0 - 1 day, two points for the interval 1 - 
10 days, then two points for 10 - 100 days, etc. 

Therefore, the proper values will depend on the choice of time units. If the time unit is a day, the 
recommended value is 1 - 2. 

 Start time 1  must be chosen sufficiently low, so that Dirichlet series can account for processes 

in very young concrete right after its loading has been applied. As a default, ATENA uses the 

expression 1 0.1 't  .  

As for the upper limit for   , it is required: 

 
2n

t   (4.73) 

The above limits are applicable for the case when the coefficients ( ')E t  of the Dirichlet series 

in (4.63) are calculated by the Least-square method (Jendele and Phillips 1992). 

ATENA also supports an alternative way of calculation of the coefficients ( ')E t  of the Dirichlet 

series in (4.63). In this case, Inverse Laplace transformation (Bazant and Xi 1995) is used 

instead. This method requires 1 0  , typically 1E-3 and  

 n t   (4.74) 

Comparing the above two approaches, it can be said that the Least-square method yields 
approximation of the compliance function at discrete times, whereby Inverse transformation is 
based on continuous approach. In some cases, the Least-square method results in better 
convergence behavior; however it sometimes suffers from numerical problems during 
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calculation due to an ill-posed problem for solution of ( ')E t . It is left to experience and 

engineering judgment to decide, which of the method is more appropriate for a particular 
solution. 

Integration times or sample times rt  are calculated in a similar way. In this case, the times are 

uniformly spread in log( ')t t  time scale. They are generated starting from the 1st loading time 

't . Hence, we can write  

  
1

110 , '
r i

l
r i i i it t t t t t

 

     (4.75) 

where  2l  is the number of time increments per unit of log( ')t t  and 1 ' 0.1 0.1i it t t     

days. Each new major load increment or decrement causes the generation procedure (4.75) must 
start again from small time increments. This parameter defines the number of time steps that the 
program will use to integrate the structural behavior. Creep or other nonlinear effects will cause 
a redistribution of stresses inside the structure. In order to properly capture such processes, a 
sufficiently small time steps are needed. Its definition depends on the type of the analyzed 
structure as well as on the choice of time units. For typical reinforced concrete structures and for 
the time unit being a day,  it is recommended to set this parameter to 2. This will mean that for 
each load interval longer then 1 day, two sub-steps will be added. For a load that is interval 
longer than 10 days, 4 sub-steps will be added. For an interval longer than 100 days, it will be 6 
sub-steps, etc. 

The creep and shrinkage analysis in ATENA requires that the user set number of retardation 
times m  and the number of time increments l  per unit of log time, (unless the default values are 

OK). He/she also specifies time span, i.e., 1  and n . Then, retardation times are generated, i.e., 

an appropriate command is issued. It follows to set stop time of the analysis.  Usual input data 
describing structural shape, material etc. are given thereafter; however, there are three important 
differences from the time-independent analysis: 

1. Material model for concrete contains data for long‐term as well as for short‐term material 

model. 

2. Step data must include information about the time at which the step is applied. 

3. It is recommended to input data for all intended load time steps prior to the steps are executed. 

It helps the generation of integration (intermediate) times 

Intermediate time steps, i.e., times rt  as well retardation times are generated automatically. The 

analysis proceeds until the stop time is reached. If no stop time is specified, it is assumed to be 
the time of the last load step.  If the time span for retardation times does not cover step load 
times, the solution is aborted, giving an appropriate error message. 

5.5 Creep and Shrinkage Constitutive Model 
In the above sections, it was silently assumed that the long-term part of the material model, i.e., 

compliance function ( , ')t t  and shrinkage function 0
r  for concrete, is known and it was shown 

how it is utilized within creep and shrinkage analysis. It is the primary intention of this section to 
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describe what long-term creep and shrinkage prediction models are implemented in ATENA and 
how they should be used.  

Generally speaking, ATENA applies no restriction on the kind and shape of both ( , ')t t  and 
0

r , as it adopts the SBS method solution algorithm, in which compliance function is 

approximated by Dirichlet series. Hence, the most widely recognized creep prediction models 
could be implemented.  

The CCStructureCreep module currently supports the following models:  

1.  CCModelACI78 (ACI_Committee_209 1978), recommended by ACI, 

2.  CCModelCEB_FIP78 (Beton 1984), recommended by CEB committee, by now already 
obsolete, 

3.  CCModelB3 (Bazant and Baweja 1999), developed by Bazant and Al Manaseer in 1996,  
very efficient model recognized world-wide, 

4.  CCModelB3Improved, same as the above, improved to account for temperature history, 
probably the best model available in ATENA, 

5.  CCModelCSN731202, model developed by CSN 731202 Code of practice in Czech 
Republic, 

6.  CCModelBP1_DATA (Bazant and Panula 1978; Bazant and Panula 1978; Bazant and 
Panula 1978; Bazant and Panula 1978),  relatively efficient and complex model; now it is 
superseded by CCModelBP_KX or CCModelB3, 

7.  CCModelBP2_DATA (Bazant and Panula 1978), simplified version of the above model, 

8.  CCModelBP_KX (Bazant and Kim 1991; Bazant and Kim 1991; Bazant and Kim 1991; 
Bazant and Kim 1991), a powerful model with accounts for humidity and temperature 
history etc., for practical use it may-be too advanced,   

9.  CCModelGeneral general model into which experimentally obtained ( , ')t t  and 0
r  

function can be input.  

10. CCModelEN1992- Eurocode model for creep, (EN1992), 

11. CCModelFIB_MC2010- creep model based on CEB-FIP FIB Model Code 2010. 

 

The following data summarized input parameters for the supported models.  Note that some 
models allow improved prediction based on laboratory data. If it is the case, the model input the 
corresponding experimentally measured values. Also, some models can account for material 
point history of humidity ( )h t  and temperature ( )T t . Again, a model supports this feature if it 

can input adequate data. 
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Table 5.5-1 :  List of material parameters for creep and shrinkage prediction – definition and 
description 

Parameter name Description Units Default 

Concrete. type Type of concrete according to ACI. Type 1 
is Portland cement etc. Types 1,3 accepted 
for static analysis, types 1-4 accepted for 

transport analysis. 

 1 

Cement class Type of cement, see e.g. 
http://www.cis.org.rs/en/cms/about-
cement/standardization-of-cement :  

Strength classes of cement 

Cements are according to standard strength 
grouped into three classes, they being:  
 • Class 32,5 
 • Class 42,5 
 • Class 52,5  

Three classes of early strength are defined 
for each class of standard strength: 
 • Class with ordinary early strength – 
N 
 • Class with high early strength – R  
 • Class with low early strength – L  
Class L can be applied only on CEM III 
cements. 

 42,5 

Aggregate Type of aggregate. One of 
BASALTDENSELIMESTONE, 
QUARTZITE, LIMESTONE, 
SANDSTONE , 
LIGHTWEIGHTSANDSTONE 

 QUART
ZITE 

Thickness /V S  Cross section thickness defined as ration of 
section's volume to surface 

length 0.0767m

Strength 28cylf  Material cylindrical strength in compression 
at time 28 days 

stress 35.1MPa

Strength 0,28cylf  Strength at onset of nonlinear behaviour in 
compression at time 28 days 

stress Constant 
from the 

base 
material 
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Fracture energy ,28fG  Fracture energy at time 28 days stress Constant 
from the 

base 
material 

Strength 28tf  Material tensile strength at time 28 days stress Constant 
from the 

base 
material 

Young m. 28E  Short-term material Young modulus at 28 
days, i.e. inverse compliance at 28.01 days 

loaded at 28 days 

stress 
28( )cylF f

Ambient humid. h Ambient relative humidity. Accepted range 
(0.4..1). 

 0.78 

Ratio ca  Total aggregate/cement weight ratio.   7.04 

Ratio cw  Water/cement weight ratio.  0.63 

Ratio sa  Total aggregate/find sand weight ratio. 
1

s aa s  . 

 2.8 

Ratio as  Fine/total aggregate weight ratio. 1
a ss a    0.4 

Ratio sg  Coarse gravel/fine aggregate weight ratio. 

 

 1.3 

Ratio cs  Fine aggregate/cement weight ratio.  1.8 

Shape factor Cross section shape factor. It should be 1, 
1.15, 1.25, 1.3, 1.55 for slab, cylinder, 
square prism, sphere, cube, respectively. 

 1.25 

Slump Result of material slump test. length 0.1 m 

Air content Material volumetric air content.  % 5 

Cement mass Weight of cement per volume of concrete mass/ 

length3 

320kg/ 

m3 

Concr. density Material density used to evaluate strength 
and Young modulus at 28 days.. 

mass/ 

length3 

2125kg/ 

m3 

Curing type Curing conditions. It can be either in water 
(i.e. WATER) or air under normal 
temperature (i.e. WATER) or steamed 
curing (i.e. STEAM). 

 AIR 
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Thermal expansion 

coefficient T  
Thermal expansion coefficient T  1/temp

erature 
Constant 
from he 

base 
material 

End of curing Time at beginning of drying, i.e. end of 
curing. 

days 7 

,a   Autogenous shrinkage at infinity time, 
(typically negative!) 

, ,(0.99 min(0.99, ) tanh s
a a a

a

t t
h 

 

 
   

 
 

- 0 

a  Half-time of autogenous shrinkage. days 30 

st  Time of final set of cement days 5 

,ah   Final self-desiccation relatibe humidity - 0.8 

Current time t Current time days 0 

I/
D

 

Load time t' Load time days 0 

Tot.water loss w Total water loss (up to zero humidity and 
infinite time). It is measured in an oven in a 

laboratory and it is used to enhance 

prediction of shrinkage infinite 2sht   

(Bazant and Baweja 1999). This value is in 
turn used to elaborate drying creep and 

shrinkage prediction of the model.  If it is 
not specified, the model prediction 

enhancement is not activated. It can be used, 
if  water loss w(t) are input as well.  

kg N/A 

Water loss w(t) Water losses at time t; measured at a 
laboratory. It is used to enhance 

drying creep and shrinkage 
prediction. See also description of 

total water loss w. 

kg N/A 

Shrink. 0 ( )t  Measured shrinkage at time t. It is used to 
enhance drying creep and shrinkage 

prediction. See also description of total 
water loss w. 

 N/A 

Im
pr

ov
em

. 

Compl. ( , ')t t  Measured material compliance at time t. It is 
used to improve overall creep and shrinkage 

prediction of the model. 

1 

/stress 

N/A 
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Humidity ( )h t  History of humidity in a material point. 
Value at time t.  Some material models can 

use these values to account for real temporal 
humidity and temperature conditions.  

Although the data can be input manually, 
i.e. to group material points with similar 
humidity and temperature history into a 

group and dedicate a distinct material for 
that group, it is prepared for full automatic 
processing being currently in development. 
It will automatically link heat and humidity 

transport analysis with the static analysis 
using one of available creep and shrinkage 

prediction model. Applicable range (0.4..1).  

 N/A 
H

is
t. 

Temperat. ( )T t  History of temperature in a material point. 
See also description of  ( )h t  

Celsia  

Compl. ( , ')t t  Measured compliance at time t loaded at 
time t'. This and the next two parameters 

should be used, if known (measured) 
compliance functions are to be employed 
in ATENA creep and shrinkage analysis. 

Hence, no prediction is done and the given 
data are only used to calculate the 

parameters of Dirichlet series 
approximation. 

1/ 

stress 

 

Shrink. 0 ( )t  Measured shrinkage at time t . See the 
parameter above. 

 N/A 

D
ir

ec
t 

Strength ( )cylf t Measured shrinkage at time t . See the 
parameter above 
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Table 5.5-2: Input parameters needed by individual creep and shrinkage prediction models  

Model name B3 
 

B3-
impr 

BP-
KX 

CEB ACI CSN BP1 BP2 Gen
eral 

EN 
1992

MC
2010

Model No. 3 4 8 2 1 5 6 7 9 10 11 

Concrete. Type x x x  x x x x    

Cement class          x x 

Aggregate          x x 

Thickness 
/S V  

x x x x x x x x  x x 

Strength 28cylf  x x x x x x x x  x x 

Strength 

0,28cylf  

 x        x x 

Fracture 

energy ,28fG  

 x        x x 

Strength 28tf   x        x x 

Young m. 28E  x x x x  x    x x 

Ambient  
humid. h 

x x x x x x x x  x x 

Ratio ca  x x x  x  x x    

Ratio cw  x x x  x  x x    

Ratio sa             

Ratio as        x x    

Ratio sg        x x    

Ratio cs        x x    

Shape factor x x x    x x    

Slump     x       

Air content     x       

Cement mass       x     

Concr. density x x x  x     x x 
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Curing type x x x  x  x x    

End of curing x x x x x x x x  x x 

Thermal 
expansion 

coefficient T  

 x        x x 

,a    x          

a   x          

st   x          

,ah    x          

Current 
time t 

x x x x x x x x x xx x 

I/
D

Load time t’ x x x x x x x x x xx x 

Tot.water loss 
w 

x x   x       

Water loss 
w(t) 

x x          

Shrink. 
0 ( )t  

x x x x x x x x  xx x 

I

Compl. 
( , ')t t  

x x x         

Humidity 
( )h t  

 x x   x    xx x 

H
i

Temperat. 
( )T t  

 x x   x    xx x 

Compl. 
( , ')t t  

        x   

Shrink. 
0 ( )t  

        x   

D
i

Strength 

( )cylf t  

        x   

The above parameter "Concrete type" actually referes to a cement type according to the ACI 
classification. It used in the creep analysis. The following table brings description of widely 
recognized cement types. Note that only types 1,3 are supported in Atena static analysis. The 



ATENA Theory  255 

transport analysis in Atena recognizes types 1-4. The remaining types are described just for 
information. 

Table 5.5-3: Cement types according to ACI classification 

ATENA 

Concrete 
type 

Cement type Description 

1 I and Type IA6 
General purpose cements suitable for all uses where the 

special properties of other types are not required. 

2 II and Type IIA6 

Type II cements contain no more than 8% tricalcium 
aluminate (C3A) for moderate sulfate resistance. Some 
Type II cements meet the moderate heat of hydration 

option of ASTM C 150. 

3 III and Type IIIA6 
Chemically and physically similar to Type I cements 
except they are ground finer to produce higher early 

strengths. 

4 IV 

Used in massive concrete structures where the rate and 
amount of heat generated from hydration must be 

minimized. It develops strength slower than other cement 
types. 

5 V 
Contains no more than 5% C3A for high sulfate 

resistance. 

6 IS (X)7 Portland blast furnace slag cement 

7 IP (X)7 Portland-pozzolan cement. 

8 
GU8  

 
General use 

9 HE8 High early strength 

10 MS8 Moderate sulfate resistance 

11 HS8 High sulfate resistance 

12 MH8 Moderate heat of hydration 

                                                 
6 Air-entraining cements 
7 Blended hydraulic cements produced by intimately and uniformly intergrinding or blending two or more types of 
fine materials. The primary materials are portland cement, ground granulated blast furnace slag, fly ash, silica fume, 
calcined clay, other pozzolans, hydrated lime, and pre-blended combinations of these materials. The letter “X” 
stands for the percentage of supplementary cementitious material included in the blended cement. Type IS(X), can 
include up to 95% ground granulated blast-furnace slag. Type IP(X) can include up to 40% pozzolans. 
8 All portland and blended cements are hydraulic cements. "Hydraulic cement" is merely a broader term. ASTM C 
1157, Performance Specification for Hydraulic Cements, is a performance specification that includes portland 
cement, modified portland cement, and blended cements. ASTM C 1157 recognizes six types of hydraulic cements. 
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13 LH8 low heat of hydration 
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6 DURABILITY ANALYSIS9 
The durability analysis in ATENA can currently assess the deterioration of structures due to 
carbonation and chlorides ingress. It is available for static and creep analyses. At each time step, 
an appropriate 1D transport analysis is carried out to investigate how far the pollution (i.e., 
carbonation and/or chlorides) penetrate from loaded surfaces inside the structure.  The main 
results of the analyses are induction times, i.e., times at which the pollution concentration 
reaches critical values that are already for the structure unacceptable (e.g., the reinforcement 

corrosion begins etc.).  They are always given with respect to time 0 0t  . In addition, pollution 

concentration at times (corresponding to the individual steps) is also computed.  

Note that static analysis in ATENA typically does not care about time (or more precisely, each 
analysis step increments the structural age by unit time). At each step, it yields a sort of artificial 
age of the structure. Hence, if the durability analysis is carried out, this artificial age must be 
somehow mapped onto real structural age. It is done in ATENA with the help of a multilinear 
function. Such a function corresponds to loading functions used to define variable BCs and it is 
input in exactly the same way. 

The following text describes the theory behind the 1D transport analysis of the carbonation and 
chlorides pollution, and, in the end, some information regarding the transport parameters is 
given. 

The service life of a structure tl usually has the form of 

 l c i p rt t t t t      (4.76) 

where tc is the construction phase, ti initiation (induction) period, tp propagation period, and tr 
post-repair period.  

We aim at predicting the initiation period without going into propagation or post-repair phases. 
Carbonation and chloride ingress are two leading mechanisms contributing to reinforcement 
corrosion. Both of them are described further. The initiation phase ends with the beginning of 
reinforcement corrosion. Fig. 6-1 brings a more detailed description of initiation and propagation 
phases and their relationship to concrete events. Prediction of the initiation period represents a 
preventive measure that is affected above all by concrete cover thickness, concrete composition, 
and environment. It makes sense to change the design at the beginning rather than mitigating 
reinforcement corrosion later. Acceleration of carbonation and chloride ingress on crack 
appearance is taken into account. 

 

 

 

                                                 
9 Not available in ATENA version 5.1 and older. Development/testing implementation of CARBONATION, 
CHLORIDES, and ASR in version 5.3. 
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Fig. 6-1 Important events in service life (III 2000). 

6.1 Carbonation 
Carbonation depth of a sound (uncracked) concrete reads (Papadakis and Tsimas 2002) 
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  (4.77) 

where xc is the carbonation depth, De,CO2 is the effective diffusivity for CO2, C is the Portland 

cement content in kgm-3, k<0.3,1.0> is the efficiency factor of supplementary cementitious 
material (SCM-slag, silica, fly ash), P is the amount of SCM in kgm-3, CO2 is the volume 
fraction of CO2 in the atmosphere taken as 3.6e-4 and t is the time of exposure. The effective 
diffusivity in m2s-1 is given by the empirical equation (Papadakis and Tsimas 2002) 
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  (4.78) 

where W is the water content in concrete in kgm-3, c is the cement density in kgm-3 assumed as 
3150 kgm-3 and RH is the relative humidity of ambient air. Eqs. (4.77)(4.78) allow predicting 
either carbonation depth or induction time of uncracked concrete. Relative humidity must be 
higher than 0.50 for carbonation to proceed. 

Cracked concrete leads to faster carbonation. This acceleration is given in the form (Kwon and 
Na 2011) 

 1( ) (2.816 1)cx t w A t    (4.79) 

where w is the crack width in mm, A1 is the carbonation velocity according to Eq.(4.77).  
Eq. (4.79) allows computing carbonation depth and induction time. Note that crack 0.3 mm 
increases carbonation depth by a factor of 2.54. This also means that induction time is 6.46 times 
shorter compared to a sound concrete. 
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In reality, cracks may grow during any service time. Thus, Eq. (4.79) needs to be recast to 

incremental form. An increment of carbonation depth in a given time step t is evaluated from 
the total derivative by differentiating Eq. (4.79) 
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where wi+1 is the crack width at the end of the time step, ti+0.5 is the mid-time. It is assumed that 

nonzero w at a frozen time t has no effect on carbonation depth; thus the term w can be left 
out. Eq. (4.80) allows predicting either carbonation depth or induction time of gradually cracking 
concrete. 

6.1.1 Example of Carbonation 
Let us consider first a regular concrete made from ordinary Portland cement, w/b=0.45, C=400 
kgm-3, W=202.5 kgm-3, P=50 kgm-3. The supplementary cementitious material is fly ash with 
almost zero calcium content hence k=0.5. Concrete is exposed to relative humidity 0.60. 
Consider a concrete cover of 30 mm. A crack is always introduced at the beginning of the 
exposure. 

The second concrete is made from ordinary Portland cement, w/b=0.45, C=200 kgm-3, 
W=90 kgm-3, P=0 kgm-3. Table 6.1-1 compares both concretes in terms of induction time. 

Crack width 
(mm) 

Induction time for concrete 
w/b=0.45, C=400 kgm-3, 
P=50 kgm-3 (years) 

Induction time for concrete 
w/b=0.45, C=200 kgm-3, P=0 kgm-3 
(years) 

0 246 157 

0.1 69.9 44.5 

0.2 49.2 31.4 

0.3 39.1 24.9 

Table 6.1-1. Induction time for carbonation, two concretes, cover thickness 30 mm. 

6.2 Chlorides 
Implemented model for chloride ingress is based on (Kwon, Na et al. 2009). Let us consider 1D 
transient problem of chloride ingress in concrete with initially free chloride content 

  
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  (4.81) 

where CS is the chloride content at surface in kgm-3, Dm is the averaged diffusion coefficient at 
time t in mm2 s-1, x is the position from the surface in mm, and f(w) gives acceleration by 
cracking and equals to one for a crack-free concrete. Cs and C can be related to concrete volume 
or to binder volume; however, the units must be kept consistently through the computation. 

The diffusion coefficient D(t) is assumed to decrease over time t according to the power-law 
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where m is a decay rate (sometimes called an age factor). If m=0, a constant value of D(t)=Dref is 
recovered. This model was proposed by (Collepardi, Marcialis, et al. 1972). Nowadays, it 
became clear that this assumption is too conservative and is not generally recommended. The 
mean diffusion coefficient Dm is obtained by averaging D(t) over time of interest 
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where tR is the time when diffusion coefficient is assumed to be constant and is generally taken 
as 30 years. tref corresponds to the time when the diffusion coefficient was measured. Fig. 6-2 
shows the characteristic evolution of diffusion coefficients over time. 

The mean diffusion coefficient increases when cracks are present in the concrete. Based on 
recent results, the following scaling function is proposed (Kwon, Na et al. 2009) 

 2( ) 31.61 4.73 1f w w w     (4.85) 

where w stands for crack width in mm. The crack width 0.3 mm increases the mean diffusion 
coefficient by a factor of 5.26. In reality, crack width evolves, and incremental solution needs to 
be formulated. The mean coefficient Dm,w(t) incorporating crack width is evaluated from a crack 
increment 
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 (4.86) 

If last values of f(w) and w are stored, Eq. (4.86) can be evaluated only in the actual time step. 
This speeds up the solution. 
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Fig. 6-2. Evolution of actual and mean diffusion coefficients for standard concrete, based on data 
from (Kwon, Na et al. 2009). 

6.3 Diffusion coefficient for chlorides 
Proper determination of diffusion coefficient is not a trivial subject, considering various 
concretes, cement types, models, and exposure conditions. (Papadakis 2000) presented a model 
for estimating intrinsic effective diffusivity for concretes made from blended cements; however, 
recalculation to Da is not straightforward. DuraCrete model (III 2000) provides useful data for 
estimating apparent diffusion coefficient in the form 

   0
0t ( )

m

a e c Cl Da

t
D k k D t

t
   

 
  (4.87) 

where ke<0.27,3.88> is the environment factor, kc<0.79,2.08> is the curing factor, Dcl(t0) is 

the measured diffusion coefficient determined at time t0, m<0.2,0.93> is the age factor and 

Da<1.25,3.25> is the partial factor. In our notation, Da(t)=Dm(t) and t0=tref. 

To our opinion, the most relevant and well-documented field data come from 10 years exposure 
tests (Luping, Tang et al. 2007). Fig. 6-3 shows the apparent diffusion coefficient in dependence 
of water-binder ratio. In this particular case, tref=10 years, m is unknown, Dref=(1-m)Da, tR can be 
assumed as 30 years. 
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Fig. 6-3. Fitted apparent diffusion coefficients from 10-years exposure of concrete (Luping, Tang et 
al. 2007). 

The next figure shows the apparent diffusivity coefficient at 10 years from Fig. 6-3. They can be 
used as a starting point for estimating Dref. 
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Fig. 6-4. Apparent diffusion coefficients from 10-years exposure of concrete (Luping, Tang et al. 
2007). 

 

 

3.2. Example of chloride ingress 

Let us consider regular concrete made from ordinary Portland cement, w/b=0.45. According to 
Fig. 6-3, Da is about 2e-12 m2s-1 at tref=10 years. According to the Duracrete model, the age 
factor for concrete submerged in salt water corresponds to m=0.30 (Table 8.6 in DuraCrete). In 
such case, Dref=(1-m)Da=1.4e-12 m2s-1. Fig. 6-5 shows the evolution of diffusion coefficients for 
this particular case. 
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Fig. 6-5. Evolution of diffusion coefficients for chlorides in an example. 

 

Let us assume characteristic value Cs 10.3% of chlorides per binder for submerged concrete 
without further reductions (Table 8.5 in DuraCrete). The critical level for corrosion is 1.85 % per 
binder (Table 8.7 in DuraCrete). The concrete cover is taken as 100 mm. Computed induction 
time according to Eq. (4.81) is summarized in Table 6.3-1. Crack width is considered since the 
beginning of the exposure. 

 

Table 6.3-1 Induction time for chloride corrosion of submerged concrete, in dependence on original 
crack width. 

Crack width 
(mm) 

Induction time (years) 

0 74.58 

0.1 36.02 

0.2 15.70 

0.3 7.76 

6.4 MODELS for PROPAGATION PHASE 

6.4.1 Carbonation during propagation phase 
 

The corrosion rate for the carbonation depends on the corrosion current density icorr [µA/cm2], 
which ranges between 0.1-10 (passive corrosion-high corrosion) and depends on the quality and 
the relative humidity of the concrete (Page CL, 1992). This model predicts the amount of 
corroded steel during the whole propagation period tp. The corrosion rate is based on Faraday's 
law (Rodriguez, 1996), determined as follows: 

  corr corr ( ) 0.0116  x t i t  (4.88) 
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where corrx is the average corrosion rate in the radial direction [m/year], icorr is corrosion current 

density [µA/cm2], and t is the calculated time after the end of the induction period [years]. 

By integration of Eq. (1), it is obtained the corroded depth for 1D propagation: 

  corr corr corr( ) 0.0116  d
ini

t

t

x t i t R t   (4.89) 

where xcorr is the total amount of corroded steel in radial direction [mm] and Rcorr is parameter, 
depends on the type of corrosion [-]. For uniform corrosion (carbonation) Rcorr = 1, for pitting 
corrosion (chlorides) Rcorr = <2; 4> according to (Gonzales at.al., 1995) or Rcorr = <4; 5.5> 
according to ( Darmawan &, 2007). 

Effective bar diameter for both types of corrosion is obtained from: 

   2 ( ) ini corrd t d x t   (4.90) 

where d(t) is the evolution of bar diameter in time t, d ini is initial bar diameter [mm], ψ is 
uncertainty factor of the model [-], mean value ψ = 1 and xcorr is the total amount of corroded 
steel according to (2). 

6.4.2 Chloride ingress during propagation phase 
 

The corrosion rate for chlorides is more complicated because it is affected by the concentration 
of chlorides in the concrete. Calculation of corrosion current density was formulated by Liu and 
Weyer's model (Liu, Weyers, 1998): 

   0.2153006
0.926*exp 7.98 0.7771ln 1.69 0.000116 2.24corr t Ci C R t

T
       

 (4.91) 

where icorr is corrosion current density [µA/cm2], Ct is total chloride content [kg/m3 of concrete] 
on reinforcement which is determined from 1D nonstationary transport, T is temperature at the 
depth of reinforcement [K] and Rc is ohmic resistance of the cover concrete [Ω] (Liu, 1996) and t 
is time after initiation [years]: 

  exp 8.03 0.549ln 1 1.69C tR C        (4.92) 

The average corrosion rate in radial direction is determined further when plugging(4.93),(4.94) 
to (1). The total amount of corroded steel in radial direction stems from (2) and the effective bar 
diameter from (3). 

6.4.3 Cracking of concrete cover 
 
The cracking of concrete cover for both carbonation and chlorides can be estimated from 
DuraCrete model, which provides realistic results (DuraCrete, 2000). The critical penetration 
depth of corroded steel xcorr,cr is formulated as: 

 , 1 2 3 ,corr cr t ch
ini

C
x a a a f

d
    (4.95) 
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where parameter a1 is equal 7.44e-5 [m], parameter a2 is equal 7.30e-6 [m], a3 is 
[-1.74e-5 m/MPa], C is cover thickness of concrete [m], dini initial bar diameter [m], ft,ch is 
characteristic splitting tensile strength of concrete [MPa]. 

6.4.4 Spalling of concrete cover 
 
The  critical  penetration  depth  of  corroded  steel  xcorr,sp  for  both  carbonation  and  chlorides  is 

calculated from (DueaCrete, 2000) as: 

 0
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d

corr sp corr cr

w w
x x

b


   (4.96) 

where parameter b depends on the position of the bar (for top reinforcement 8.6 µm/µm and 
bottom 10.4 µm/ µm), wd is critical crack width for spalling (characteristic value 1 mm), w0 is 
the width of initial crack (known from previous ATENA computation) and xcorr,cr depth of 
corroded steel at the time of cracking [m]. 

After spalling of concrete cover, corrosion of reinforcement takes place in direct contact with the 
environment. To determine the rate of corrosion of reinforcement after spalling, (Spec-net, 2015) 
gives rates of reinforcement corrosion.  

 

 

Table 2: Corrosion rates of steel under atmospheric exposition 
 

Corrosivity zone (ISO 9223) Corrosion rate for first year (µm/yr) 

Category Description 

Typical environment

Mild steel Zinc 

C1 Very low Dry indoors ≤1,3 ≤0,1 

C2 Low Arid/Urban inland >1,3 a ≤25 >0,1 a ≤0,7 

C3 Medium Coastal and 
industrial 

>25 a ≤50 >0,7 a ≤2,1 

C4 High Calm sea-shore >50 a ≤80 >2,1 a ≤4,2 

C5 Very High Surf sea-shore >80 a ≤200 >4,2 a ≤8,4 

CX Extreme Ocean/Off-shore >200 a ≤700 >8,4 a ≤25 
 

 

 

6.5 Alkali-Aggregate Reaction 
 

6.5.1 Introduction of alkali-aggregatea model for concrete 
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In most concrete, aggregates are more or less chemically inert. However, some aggregates react 
with the alkali hydroxides in concrete, causing expansion and cracking over a period of many 
years. This alkali-aggregate reaction has two forms: alkali-silica reaction (ASR) and alkali-
carbonate reaction (ACR).  

Alkali–silica reaction (ASR), one of those common deleterious mechanisms, consists of a 
chemical reaction between "unstable" silica mineral forms within the aggregate materials and the 
alkali hydroxides (Na, K–OH) dissolved in the concrete pore solution. It generates a secondary 
alkali-silica gel that induces expansive pressures within the reacting aggregate material(s) and 
the adjacent cement paste upon moisture uptake from its surrounding environment, thus causing 
micro cracking, loss of material's integrity (mechanical/durability), and, in some cases, 
functionality in the affected structure. 

Several aggregate types in common use, particularly those with a siliceous composition, may be 
attacked by the alkaline pore fluid in concrete. This attack, essentially a dissolution reaction, 
requires a certain level of moisture and alkalis (leading to high pH) within the concrete to take 
place. During the reaction, a hygroscopic gel is produced. When imbibing water, the gel will 
swell and thus cause expansion, cracking, and in the worst case, disruption of the concrete 
(Lindgart 2012). 

Thus, the degree of reaction of an aggregate is a function of the alkalinity of the pore solution. 
For a given aggregate, a critical lower pH-value exists below which the aggregate will not react. 
Consequently, ASR will be prevented by lowering pH of the pore solution beneath this critical 
level where the dissolution of alkali-reactive constituents (silica) in the aggregates will be 
strongly reduced or even prevented, as discussed in (Rodriguez at.al, 1996). No "absolute" limit 
is defined because the critical alkali content largely depends on the aggregate reactivity [3], but 
from many experimental tests we can estimate threshold value (Lindgart 2012), (Poyet , 2003).  

Many studies carried out over the past few decades have shown that ASR can affect the 
mechanical properties of concrete as a "material." Usually, ASR generates a significant reduction 
in tensile strength and modulus of elasticity of concrete. These two properties are much more 
affected than compressive strength, which begins to decrease significantly only at high levels of 
expansion. 

Several ASR models were developed over the years to predict expansion and damage on both 
ASR affected materials (microscopic models) (Multon  at.al., 2009), (Bazant, Steffens, 2009), 
(Comby-Perot, 2009) and ASR affected structures/structural elements (macroscopic models) 
(Ulm at.al., 1999), (Saouma, Perotti,2006), (Comi, Fedele, Perego, 2009). The first group has a 
goal of modeling both the chemical reactions and the mechanical distress caused by ASR or even 
the coupling of the two phenomena. The second group aims at understanding the overall distress 
of structures/structural concrete elements in a real context, simulating their likely in situ behavior 
(Farage et al.,2000) seems to have finally bridged the gap between scientific rigor and practical 
applicability to real structures. 

In terms of mechanical effects, it is known that ASR expansions occur over long time periods. 
During this process, ASR-affected concretes are subjected to a progressive stress built up that is 
very likely to cause creep on the distressed materials.  
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AAR depends on the availability of three factors: alkalis liberated from cement during hydration, 
siliceous minerals present in certain kinds of aggregates, and water. Several microscopic and 
random factors are involved in AAR expansion, such as concrete porosity, amount and location 
of reactive regions in the material, and permeability (Farage et al.,2000). These parameters, 
added to concrete's intrinsic heterogeneity, turn simulating the AAR expansion into a rather 
complex task. 

Even though the AAR process has not been well explained so far, the commonly accepted theory 
for describing it is two distinct phases that need to be considered: gel formation and water 
absorption by the gel, causing expansion. According to this mechanism, the reaction does not 
always lead to expansion. As long as there is enough void space to be filled by the gel, i.e., pores 
and cracks, concrete volume remains unchanged. 

Due to the lack of a model, which is able to incorporate effects of relative humidity, alkali/silica 
content in the mixture, ambient temperature, authors suggest to combine ASR kinetics proposed 
by (Ulm et. al., 1999) with the influence of moisture, published by (Léger et al., 1996) and 
influence of alkali/silica content proposed by Multon et al. 

Implementation of modeling expansion due to ASR consists of modeling engeinstrains in time-
steps t on the entire structure. Function for volumetric eigenstrain reads 

     MFcalASR t t    (4.97) 

where cal    is the volumetric strain of ASR swelling at infinity time,   0,1t   is the chemical 

extent of ASR, and FM is the coefficient reflecting moisture influence. It is described later in the 
text. In the case of varying the relative humidity, eq. (4.97) changes to the incremental form, for 

time it  
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6.5.2 Model for ASR kinetics 
For the complete 3D constitutive model, we consider the first-order reaction 

  c1 ξ ,ξ ξt      (4.99) 

where  c 0,ξ /dt k A    is the characteristic time. It has been found that tc depends on 

temperature [ ]K   and the ASR extent ξ . Referring to (4.99) the implementation of the 

chemoelastic material law in the constitutive laws is relatively straightforward and a suitable 
integration scheme is given in (Ulm ea., 1999). 

Consider an isothermal stress-free ASR expansion test carried out at constant temperature 

0  . In this test, the volumetric strain ASR  is recorded as a function of time that and ASR 

extent is calculated as 
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  (4.100) 
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For macroscopically stress-free sample, (4.99) in (4.100) yields 
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With ( )ASR t   and ( )ASR t  being measurable functions of time, the characteristic time tc can be 

determined from a stress-free expansion test. In a recent extensive series of stress-free expansion 
tests carried out at different constant temperatures( Larive, 1998), tc has been found to depend on 
both temperature [ ]K and reaction extent ξ [-] in the form 

    c , ct        (4.102) 
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In this experimentally determined kinetics function,  c  is a characteristic time [day] and 

 L   is a latency time [day]. The use of (4.103),(4.102) in (4.101) yields after integration 

    
 

1 exp /
ξ

1 exp / /
C

C L C

t
t

t


  

 


  
  (4.104) 

For variable temperature, cracking etc., it is difficult to solve for  ξ t  analytically and numerical 

integration is needed.  A suitable solution scheme is derived in (Ulm at.al., 2006), which is 
implemented in in ATENA. Fig. 6-6 shows the shape of (4.100), together with the time 

constants, c  C and L , which stand for the characteristic time and the latency time of ASR 

swelling, respectively. Furthermore, proceeding as in physical chemistry (Atkins, 1994), we 

explore the temperature dependence of the time constants c  C and L  from stress-free 

expansion tests carried out at different constant temperatures. The plots of ln( )c  C nd ln( )L  

against 1 /  C are given in Fig. 6-7. It is remarkable that the experimental values align (almost) 

perfectly along a straight line, matching the Arrhenius concept. 

    C C 0 c
0

1 1
exp U   

 
  

   
   

  (4.105) 

    L L 0 L
0

1 1
exp U   

 
  

   
   

  (4.106) 

where  

 C L5400 500 ;  9400 500 U K U K      (4.107) 
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It is explored (Atkins, 1994) that the temperature dependence of the time constants c  C nd 

L carried out at different constant temperatures (23, 33, 38, and 58 °C), see Fig. 6-6. Default 

values are  C τ 311,15K ays and (311.15 C) 145L    days [20], see Fig. 6-8. , Fig. 6-9. 

According to Larive's experimental data from water-saturated tests [14]  Cτ 288,15K days and 

 Lτ 288,15K ays,  Cτ 281,15K ys and  Lτ 288,15K ays. Under drying conditions, the values for 

LτL  roughly increase by a factor of 4; and C by 2.5 (Larive , 1998), (Ulm at.al, 1999)  

 

Fig. 6-6. Larive's test data of temperature dependency of ASR time constants Cτ nd Lτ Slope of 
trendlines represents activation energy constants Uc = 5,400 K and UL = 9,700 K. 
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Fig. 6-7. Definition of Latency Time Lτ d Characteristic Time  Cτ  Normalized Isothermal Expansion 

Curve ξ     / t   

Fig. 6-8. Parameter Analysis of Characteristic Time Cτ ( 311 K) of ASR Swelling with Regard to Hydral 
Ambient Conditions, reproduced from 0. 

 

Fig. 6-9. Parameter Analysis of Latency Time Lτ ( 311 K) of ASR Swelling with Regard to Hydral 
Ambient Conditions, reproduced from 0. 

 

6.5.3 Prediction of ASR swelling cal     

cal    [-] is the predicted volumetric expansion at infinity time obtained by model proposed by 

(Multon et al., 2008). It is calculated based on reactive aggregates, amount of reactive silica in 
the aggregates, and value of measured stress-free expansion test done in Poyet's study (Lindgart , 

2012) on samples containing reactive particles only. cal   is defined as follows 
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   C
cal F

R

A
t s p AC

A
        (4.108) 

where F  [m3/kg] is measured ASR strain expansion per kg of aggregate in m3 of the concrete 

mixture on samples containing reactive particles only with enough sufficiency of alkali. 

Typically   it ranges in 8.93e-7 ... 1.34e-5 [m3/kg]. See Table 3 for more details. CA kg/m3 

Na2Oeq] and RA kg/m3 Na2Oeq] are amounts of consumed and required alkali, respectively. AC is 

total aggregate content in [kg/m3]. One of the main assumptions of the model is that the 
maximum expansion of mortar is achieved if there is enough alkali to react with all the reactive 

silica of the mixture. This amount of required alkali content RA kg/m3 Na2Oeq] is defined as 

 RA r s p AC      (4.109) 

where s is the proportion of quantity of soluble silica [-], p is the proportion of reactive aggregate 
[-]. r states for the amount of required alkali per kg of reactive silica, and it is a constant value r 

= 15.4 %. Value CA s defined as min RA (, AA s the available amount of alkali for ASR reaction. 

AA s defined as the difference between the initial amount of available alkali TA kg/m3 Na2Oeq] 

and alkali content threshold 0A kg/m3 Na2Oeq] when ASR reaction starts. 

 0A TA A A    (4.110) 

It should be noted that this model does not consider any alkali flow through boundaries inside 

the structure during the service life. By default, 0A s equal to 3.7 kg/m3 Na2Oeq (Poyet, 2003), but 

other values in the range of 3 – 5 kg/m3 Na2Oeq can be found in the literature (Lindgart, 2012) 

 

Table 3: Mixtures and ASR expansions of mortars studied by (Poyet, 2003) and (Multon, 2008). F1-F3 
are size fractions 80 μm-3.15 mm.  

 
Value of p depends on the mix ratio of reactive aggregate. Value s depends on amount of 
reactive silica in aggregates, moreover common values are: p = 11,1% (Multon, 2008) 0or 9,4% 
and 12,4% (Multon, 2009). 

6.5.4 Influence of moisture FM 

Approximately 75% relative humidity (RH) within concrete is necessary to initiate significant 
expansion, which is assumed to vary linearly between 75% RH and 100% RH as shown in Fig. 
6-10. 
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Fig. 6-10. Parameter Factor of RH influencing ASR concrete expansion, reproduced from (Multon, 
Toutlemonde, 2010). 

 

The coefficient MF eflects influence of moisture h. The function for FM is approximated as 

 min
min

1
( )

1
( )M h

h
F hh  


  (4.111) 

 

where hmin is relative humidity threshold where ASR begins to appear, 0.75 by default. Other 
variables will be explained in further text. 

 

6.5.5 ASR for 3D conditiions 
 

Expansion of free concrete specimens due to ASR has been summarized in (Červenka, Jendele,  
Šmilauer, 2016). It predicts ASR under unrestrained conditions, i.e., under free expansion. The 
expansion model takes into account reaction kinetics, alkali content, reactive amount of 
aggregates, relative humidity, and temperature. The model has been validated on 4 examples 
found in the literature. 

Degradation of material due to ASR reaction (Saouma, 2016, eqs. 18,19) 

  

      0, 1- 1- ,EE t E t        (4.112) 

      ,0, 1- 1- ,t t ff t f t        (4.113) 

      ,0, 1- 1- ,f f GG t G t         (4.114) 
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where βE,f,G are residual values of E/E0, f/f0, Gf/Gf0. Default values are 0.1E  , 

0.6f  (Esposito, Hendriks, 2012) and 0.6G   is estimated. 

The general equation for the incremental volumetric AAR strain is given by (Saouma, 2016, (5)) 

 

       
           

Only considered in implementation

, , , , , ,

V I II III

t c c M cal t c c M cal t c M

t t t t

f F h t f F h t f F

   

       

   

       

   
    


 (4.115) 

 

where c  reflects the effect of compressive stresses (Saouma, 2016, eq. 10), t accounts for the 

influence of tensile cracking ( assumed here as 1), MF  is the effect of relative humidity, which is 

already accounted for in (4.111) and equals to one. (4.115) considers further only the most 
relevant first term and is rewritten in incremental form as 

 

 
          

1
1 1,

( ( 1)) / 2

i
iV i t c c M cal i iit f F h t t

i i i

    



        

  
  (4.116) 

 

Reduction c due to compressive stress is considered as follows: 

  

1 0

1 <0
1 1
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 
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     
 




  (4.117) 

  

where the shape factor     is ‐2 by default (Saouma, 2016, Tab.2) and  '
cf  is the compressive strength. 

Under constrained conditions, ASR expansion develops depending on the stress state. It is 
known that compressive stress beyond approximately -10 MPa stops ASR expansions, which 
needs to be reflected for strain redistribution into the principal directions. Similarly to (Saouma, 
2016, Fig. 5), weight factors are assigned to three directions. Let us assume that directions of 
principal stresses σI, σII, σIII are known. Expansion is then assigned to each principal stress 
direction according to the weight factors W1

 ', W2
 ', W3

 '. When compressive stress reaches -0.3 
MPa, the weight factor decreases until maximum stress -10 MPa is reached in that direction. 
This situation is depicted in Fig. 6-11. 
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Fig. 6-11. Weight factor for ASR expansion 

 

For compressive stress σi under -0.3 MPa, the following decay function is used, according to 
(Leger, Coté, Tinawi, 1995), where σL ≈ -0.3 MPa and σu ≈ -10 MPa, see Fig. 6-11. : 

    1
1 log / 0.3
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1 0.3

i L i
i i u
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for MPa
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for MPa
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



 
 
      
     
  

 (4.118) 

 

Weight factors need to be normalized as  

 
'

3 '

1

i
i

ii

W
W

W





  (4.119) 

Three principal strains from ASR are assigned as 

  ,ASR i i V iW t       (4.120) 

  

This new  approach  simplifies  the  procedure outlined by  (Saouma,  2016,  Fig.  5) where  several  stress 
state cases were treated individually. 

 

6.5.6 Validation on free expansion 
The following Fig. 2-12 and Fig.  6‐13 validate experimental data for free expansion. The 

following material parameters were used, summarized in Table 6.5‐4. 

 

Variable Symbol Value Source 

REQUIRED ALKALI PER REACTIVE 
SILICA 

r 15.4 % 

(Multon, Cyr, 
Sellier, 
Leklou, & 
Petit, 2008) 
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PROPORTION REACTIVE SILICA s 21.8 % 

(Multon, Cyr, 
Sellier, 

Leklou, & 
Petit, 2008) 

PROPORTION REACTIVE PARTICLES 
IN SAND 

p 30 % 

(Multon, Cyr, 
Sellier, 

Leklou, & 
Petit, 2008) 

SAND MASS AC 833 kg/m3 

(Kagimoto, 
Yasuda, & 
Kawamura, 

2014) 

ASR MEASSURED ASR STRAIN ƐF 0.0525 %/kg (Poyet, 2003) 

AMOUNT OF REQUIRED ALKALI AR 8.39 kg/m3 (Poyet, 2003) 

TOTAL ALKALI IN MORTAR for Ca-5.4 
(for Ca-9.0) 

AT 5.4 (9) kg/m3 

(Kagimoto, 
Yasuda, & 
Kawamura, 

2014) 

THRESHOLD ALKALI IN CONCRETE A0 3.7 kg/m3 (Poyet, 2003) 

CHARACTERISTIC TIME τC 20 day  

LATENCY TIME for Ca-5.4 (for Ca-9.0) τL 55 (45) day  

ELASTIC MODULUS E 

27 GPa 

(Kagimoto, 
Yasuda, & 
Kawamura, 

2014) 

COMPRESSIVE STRENGTH fc 

26 MPa 

(Kagimoto, 
Yasuda, & 
Kawamura, 

2014) 
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Table 6.5‐4. Summarized parameters for validation. 

 

 
Fig. 6‐12. Validation of free expansion (Kagimoto, Yasuda, & Kawamura, 2014) 

 
Fig. 6‐13. Validation of free expansion, (Kagimoto, Yasuda, & Kawamura, 2014) 

 

6.5.7 Implementation in Atena 
 

Differential Equation (4.99) represents kinetics of development of ASR extent ξ . In the case of 

constant temperature   in the structure, it can be solved analytically, see (4.104). Otherwise, it 
must be solved numerically. The following lines and equations describe the procedure to solve ξ  

that is implemented in ATENA.   

Let's start from (4.99) and rewrite the equation into its differential form. We expect to now all at 
the time i  and solve for time 1i  . We do it in an iterative manner, i.e., we know all at iteration 
k  and compute ξ at iteration  1k  : 
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  
1
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, 1 1

1

ξ ξ
 1 ξ = 0

k
k ki i
c i i

i i

t
t t




 



 


  (4.121) 

 

The unknown 1
1ξk

i

  ASR extent is searched for in the form 1

1 1ξ ξ ξk k
i i 
   , where ξ is the 

correction of ξ  resulting from the k  -th iteration. Denoting 1i it t t    and 1ξ ξ ξk
i i    the 

above equation can be written 

    , 1 1 ξ ξ 1 ξ ξ = 0k k
c i it t          (4.122) 

from which, after some mathematical manipulation, we can calculate ξ  
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, 1
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c i i
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c i

t t

t t
  


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 

 
  (4.123) 

and 1
1 1ξ ξ ξk k

i i 
   . Note that in (4.121) thru (4.123) we used , 1

k
c it  although 1

, 1
k
c it 

 should be 

employed, as ( , )c ct t    is a nonlinear function. Therefore, after each iteration, 1k   we update  

, 1
k
c it  to 1

, 1
k
c it 

 and recalculate (4.122) 

    1 1
, 1 1 ξ ξ 1 ξ ξ =k k k

c i it t E  
         (4.124) 

It yields an error 1kE   that is further compared against some maximum acceptable error. If it is 
too high, the next iteration is carried out; otherwise, the iteration process is finshed. 

Note, however, that for the sake of convergency speed, the third and further iterations are in 
ATENA computed in a different way. Using linear interpolation between iteration k  and 1k   
requiring error 2 0kE    in iteration 2k   value 2

1ξk
i

  is calculated by 

 

   

   

2 1 2 2 1
1 1 1 11

1 1

1 2 2 1
1 1 1 1

1 1
2 1 1

1 1

1
ξ ξ ξ ξ 0

ξ ξ

ξ ξ ξ ξ 0

ξ ξ
ξ

k k k k k k k
i i i ik k

i i

k k k k k k
i i i i

k k k k
k i i
i k k

E E E

E E

E E

E E

    
   

 

   
   

 
  
 

      

   






  (4.125) 

and checked by (4.124) written for iteration 2k  . The iterating process continues this (latter) 
way  until a sufficient accuracy is obtained.  

The time step t  is input by the user, but it is automatically limited by 0.01 ct t    requirement 

to ensure reasonable accuracy and convergence of the solution. 

 

 

 

ASR loading results in the development of ASR strain and deterioration of material properties 
like Young modulus E, tension strength ft, and fracture energy Gf. For each step i, we can write 

 1 1 1 1 1( ) ( )i i i i i i i iE E E               (4.126) 
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The above equation calculates stress i  at (current) time step i based on stress 1i  from the 

previous time step and current changes of Young modulus E and strains  . The strains   
represents "mechanical strains," i.e., strains producing stresses in an unrestrained material. They 

are total geometrical strains minus initial strain that corresponds to ASR expansion strains ,ASR i . 

The differential formulation corresponds to the incremental solution used in Atena and the case 
of linear elastic material law. (More advanced materials are treated in a similar way). Using 

0 ( )ASR
k E kE E cf  ,  (4.126) can be written  
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  (4.127) 

Note that strains   are strains that are facilitated in material law, i.e., geometrical strains after 
subtracting ASR swelling strains.  The ASR strains are implemented by initial element strains, 

and the term 1
1

1i
i

i


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

 
 

 
 is incorporated in the solution in the form of element initial stresses. 

Also, at each step, we update ft and Gf. 

An alternative solution to (4.127) is 
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  (4.128) 

The term 
ASR
E

1 ASR
E 1
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1
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i

i
i






 
 

 
 is then added to ASR swelling initial element strains (4.120)  

calculated earlier. For linear material law, both equations (4.127) and (4.128) are equivalent. For 
the case of nonlinear law, they can slightly differ. By default, Atena prefers approach according 
to (4.128).  

For the sake of simplicity, the above derivation has been presented for uniaxial stress-strain 
conditions. Its extension to 3D conditions is obvious.   

6.5.8 Comments 
 

The proposed model is derived from free expansion tests. The model works in 2D and 3D stress 
state by limiting expansion when a compressive load is present in a principal direction. In the 
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case of hydrostatic compression above -10 MPa, no ASR expansion occurs, and no reduction of 
mechanical properties happens (E, ft, Gf). This is justified by the fact that ASR gel grows into 
cracks and no macroscopic cracks occur. 

The majority of structures are exposed to the thermal field; hence ASR usually proceeds faster 
close to the surface due to higher average temperature. Since the surface is often unloaded, the 
main expansion happens perpendicular to the surface, which induces a small compressive load 
and delamination of layers. 
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7 TRANSPORT ANALYSIS 
As pointed out in the previous section, creep material behavior of concrete strongly depends on 
moisture and temperature conditions. Some constitutive models for creep in ATENA can pay 
regards to these factors and based on previously computed moisture and temperature histories 
within the structure they can predict concrete behavior more accurately. This section describes a 
module called CCStructuresTransport that is used to calculate the histories. A more accurate 
creep analysis then typically consists of two steps:  firstly execute CCStructuresTransport 
module and calculate the moisture and humidity histories of the structure and secondly execute 
CCStructuresCreep module to carry out the actual static analysis. Of course, for both analyses, 
we have to prepare an appropriate model. Export/Import of the results between the modules is 
already done by ATENA automatically. 

To be exact, both the transport and static analysis should be executed simultaneously, but as 
moisture and temperature transport does not depend significantly on structural deformations, i.e., 
coupling of the analyses is low, the implemented “staggered” solution yields sufficiently 
accurate results. 

The governing equations for moisture transport read (for representative volume REV] : 

 
( )

( )e n
w

w ww
div J

t t

 
  

 
 (5.1) 

where: 

w  is total water content defined as a ratio of weight of water at current time t to weight of 

water and cement at time 0 0t   in REV, [mass/mass], e.g. [kg/kg] 

,e nw w = stands for the amounts of free and fixed (i.e. bound) water contents, [mass/mass], 

wJ  = moisture flux, [length*mass/ (time*mass)]. e.g. [m/day], 

t  =time, [time], e.g., [day]. 

The moisture flux is computed by 

 w w eJ D w    (5.2) 

where  

wD  is moisture diffusivity tensor of concrete [m2/day], 

  is gradient operator. 

Note that in (5.2) only diffusion of water vapor is considered. Moisture advection is negligible. 

The equations (5.1) and (5.2) can also be written as being dependent on w or relative moisture h .  
A relationship between h and w is given by 

 ( )w w h  (5.3) 

 Using (5.3) Equation (5.2) can be written as follows  

 w hJ D h    (5.4) 
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A special attention must be paid to the calculation of the above time derivatives and integration 
of the governing equations. For example, in the case of usual Gauss integration and use of exact 
time derivatives the solution may suffer from mass losses. To remedy the problem the 
CCStructuresTransport module integrates the structure, i.e., all the individual finite elements in 
nodes and time derivatives are calculated numerically (Jendele 2001). This integration is similar 
to use of finite volume method, which is also known to be robust against the mass losses. 

Heat transfer is governed by similar equation 

  ( ) ( )T ref T T

Q T
C T T C div J

t t t

  
    

  
 (5.5) 

where  

Q is total amount of energy in a unit volume [J/m3] 

TC  is heat capacity [J/(K.m3)], 

      TJ  is heat flux [J/(day.m2)]. 

If hydration we want to add heat ( )hQ t , which expr
t


 t


 t


 t




esses amount of hydration heat 

within unit volume i.e 
3

,h

J
Q

m
 
  

, Equation (5.5) changes to 

  ( ) ( )h
T ref h T T

QT
C T T Q C div J

t t t

 
     

  
 (5.6) 

Heat flux 
2

,T

J
J

m s

 
 
 

 is calculated by 

 ( )T TJ K grad T   (5.7) 

and TK  stands for heat conductivity, e.g. [J/(day.m.K)]. 

Note that Equation (5.5) accounts for heat transport due to conduction only. Heat advection is 
negligible. In (5.5) we can also neglect hydration heat because in large times, its impact for heat 
transfer is small. On the other hand, we cannot neglect concrete moisture consumption due to the 
hydration process. According to (Bazant and Thonguthai 1978; Bazant 1986) hydration water 

content hw  can be calculated by: 

 

1

3

0.21 e
n h

e e

t
w w c

t
 

    
 (5.8) 

where  

e  = 23 days, et  is equivalent hydration time in water at temperature 25 0C  that corresponds to 

the same degree of hydration subject to real age, moisture and temperature conditions of the 
material. The parameter c relates to the amount of cement and is calculated by(5.53). If 

temperature ranges from 0 to 100 0C ,  et  is computed by 
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 e h Tt dt    (5.9) 

where dt is time increment after the mold has been removed and coefficients ,T h   are 

calculated by  

 
4

1

1 (3.5 3.5 )h h
 

 
 (5.10) 

 

  
0

1 1
exp h

T

U

R T T


  
       

 (5.11) 

In the fraction hU

R
 the symbol hU  stands for the activation energy of hydration and R is gas 

constant. According to (Bazant 1986)  02700hU
K

R
 .  0,T T  are real and reference concrete 

temperature is expressed in 0K . The reference temperature is given by 

 
0 273.15 25T    (5.12) 

The following figure depicts the relationship between real t  and equivalent time et  for the case 

of constant temperature  015T C  and moisture 0.8h  . In practice, this relationship is rarely 

linear because with increase of time the amount of fixed water (due to hydration) hw  is 

increasing as well and it involves a gradual decrease of relative moisture h .   

 

Fig. 7-1 Equivalent vs. real time relationship 
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The amount of water that was needed for hydration of concrete according to Equation (5.8) for 
the case of 300c  kg is shown below: 

 

Fig. 7-2 Moisture consumed by hydration as a function of equivalent time  

7.1 Numerical Solution of the Transport Problem – Spatial 
Discretisation 

The transport governing equations for a typical engineering problem are too complex for 
analytical solution. Hence, similar to other ATENA engineering modules, the finite element 
method is also used for the CCStructuresTransport module. The transport problem gets spatially 
and temporarily discretized and then the resulting set of nonlinear algebraic equations is solved 
by a special iterative solver. This section is dedicated to the detailed description of the former 
type of discretization.  

The solution is based on Equations (5.1) thru(5.7). Note that the unknown variables are 

 ( ); ( ); ( , ); ( , , )h hh h t T T t w w h T w w h T t     (5.13) 

and they are to be discretized. Let the left-hand side part of (5.1) and (5.4) is denoted 

,h TLHS LHS , respectively. The subscript h and T indicates moisture and temperature fluxes. 

Similar subscripts are also used for the right-hand-side of the equations, ,h TRHS RHS . Notice 

that RHS expressions do not include the divergence operator!  

  h hLHS w w
t


 


 (5.14) 

 

 h
T T

QT
LHS C

t t


 

 
 (5.15) 
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 h w hRHS J J     (5.16) 

 

 T TRHS J   (5.17) 

 The strip over an entity in the above equations means that the entity is vector. (Scalar entities do 

not have the strip). The fluxes w hJ J  are identical, i.e., the subscript w indicates also moisture 

phase. Using the above notation Equations (5.1) and (5.5) can be written as follows 

 

( )

( )

h h

T T

LHS div RHS

LHS div RHS




 (5.18) 

The hLHS  includes time derivative of moisture. It is computed using the following expressions: 

 

( )h h e

e
h T

h h e h
h T

e e

w w t

t

t

w w t w

t t t t

 

 








   
 

   

 (5.19) 

For the next derivation, let us write Equations(5.14), (5.15) in a general form: 

 

0

0

h hh hw hT h

T Th Tw TT T

h w T
LHS c c c c

t t t

h w T
LHS c c c c

t t t

  
   

  

  
   

  

 (5.20) 

 and equations(5.16), (5.17)  

 

 

     

     

0

0

h hh hw hT h

T Th Tw TT T

RHS k h k w k T k

RHS k h k w k T k

      

      

 (5.21) 

where square bracket indicates that the enclosed entity is a matrix [ ].  

Comparing (5.20) with (5.1) and (5.5) we find that 

 
0

0

0; 1; 0

0; 0; 0

hh hT hw h

h
Th Tw TT T

c c c c

Q
c c c c

t

   


    



 (5.22) 
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The parameter TTc  is in ATENA an input material parameter, 0hc  is computed from(5.19), i.e. 

0
h

h h T
e

w
c

t
 




. The solution also includes expressions 0;
w w

h T

 


 
.  Their values depend on a 

constitutive model being used in the solution. For more information, please refer to Section 
Material Constitutive Model.  

For right-hand sides, we can write in a similar manner: 

 

       

       

0

0

0 ; 0; 0

0 ; 0; 0

hw hT hh h

Th Tw TT T

k k k k

k k k k

   

   

 (5.23) 

The parameter  TTk  is a material input parameter,  hhk  is calculated from a constitutive model, 

see the next section. 

For the next derivation, let us assume discretization of the unknown variables as follows. 
Remind that these are in the governing equations integrated in finite nodes, (Celia, Bouloutas et 
al. 1990; Celia and Binning 1992).  

 

;

;

;

TT

TT

TT

h N h h N h

w N w w N w

T N T T N T

     

     

     

 (5.24) 

where 

      , ,h w T  stands for vectors of the corresponding entities. The vectors have dimension n equal 

to number of finite nodes of the problem. 

 N  is vector of interpolation, (i.e., shape) functions,  

 

1 2

1 2

1 2

...

...

...

n

T n

n

NN N

x x x
NN N

N
y y y

NN N

z z z

  
    

         
 

  
    

 

 

Using (5.24) Equations (5.20) and (5.21) can be written in the form 

 



ATENA Theory  291 

 

0

0

T T T
h hh hw hT h

T T T
T Th Tw TT T

h w T
LHS c N c N c N c

t t t

h w T
LHS c N c N c N c

t t t

  
   

  

  
   

  

 (5.25) 

 and 

 

     

     

0

0

T T T

h hh hw hT h

T T T

T Th Tw TT T

RHS k N h k N w k N T k

RHS k N h k N w k N T k

                

                

 (5.26) 

 The resulting set of equations are solved iteratively using finite element method, see 

(Zienkiewicz and Taylor 1989), (weak formulation, in which the shape functions N  are used as 
weight function): 

 

 

 

( ) 0

( ) 0

h h

V

T T

V

N LHS div RHS dV

N LHS div RHS dV

 

 




 (5.27) 

where V is volume of the analyzed structure. Each of the above equations represents a set of 

equations with dimension equal to number of finite nodes n. Note that ( )hdiv RHS  and 

( )Tdiv RHS  are scalars !  

In the next derivation, the two parts of (5.27) are dealt with separately. 

 

 

   

0

0

0

...

...

T T T
h hh hw hT h

V V

T T
hh hw h

V V V

hhh hw

h w T
N LHS dV N c N c N c N c dV

t t t

h w
c NN dV c NN dV c NdV

t t

h w
cc cc cc

t t

   
        

 
  

 

 
 

 

 

    (5.28) 

 

 

   

0

0...

T T T
T Th Tw TT T

V V

TTh Tw

h w T
N LHS dV N c N c N c N c dV

t t t

h w
cc cc cc

t t

   
        

 
 

 

 

 (5.29) 

and the matrices   cc  are calculated by 
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   

   

0 0

0 0

; ; ...

; ; ...

T T
hhh hh hw hw h

V V V

T T
TTh Th Tw Tw T
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  

  
 (5.30) 

The second part of (5.27) are calculated using Green theorem (5.36): 

 

   

      
      
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T T TT
s hh hw hT h
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hh hw hT h

V

N div RHS dV N n RHS dS N RHS dV

N n k N h k N w k N T k dS
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       

                  

                     

  







  (5.31) 

where S  is the structural surface (with possibly defined boundary conditions). 

In the case of heat transfer, we can derive all the equations in a similar way. In analogy to (5.30) 

let us introduce matrices  kk   
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   
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        

   

        
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









 (5.32) 

and also 
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


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















  (5.33) 

Using  (5.28) to (5.33) the original governing equations  (5.27) can be written as follows: 

 

           

     

           

     

0 0

0

0 0

0

h hhh hw hT hh hw hT

hhh hw hT

T TTh Tw TT Th Tw TT

TTh Tw TT

h w T
cc cc cc cc kk h kk w kk T kk

t t t

J h J w J T J

h w T
cc cc cc cc kk h kk w kk T kk

t t t

J h J w J T J

  
       

  
   

  
       

  
   

 (5.34) 

After sorting the unknown variables ,h T  by finite nodes into a single vector , Equation (5.34)  

will read  

    0 0 0cc kk cc kk J J
t

  
    


 (5.35) 

The right-hand side (5.35) is non-zero only for non-zero prescribed boundary conditions and 
hence it has character of “load” vector in a static analysis. 

In (5.31) we used Green theorem. It states: 

 

( )

( )

T
s

V S V

T
s

V S V

u div v dV u n v dS u v dV

u div v dV u n v dS u v dV

    

    

  

  




 (5.36) 

 where 
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1 1 1

2 2 2

... ... ...

n n n

u u u
u

x y z

u u u

x y z

u u u

x y zu

u u u

x y z

   
         

   
    
   
        
 
    
      (5.37) 

7.2 Numerical Solution of the Transport Problem – Temporal 
Discretisation 

The heat and moisture transfer governing equations (5.35) can be written in the form: 

  t t t t t J
t

     



t t t t tK + C  (5.38) 

 

where tt K , tt C = are unsymmetrical problem matrices defined in the previous section, 
t Jt =vector of concentrated nodal fluxes (both moisture and heat) and t t  is the vector of 

unknown variables. All of these apply for time t t . Equation (5.38) is solved iteratively. i.e., 

the vector t t  is searched for in the incremental form: 

 ( ) ( 1) ( )t t t t i t t i t t i            (5.39) 

where index ( )i indicates the number of iteration and ( )t t i    is the increment of the unknowns 

for time t t  and iteration ( )i : 

 ( ) ( 1) ( )t t i t t i t t i J     -1K   (5.40) 

The matrix and vector ( 1)t t i  -1K  and ( )t t i J   is derived from ( 1) ( 1),t t i t t i   -1 -1K C  and t  based 

on temporal integration method being used: 

CCStructureTransport module currently supports   Crank Nicholson (Wood. 1990) and Adams-
Bashforth  (Diersch and Perrochet 1998) integration scheme. The former scheme is linear, i.e., 
it’s a first-order integration procedure. The latter scheme is a second-order integration procedure. 
It is supposed to be more accurate; however, it is also more CPU and RAM expensive and it is 
more difficult to predict its real behavior. Hence, the   Crank Nicholson scheme is typically 
preferred. It has been more tested and verified in the CCStructureTransport module, and thereby 
it is more recommended.  
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7.2.1  -parameter Crank Nicholson Scheme 
This scheme comprises a number of well established integration procedures. It depends, what 
value of the parameter   is used. The set of equations (5.38) is solved for time t t   , 

whereby the vector of unknown variables is calculated as a linear combination of the 
corresponding vectors at a time t  and t t . Hence  

   (1 )t t t t t             (5.41) 

 Depending on a particular value of the parameter   we get the well known Euler implicit 
integration (for  =1), trapezoidal Crank Nicholson scheme (for  =0.5), Galerkin integration 
method (for  =2/3) or even Euler explicit scheme (for  =0), which is only conditionally stable. 

Solution predictor: 

 
t

t t t t
t

  
  


 (5.42) 

Solution corrector: 

  1t t
t t t

t t

  



 

 
 (5.43) 

Using the above, after some mathematical manipulation, we derive final expressions for JK, . 

These read: 

      

  1

1

1
1t t t t t t

t

J J
t

J



     



 



   

     


 

K = K C

K C

K





 (5.44) 

7.2.2 Adams-Bashforth Integration Scheme  
Solution predictor: 

 2
2

tt
prevt t t

prev prev

t t t

t t t t

 
      

            
 (5.45) 

where 

index prev indicates that the entity comes from time preceding time t Note that we assume that all 
entities from time t  are already known and we solve for their values at time t t . 

Solution corrector: 

  2t t t
t t t

t t t

  


 
  

  
 (5.46) 
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t tt t t t

prev prev

prev prev prev

t t

t t t t t t t

         
                 

 (5.47) 

Similar to (5.44) we have here for JK, : 

 

    

     
          

    

  
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1 1
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1 1 1 1

2 2

1 1

1

2

2 2

n n n n n n

t t
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J t t t t
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
 

 
   

 



        

       

              

     

 

K = K C

K

C

K





 (5.48) 

7.2.3 Reduction of Oscillations and Convergence Improvement 
The transport governing equations are prone to suffer from oscillations. As reported in (Jendele 
2001) this can be improved by introducing a sort of Line Search method damping  . The basic 

idea is that Equation (5.39) gets replaced by 

 ( ) ( 1) ( )t t t t i t t i t t i             (5.49) 

where   is a new damping factor. The factor is typically set to something in range 0.3...1   

depending on the current convergence behavior of the problem. 

7.3 Material Constitutive Model 
The previous section referred to a material constitutive model, i.e., it was assumed that we know 

how to compute material diffusivity matrix hD , (see(5.4)), and material capacity ( )w w h , 

(see(5.1). Calculation of these entities is described here. 

Currently, ATENA has only two constitutive models available for transport analysis. The first 
one, i.e., CCModelBaXi94 is characterized as follows and the second one, i.e., 
CCTransportMaterial is briefly described later in this section. 

CCModelBaXi94 

For heat transport, a simple constant linear model is implemented. For moisture transport, a 
nonlinear model based on the model (Xi, Bazant et al. 1993; Xi, Bazant et al. 1994) has been 
developed.  

It can be used for temperatures in range 05 ...75T C   and moisture 0 ...1H   . It is 

important to note that the model was originally written only for mortar; hence, it is inaccurate for 
concrete with an aggregate having higher permeability (i.e., diffusivity) and/or absorption. The 
model has the following main parameters  
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 Type of cement 

 Water-cement ratio 
w

wc
c

  

As already pointed out, the model does not account for aggregate, i.e., it predicts moisture move 
only in pores filled by water-cement paste.   

The main entity of the model is water content ( , , , )
w

w w h t T
c

 . It is defined as follows: 

 
,0

w

w c

G
w

G G



 (5.50) 

 where  

wG  is the water content in mortar at time t ,
3

kg

m of morter

 
 
 

, 

,0wG  is the water content at time zero,
3

kg

m of morter

 
 
 

, 

cG  is the amount of cement at time zero,
3

kg

m of morter

 
 
 

. 

Mortar here stands for a mixture of water and cement. If concrete material is to be considered, 
then w  can be calculated by 

 


 
,0

,0

concrete
w

wmortar

w cconcrete concrete
w c

mortar mortar

V
G

V G
w

V V G GG G
V V




  (5.51) 

where concrete

mortar

V

V
 is the ratio of total volume to (only) volume of mortar (i.e., water and cement) and 

G  are corresponding amounts of water and cements in concrete, (i.e., not only in 

mortar!)
3

kg

m of concrete

 
 
 

. 

The model itself already accounts for moisture used by the hydration process. i.e., 0
w

t





. As a 

result, hw  according to (5.19)  need not be implemented.  

On the other hand, if moisture losses due to hydration are to be computed by the model based on 

(5.19), it is important to fix 0
w

t





 and to modify hw , so that it predicts “relative” moisture 

content w  used throughout whole derivation CCStructuresTransport. The original function for 

hw  was written for absolute weight of water and hence, for “relative” content of water Equations 

(5.8) must be rewritten into 
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1 1

3 3
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e
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h

w c w c e e w c e e

t
G

t t G tG
w

t G G tG G G G


 

 
                  

 (5.52) 

and the constant c from (5.8) becomes equal to 

 


 
,0,0

cc

w cw c

G G
c

G G G G
 

 
 (5.53) 

More detailed description of the model is beyond the scope of this document and the reader is 
referred to in (Xi, Bazant et al. 1993; Xi, Bazant et al. 1994).  

CCTransportMaterial 

CCTransport material is a simple constitutive law that allows users to enter laboratory-measured 
moisture and heat characteristics. Referring to Equations (5.1) and (5.5) heat and moisture flow 
governing equations can be written in the following general form: 

 

 

 

:

( ) ( ) ( )

:

( ) ( ) ( )

Th TT Tw Tt Th TT Tw Tgrav

wh wT ww wt wh wT ww wgrav

Heat

Q h T w
C C C C K grad h K grad T K grad w K

t t t t x

Moisture

w h T w
C C C C D grad h D grad T D grad w D

t t t t x

    
        

    

    
        

    
 (5.54) 

The parameters ThC , TTC  … wgravK  are calculated as: 
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

 (5.55) 

and the constant parameters 0
ThC  thru 0

wgravD  and functions ( )
Th

h
Cf h thru ( )

wgrav

T
Df T are input 

parameters, (to be possibly obtained from some experiments). The functions are defined as 
multilinear functions and only their ids are input into CCTransportMaterial model definition.  

Note that gravity terms in RHS of (5.54) have a little physical justification in heat and moisture 
diffusion gathered transports; nevertheless, they are included to allow using this material law for 
the solution of other kinds of transport problems.   

 

CCTransportMaterialLevel7 material 

CCTransport materialLevel7 is an extension of the above CCMaterialTransport material in the 
way it automatically computes moisture and temperature capacity and conductivity/diffusivity 
incl. "sink" terms regarding hydration (i.e., rate of hydration heat and moisture consumption 
during concrete hydration). In terms of the above nomenclature, this upper material level 
calculates ,, , , ,TT TT Tt wh wh wtC K C C D C . As already mentioned, the presented material adds on its 

bottom level, i.e., CCMaterialTransport. All parameters and characteristics from the bottom 
level, (i.e., those from CCMaterialTransport) can still be input and used. They typically serve for 
a refinement/addition of parameters generated by the upper material level. The result from the 
bottom and upper levels are simply added to form the final characteristics of the material model 
CCTransportMaterialLevel7. Note that default values of ,, , , ,TT TT Tt wh wh wtC K C C D C in the bottom 

level are by default set to zero.   

Hydration heat and affinity hydration model  
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The most important part of the presented model is the computation of the concrete hydration maturity 
factor. It is accompanied by the calculation of generated hydration heat and consumed hydration 
moisture. The analysis is based on the affinity hydration model, which provides a framework for 
accommodating all stages of cement hydration.  

Consider hydrating cement under isothermal temperature 25oC a relative humidity 1h  . At this 
temperature, the rate of hydration maturity factor , 0...1   can be expressed by chemical affinity 

25 25 ( )A A   : 

 25A
t





  (5.56) 

where A  stands for the chemical affinity, [ 1s ], The expression already includes coefficient 

exp aE

RT
  
 

. Hence 25A  is not normalized and refers to temperature 25oC.  For different 

temperatures it is replaced by A , see (5.60).  R is gas constant 
J

8314.41
kmol K

, T is 

temperature,  [K] and aE  is 40 kJ/mol. It is worthy to note the incorporation of the maturity 

method into (5.56). A characteristic time might be introduced to express an affinity A


 (Bernard, 
Ulm et al. 2003). 

 The affinity property can be obtained experimentally or analytically. Using experimental 

approach, heat flow ( )q t  that corresponds to the hydration heat ( )h hQ Q t  is measured by 

isothermal calorimetry.   

Alternatively, the hydration material parameters are computed by an analytical micro-scale 
model that accounts for the majority of underlying chemical reactions as well as the topology of 
cement grains (with the consequence to hydration kinetics). The solution stems from (Smilauer 
and Bittnar 2006), and it employs discrete hydration model CEMHYD3D (Bentz 2005), allowing 
to account for the particle size distribution of cement, the chemical composition of cement, 
temperature and moisture history in concrete, etc. 

  

Having history of hQ  (for 273.15 25, 1T    ), the approximation of  parameter is given by 

 
,

h

h pot

Q

Q
  (5.57) 

 25
,

1 h

h pot

Q
A

Q t t

 
 

 
  (5.58) 

where ,h potQ  is potential hydration heat, [J/kg].  Hence the normalized heat flow 
,

h

h pot

Q

Q
under 

isothermal 25oC  equals to chemical affinity 25A . 

Cervera et al.  (Cervera, Oliver et al. 1999) developed an analytical form of the affinity which 
was refined in (Gawin, Pesavento et al. 2006). A slightly modified formulation is proposed here 
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  2
25 1 exp

B
A B

   
 

 

   
      

   
  (5.59) 

where 1
1 2,[ ],B s B , [-] are coefficients to be calibrated,   is the ultimate hydration degree, [-],  

and   represents microdiffusion of free water through formed hydrates, [-]. The parameters in 

(5.59) express isothermal hydration at 25◦C.   

When hydration proceeds under varying temperature, maturity principle expressed via Arrhenius 
equation scales the a�nity to arbitrary temperature T 

 

25

1 1
exp

273.15 25
a

r

T r

E
A

R T

A A A

       
 

 (5.60) 

For example,  simulating isothermal hydration at 35oC means scaling 25A with a factor of 1.651 

at a given time.  This means that hydrating concrete for 10 hours at 35oC 35◦C releases the same 

amount of heat as concrete hydrating for 16.51 hours under 25◦C.  Note that setting 0aE   

ignores the e�ect of temperature and proceeds the hydration under 25◦C. 

Gawin et al. (Gawin, Pesavento et al. 2006), among others, added the effect of relative humidity.  
The extension of (5.58) leads to 

 
,

1 h
T h

h pot

Q
A

Q t t

  
 

 
  (5.61) 

 

 
 4

1

1
h

a ah
 

 
 (5.62) 

where ( )h h h   accounts for the reduction of capillary moisture. h  is relative humidity r, 

(Bazant and Najjar 1972). a is material parameter, typically 7.5a  . Depending on curing 

conditions   is calculated as follows:  

Sealed curing: 

 
/

, 1
0.42

w c     (5.63) 

Saturated curing: 

 
/

, 1
0.36

w c     (5.64) 

/w c  is the water-cement ratio. 

Substituting (5.59) and (5.62) into (5.61) yields final equation to predict the development of 
hydration heat. As it is difficult to express   function analytically (from (5.59), (5.61)),  the 
above equations are integrated numerically. 
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Substituting 25 r hd A d    

 
25,

25
25 25 25( ) ( ) ( )

end

start

t

end start t
t t A d        (5.66) 

If the function 25 25( ) ( )DoH t t  at reference temperature is known, (e.g. it was meassured in a 

calorimeter),  r hA   is constant within 25 25...start endt t   and it is acceptable to use linear (Taylor) 

approximation of 25 25 25 25 25 25
25

( ) ( ) ( )start startt t t t
t

  
  


 within 25 25...start endt t  , we can write: 

 

 25,

25

25 25
25 25

25

25 25
25 25 25 25 25

25

( )
( )
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

 (5.67) 

In the above 1
25 25 25 25( ), ( )start start end start end start r ht t t t t A       are equivalent time for the case 

of reference temperature. 1
25 (...) is inverse function to 25(...) so that 1

25 25( ( ))     . 

 

 

  

Note that hQ  is calculated in the same unit as is entered the parameter ,h potQ . If the governing 

equations are written for unit volume and ,h potQ  is given per cement unit weight, then hQ  must 

be multiplied by fraction of cement mass cementm  and total volume of concrete totV . 

Heat capacity  

The model assumes the following components of concrete: aggregate, filler, water, and cement. 
The total mass of concrete in one cubic meter results from individual masses of components: 

 
concr aggregate filler paste

paste cement water

m m m m

m m m

  

 
 (5.68) 

where concrm  is the mass of concrete per a unit volume. Similarly, for the mass of aggregate 

aggregatem , the mass of filler fillerm , the mass of water waterm , and mass of cement cementm . 

Corresponding volumes are /aggregate aggregate aggregateV m  , /filler filler fillerV m   etc. i  stands for 

the mass density of the phase i. Having total volume concr aggregate filler water cementV V V V V    , we 

can calculate phase fractions /aggregate aggregate concrf V V  and similarly for the remaining phases.  

Heat capacity and its evolution of cement paste (cement+water) were studied in (Bentz 2007) at 
230C for w/c between 0.3 and 0.5. The capacity of fresh cement paste yields 
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 ˆ
concrete aggregate aggregate filler filler pasteC f C f C C    (5.69) 

where concreteC is the concrete capacity (per unit volume) and akin for aggregate, filler, and cement 

paste. The last term, i.e.,  pasteC  also depends on the degree of hydration   and is calculated by 

  ˆ ( ) 1 0.26(1 exp( 2.9 ))paste cement cement water waterC f C f C       (5.70) 

where cementC  is cement capacity at time zero. 

The heat capacity of structural concrete spans the range between 0.8 and 1.17 Jg-1K-1.  A former 
Czech standard  CSN 731208 declares 840 and 870 Jkg-1K-1

 for dry and saturated mature concrete, 
respectively. aggregateC  is approximately  840 Jkg-1K-1

  for basalt and limestone, 790 Jkg-1K-1
  for 

granite, 800 Jkg-1K-1
  for sand. cementC  is about 750 Jkg-1K-1

  and waterC is 4180 Jkg-1K-1
  . 

 

Heat conductivity  

The thermal conductivity of cement paste was found to remain in the range 0.9-1.05 Wm-1K-1
 for 

an arbitrary degree of hydration, for both sealed and saturated curing conditions, and for w/c 
from 0:3 to 0.4 (Bentz 2007). Water in the capillaries has a thermal conductivity 0.604 Wm-1K-1 
(Bentz 2007). The thermal conductivity of hardened concrete varies between 0.85 and 3.5 Wm-

1K-1  (Neville 1997) p.375, depending strongly on an aggregate type. 

Thermal conductivity also depends on the saturation state of concrete. For example, a structural 
concrete made from normal-weight aggregate with a unit mass of 2240 kg/m3

  yields   = 1.696 
Wm-1K-1   for protected and 1.904 for weather-exposed conditions (Neville 1997), p. 376. 

 

Figure 7-1.  Thermal conductivity of concrete according to the Czech code CSN 731209. 

Figure 7-1 summarizes thermal conductivities for ordinary concrete depending on concrete unit 
mass and saturation conditions, according to (Neville 1997) and a former Czech standard  CSN 
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731208.  The latter considers 1.5 for a dry concrete and 1.7 Wm-1K-1   for a water-saturated 
concrete. 

Faria et al. (Faria, Azenha et al. 2006) applied the evolution of concrete conductivity with 
regards to    

  0 1.0 0.248      

where   is the conductivity of fully hardened concrete, i.e., in infinite time. 

The model implemented in Atena, i.e., CCTransportMaterialLevel3 stems from homogenization 

theories. Consider conductivity of cement paste paste  and aggregates aggregate such that  

paste aggregate  . Corresponding volume fractions are ,paste aggregatef f . Hashin-Shtrikman lower 

,concrete low and upper bounds ,concrete upper  are (Bentz 2007) 
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 
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 

 

 (5.71) 

The presented model uses average conductivity, i.e. 

  . , , , 1.33 0.33
2

concrete low concrete upper
concrete

 
  

   (5.72) 

Figure 7-2 considers paste =1.0 Wm-1K-1    and aggregate  = 2.0 Wm-1K-1   . Volume fraction of 

aggregates varies from 0 to 1. Important thermal conductivities: limestone 1.26 - 1.33, sandstone 
1.7, granite 1.7 - 4.0 Wm-1K-1   . 

The above equations for homogenization are written for phases paste-aggregates. In ATENA, the 
homogenization is carried out as follows: 

1. homogenize phases cement - water -> phase paste. 

2. homogenize phases paste - filler -> phase paste with filler 

3. homogenize phases  paste with filler - air -> phase paste with filler and air 

4. homogenize phase paste with filler and air - aggregates -> concrete 

Note that filler and aggregate are in this case treated as one component, and the same applies for 
water and cement (being the component paste). The volume averaging technique is used to 
calculate the corresponding properties of paste and mixed aggregate.  



ATENA Theory  305 

 

Figure 7-2 Predicted thermal conductivities of concrete from bounds. 

Moisture consumption due to hydration 

It is assumed that 1 kg of cement (in concrete) approximately consumes during the full hydration 
process about ,w potQ  of water. Typically ,w potQ =0.42 kg of water per 1 kg of cement. Thus, e.g. 

concrete mixture with 300kg cement per 1m3 of concrete needs 300*0.42=126kg o water per 1m3 of 
concrete. Assuming linear dependence of water hydration consumption hw  on concrete hydration 
level  , ( 0  for fresh concrete and 1  for fully hydrated concrete) the water sink term due to 
hydration is 

 ,
h h

h t

w w
C

t t




  
 

  
 (5.73) 

 , ,[kg]h w potw Q c  (5.74) 

where c stands for weight of cement in 1m3 of concrete. 

 

Moisture capacity 

The moisture content at unit volume -3,[kgm ]w is calculated a simple expression 

 
 1

f

b h
w w

b h





 (5.75) 

where -3,[kgm ]fw  is the free water saturation and b is the dimensionless approximation factor, 

which must always be greater than one. It can be determined from the equilibrium water content 

80w  at relative humidity 0.8h  by substituting the corresponding numerical values in equation 

(5.75): 

 80

80

( )f

f

h w w
b

w h w





 (5.76) 
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Moisture capacity -3, kgmC     is calculated as derivative of moisture content with respect to h : 

 
 

 2

1f
h

w b bw
C

h b h


 
 

 (5.77) 

The above expression is applicable for analyses using reference unit volume. If reference unit  

weight of the structure is preferred, then we employ moisture capacity  / , kg/kgC C  , where 

 is concrete density, 3kg/m   . 

Moisture diffusion 

The present model accounts for the diffusivity mechanism of moisture transport. It is valid for 
dense concrete, which has not mutually connected pores and moisture convection thru pores 

(being driven by water pressure) can be neglected.  Hence, moisture flux
2

,h

kg
q

m s

 
 
 

 is calculated 

by the equation h hq h  D , where total moisture diffusivity ,h

kg
D

m s

 
 
 

 is calculated as sum of 

water w
hD  and water vapor  wv

hD diffusivity: 

 w wv
h h hD D D   (5.78) 

Water liquid diffusivity w
hD is calculated  

 

 w w
h w

w
D D

h





 (5.79) 

where water diffusivity 2, /w
wD m s    is  
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w

 
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 

  (5.80) 

and A  is the water absorption coefficient 
2 0.5

kg

m s

 
 
 

 . 

Water vapor permeability  is computed from water vapor pressure-driven diffusivity 

kg
,

ms Pa
wv
pD

 
 
 

:  

 wv
pD




  (5.81) 

 where    is the water vapor diffusion resistance factor and   is the vapor diffusion coefficient 

in air 
kg

ms Pa

 
 
 
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 (5.82) 

Atmospheric pressure 101325Paap  ,  gas constant -1 -18314.41Jkmol KR  and molar mass of 

water is -118.01528kgkmolwM   

 As in the presented model, relative humidity h is the primary variable used to analyze moisture 

transport,  wv
pD  must be transformed to wv

hD  . This is done by: 

 
( )wv wv wv wvsat

h p p p sat

p hp
D D D D p

h h


  

 
 (5.83) 

Any expression to calculate the pressure of saturated water vapor can be used. The presented 
model uses 

  0611 , Pa
aT

T T
satp e

 
 

   (5.84) 

In the above T is temperature [ o C ] and the remaining parameters  are 

0 00 : 234.18 , 17.08; 0 : 272.44 , 22.44o oT T C a T T C a        

Some guidelines towards the model's parameters 

Fitted parameters for cement paste hydration need to be considered for each concrete separately. 
Due to high cement variability, it is impossible to assign one particular cement to one concrete 
grade.  The user needs first to select the cement parameters from the following table: 

 

 

 

 

 

 

Table 7.3-1 Parameters of affinity hydration model used for CEM I. 

 

The above table is based on fitting predicted results from CEMHYD3D analysis by (5.59), see 
Table 7.3-5 and Figure 7-3. The simulations were carried out on CEMHYD3D’s microstructures 
50 × 50 × 50 µm and with the activation energy 38.3 kJ/mol. Saturated curing conditions were 
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assumed since sealed conditions will be obtained from coupling with moisture transport. Table 
7.3-5 specifies input data for selected Portland cements. 

   

Figure 7-3 Fit of selected cements to the affinity model, w/c = 0.4 

The  majority  of  concretes  is  produced  from  blended  cements (CEM II - CEM V); hence it is 
necessary to scale down Q pot by approximately 30 %. This is a common Portland clinker 
substitution in the majority of blended cements in Europe. 

There are other default parameters, which are not specified here: QW POT= 0.42, TH INIT = 0, 
ALPHA INIT = 0, TEMPERATURE INCR MAX =0.1, H80 = 0.8, TEMP0 = 234.18, A WV = 
17.08, TEMP0 ICE = 272.44 ,A WV ICE = 22.44 

The parameter A ≈ 7.5 expresses hydration slow-down with regards to relative humidity.   The 
hydration practically stops at  ≈ 0.8.  

Parameters in Figure 7-1 are computed for saturated state.  When   = 1, the hydration proceeds 
as there is saturated water environment around concrete. Under standard circumstamces, 
hydration consumes water, which decreases relative humidity in the calculation. Three 
parameters are related to moisture transport and are given for ordinary structural concrete: 

 W80 expresses total mass of free water at  =80%. Standard value is 50 kg/m 3 for 
structural concrete. 

 A W is water absorption coe�cient, whose value spans the range 0.25-0.846 kgm− 2 h 
0.5 ]. 

 MI WV is the water vapor di�usion resistance factor, spanning 210-260 [-] for structural 
concrete. 
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Parameters specifying specific heat capacity for concrete components are summarized in Table 
7.3-2. Values are obtained from http://www.engineeringtoolbox.com/density-solids-
d_1265.html, http://www.engineeringtoolbox.com/specific-heat-solids-d_154.html 

Parameters specifying specific heat conductivity for concrete components are summarized in 
Table 7.3-3.   Sources from http://www-odp.tamu.edu/publications/192_SR/109/109_5.htm 

Concrete strength classes strongly depend on the amount of cement in concrete.   Table 7.3-4 
specifies approximate compositions for major concrete classes used in EN 206-1.  The 
calculation assumes 5 % of entrained air in the concrete, cement density 3220 kg/m 3 and 
aggregate density 2800 kg/m 3 . 

Table 7.3-2 Parameters specifying density and specific heat capacity for concrete components 

 

 

 

 

Table 7.3-3 Parameters specifying specific heat conductivity for concrete 
components

 
Ready-mix concrete is assumed,  which requires rather higher w/c due to workability and 
pumping issues. The parameters CEMENT DENSITY, WATER DENSITY, AGGREGATE 
DENSITY, FILLER DENSITY are provided in Table 7.3-2 in the units [kg/m 3 ].  

Table 7.3-4 Approximate composition for major concrete classes used in EN206-1 
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Table 7.3-5 CEMHYD3D parameters for fittiong of affinity hydration model. 
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7.4 Fire Element Boundary Load 
When undertaking heat transfer calculations, it is important that relevant thermal properties of 
materials and heat transfer coefficients at the boundaries are defined for the entire temperature 
interval of the load. 

7.4.1 Hydrocarbon Fire 
Hydrocarbon fires are those sustained by hydrocarbon-based products, such as chemicals, gas, 
and petroleum. Depending on the heat load, different HC-curves can be derived in accordance 

with Equation (5.85). The magnitude of the maximum temperature of the radiation source ( 1T ) is 

crucial for the time temperature development. The nominal HC-curve is represented by the heat 
load 200 kW/m2 and reaches maximum temperature of 1100 °C. The curve representing 345 
kW/m2 is called the "modified" or "increased" HC-curve for tunnel applications. It reaches at 
maximum 1300 °C. 

 0.167 1.417 15.833
1( ) (1 0.325 0.204 0.471 )t t tT t T e e e       (5.85) 

where: 

( )T t = temperature of radiation source as function of time [°C], 

1T = maximum temperature of radiation source [°C] according to (5.85) 

t = time [minutes] 

Time development of temperature of the radiation source is depicted in the figure below. For 
time 0t   Equation (5.85) yields (0) 0T   and hence, it is necessary to supplement (5.85) by 

requirement ,( ) ambiant iniT t T , where ,ambiant iniT is initial ambient temperature prior the fire broke 

up, (typically something about 20 °C). 

 

Fig. 7-3 Temperature of radiation source 
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7.4.2 Fire Exposed Boundary 
The nature of the structural ambient conditions is essential for the determination of the 
temperature fields. Depending on the geometry, view factors, and ambient conditions, various 
types of boundary conditions may be considered. 

Fire exposed boundary 

The heat is transferred from the fire gas to the exposed structure through radiation and 
convection. At high temperatures, the radiation dominates. The radiation is expressed by the 
resulting emissivity factor, which takes into account the emissivity of the fire source  , and 
absorptivity of the heated surface  . The convection is calculated from the temperature 
difference between the structure and ambient gas, depending on the gas velocity. Emissivity and 
convection factors used for exposed surfaces are shown below  

 
2

0.56, [ ]

50,

r

c

W
h

m K

  

    

 (5.86) 

The convection and emissivity heat flux on a boundary exposed to fire is calculated as follows: 

 4 4( ) ( )n c g b r g bq h T T T T      (5.87) 

where 

 = Stefan-Boltzmann constant [5.67x10-8 W/m2 K4], 

gT = absolute temperature of radiation source [K], 

bT =boundary temperature of the structure, 

r = resulting emissivity factor of the radiation source and the heated surface [-], 

nq = heat flow at the fire exposed boundary [W/m2],  

ch  = convection heat transfer coefficient [W/m2K].  

Adiabatic boundary 

Adiabatic boundary surface refers to a boundary surface, where no heat can pass in (and/or out) 
the structure. Structural symmetry lines and areas are good examples of this boundary 
conditions. 

7.4.3 Implementation of Fire Exposed Boundary in ATENA 
The described fire boundary load conditions are ATENA modeled by 
CCFireElementBoundaryLoad load. It is essentially an element boundary load that applies the 

heat flow nq  at the element boundary, i.e., at a surface exposed to fire. Unlike other loads in 

ATENA (that are of incremental nature and constant within one load step), this load is 
considered variable and has kind of a total load. 

Four types of heat source definitions are implemented: 
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 Nominal HV fire – Temperature of the heat source is calculated by (5.85) and 1T  (unless 

it is manually inputted as temp_g_ref)  is set to 1100 [°C].  

 Modified HC fire – This definition is much the same as the above with the only 
difference that default value for 1T  is 1300 [°C]. 

 Generic fire (also refered to as User curve fire) - Temperature of the heat source is 
assumed constant and is set value of temp_g_ref . If temp_g_ref  is not inputted, then 
1100 [°C] is used. 

In any case, the generated (or directly inputted) curve for ( )T t  can be additionally modified in 

time by a user-supplied function time_id. The function takes one parameter, which is time of the 
fire and it specifies a coefficient by which the generated initially (or inputted) boundary 
conditions should be multiplied. Of course, load variation in space can be modified by coeff_x, 
coeff_y coefficients etc. in the same way as for any other generated element load, (for more 
details see Atena Input file manual). 

7.5 Moisture-Heat Element Boundary Load10 
This type of boundary load is used for modeling heat and moisture fluxes from the structure to 
the ambient air. Hence, it is typically applied as a boundary element load on external surfaces of 
the structure.  It resembles the fire boundary load described above and is implemented in a 
similar way. 

The moisture flux consists of three parts.    

  
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 (5.88) 

 

The first part ,1hq  includes moisture flux driven by the gradient between ambient and surface 

relative humidity gh and bh . cwh stands for moisture convection coefficient of the concrete-air 

interface. The second part ,2hq , accounts for moisture flux due to evaporation driven by the 

gradient of humidity air ratio at the interface, i.e., bx and gx with the evaporation coefficient  . 

By default 
2

(25 19 ),
kg

v
m s
      

, where v is ambient air velocity, [m/s].  For more information, 

see http://www.engineeringtoolbox.com/evaporation-water-surface-d_690.html. 

                                                 
10 Available starting from ATENA version 5. 
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The humidity air ratio, [-] is calculated as follows (i reflects conditions in ambient air, i.e., i=g, 
or in the surface of the structure i.e., i=b): 

 , ,wv i wv i
i

a a

m
x

m




   (5.89) 

 

It is calculated at state variables ,i ih T , i.e., relative humidity and temperature at i conditions. 

In the above , ,, , ,wv i wv i a am m   is mass and density of water vapor in REV corresponding to i 

conditions and mass and density of dry air, [kg/m3], respectively. 
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 (5.90) 

where aM  is weight of 1kmol of dry air (assumed 28.96aM  kg/kmol). R  is gas constant, 

(R=8313JK-1), Ti  is the temperature in oC. ap is the partial pressure of dry air, [Pa] 

 .a i vw satp p h p   (5.91) 

Here p stands for total air pressure (typically normal air pressure p=101325Pa), hi is relative 

humidity and .vw satp is the partial pressure of saturated water vapor at Ti, (see 

http://en.wikipedia.org/wiki/Density_of_air) 
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The density of water vapor at i th conditions is calculated similar to (5.90): 

 ,
,

( 273.15)
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

 (5.93) 

In the above wvM  is the weight of 1kmol of saturated water vapor, (assumed 18.06aM  kg/km. 

 

The third part is moisture flux evaporated from concrete calculated by CEMSTONE, see 
http://www.cemstone.com/concrete-evaporation-forecast-engineers.cfm.  It yields nearly the 
same values as provided by ACPA calculator; see 
http://www.apps.acpa.org/apps/EvaporationCalculator.aspx. ,Cg CbT T  is the ambient and surface 

temperatures in Celsia.  

 

The heat flux also consists from two parts. 
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The first part of the heat flux Tq  represents the usual flux due to heat convection and emission. 

Its computation resembles (5.87). cTh  stands for heat convection coefficient of the concrete-air 

interface 
2

W

m K
 
  

 , rT  is heat emissivity coefficient [-],  ,Kg KbT T  are ambient and surface 

temperatures in Kelvins  and    is Stephan-Boltzmann constant , 
2 4

5.67 8,
W

E
m K

      
. The 

second part takes into account heat consumption due to the evaporation of moisture flux. By 

default 2270,we

kJ
h

kg

 
  

 
is assumed.   More information available at 

http://www.engineeringtoolbox.com/evaporation-water-surface-d_690.html.  

Both moisture and heat fluxes are typically computed using only their first or second part. 
Therefore, the related ATENA input commands allow reading some boolean flags that specify, 
which parts of the above fluxes should by accounted for and which should be skipped. For more 
information, refer to the ATENA input file manual.  
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8 DYNAMIC ANALYSIS 
 
ATENA software support four methods to execute dynamic analyses. These are: 

 Newmark's   method,  

 Hughes   method (Hughes 1983), 

 Wilson    

 Modified  Wilson  .  

 

Note that Hughes  method with 0   reduces to Newmark's   method and  Modified  Wilson 

  is just an extension to  Wilson  . 

The governing equations for dynamic analysis read: 

 

       
Hughes method:

1 α α 1 α α 1 α α

Newmark method:

(Modified) Wilson method:

t t t

t t

t t
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 

 

  

 (5.95) 

where 

, ,t t t t t tu u u     is acceleration, velocity, and displacement at a time t t  , (similar for time t 

and t t   ),  

 , ,M C K  is mass, damping, and stiffness matrix, respectively, 

R  is the vector of external forces, i.e., concentrated loads, 

  is the Hughes damping parameter. 

They are is solved for displacement at time t t   .  The displacement, acceleration and velocity 

at time t t    is calculated as functions of (already known) , ,t t tu u u   and displacement 

increments t tu u   .  If l-th iteration is solved, then we solve for displacement increment 

u and  
1

l
t t

k
k

u u



     
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  (5.96) 

 

Substituting (5.96) into (5.95) and after some mathematical manipulation, the requested 
displacement increment at iteration l can be calculated: 

 inv
eff effu R  K   (5.97) 

where (for using structural damping M K  C M K ) effective stiffness and RHS vector are: 

 
1 2 1 2

0( ) ( )

eff M K

eff M M K KR

 

    

 

    

K M K

M K
  (5.98) 

 

The coefficients above are calculated using the following expressions. They are summarized (by 
solution method): 
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The parameters ,   are the integration parameters used by Newmark   and Hughes   

method.  Their value is essential for convergence of this time marching scheme. It can be shown 

that  
1 1

,
2 6

    corresponds to linear acceleration within the time step. Values  
1 1

,
2 4

    

yield constant acceleration. The integration scheme is unconditionally stable, if 

21 1
, 0.25( )

2 2
      and it is only conditionally stable for 21 1

, 0.25( )
2 2

      provided 

that the stability limit is fulfilled: 
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 (5.102) 

where   is the modal damping parameter. 

The above defines the condition for time increment t  for a linear conditionally stable case: 
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 (5.103) 

 

As for Wilson   and Modified  Wilson  method, they use   parameter. Its value is 1   and 
the scheme is unconditionally stable for 1.4  . It essentially specifies the time, for which time 
we calculate the governing equations (5.95), i.e t t   .  For  1   Wilson   and Modified  
Wilson  method yield the same solution expressions and equations, and these are also the same 

as those for Newmark and Hughes methods with 
1 1

, , 0
2 6

     . 

Modified Wilson  method assembles the governing equations for time t t  . As a result, all 
Von Neumann boundary conditions must be given for t t  , (e.g., concentrated load, load by 
MASS_ACCELERATION etc.).  It does not apply to Dirichlet boundary conditions that are (as 
usually) input for t t   (e.g., prescribed displacement, acceleration etc.).  

The fact that the Modified Wilson  method executes for t t  also affects output/draw of 
results in structural material points. Within iterations (e.g., for monitors at iterations), they are 
printed/drawn for  t t  . After the iterations process has been completed, they are 
printed/drawn for  t t   as usual. Internal forces are always printed for t t   and the same for 
external forces. 

As described above Modified Wilson  method behaves in a bit nonstandard way. Particularly 

input for t tR    is unpractical. To alleviate these difficulties and inconvenience, Atena also offers 
Wilson   method. Although it still solves the governing equations for time t t  , it uses 

several extrapolations (e.g., ( ), ( )t t t t t t t t t t t tR R R R F F F F             ) so that it 

suffices with t tR   and t tF   only. Consequently, it inputs all boundary conditions and 
print/draw all result for t t   akin to any other solution method for dynamic analysis. On the 
other hand, it is at price of accuracy because the extrapolation is linear, whereby the loading and 
internal forces are not!    

Remind that for dynamic analysis, concentrated forces, element body/boundary load, etc., is 
input in the incremental form, and it is "cumulated" in the structure. The same applies to 
prescribed displacements.  

Prescribed velocities, accelerations, etc., must be input as total load. MASS_ACCELERATION 
must also be input in total values (and in each step, it is also recalculated from scratch).   

 

More details on the methods' convergency can be found in (Hughes 1983) and (Wood. 1990). 

 

8.1 Structural Damping  
As far as damping matrix C is concerned, Atena uses the well known proportional damping: 
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 M K  C M K  (5.104) 

where ,M K   are user-defined damping coefficients. These coefficients can be directly set as 

user input data, or they can be generated based on knowledge of modal damping parameters  . 

The parameters   are defined by 

 ( ) 2T T
i i i M K i i i        C M K  (5.105) 

where: 

i  is i-th structural eigenvector, 

i  is i-th structural eigenmode, 

i  is modal damping parameter associated with i  and i . 

Using the fundamental properties of eigenmodes 1,T T
i i iM K      , we can rewrite (5.105)  

 2M K i i i      (5.106) 

Equations (5.104) introduces 2 parameters for damping and, thus, if only 2 values of i  are to be 

used, they are directly substituted in (5.105), (resp. (5.106)) and solved for from this set of 
equations. 

However, in practice, structural damping is more complicated and some sort of compromise 
must be done. In this case, structural damping properties are typically measured for more 

eigenmodes, and optimal values of coefficients ,M K   are calculated by the least square method, 

i.e., we are seeking a minimum of the expression  2
2M K i i i     .  It yields the following 

set of equations 
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 (5.107) 

 which is used to calculate the required damping parameters ,M K  .  

There exist other assumptions to account for structural damping; however, their use is typically 
significantly more complex and more costly in terms of both RAM and CPU.  
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8.2 Spectral analysis  
A proper selection of the solution time increment dt is essential for each dynamic analysis. If it is 
too large, the computed results will suffer from unacceptable inaccuracies. We will probably 
miss some important peaks in the loading history, and the analysis as a whole may even diverge. 
On the other hand, the use of a too-small value of dt will yield an analysis that is pointlessly 
expensive in terms of execution time and its demands towards CPU/RAM resources. In addition, 
its postprocessing is more laborious and prone to errors. 

The spectral analysis described in this section is designed to assist the engineer in setting suitable 
dt. The main idea of the procedure is based on approximation of the structural loading ( )f t  by 

Fourier series ( )FTf t  , i.e. ( ) ( )FTf t f t , refer e.g., to http://en.wikipedia.org/wiki/Fourier_series 

. Both ( ), ( )FTf t f t  have one independent variable, which is structural time t  .  

The function ( )FTf t is assembled in the following form: 

 0
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where N denotes the number of harmonics used for the approximation, n is harmonic-th id and 
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 
 

 and  
2

cos nt
T

 
 
 

 are n-th approximation functions, (i.e., n-th harminics). Eqn. 

(5.108) is suitable for approximation of a function (e.g. ( )f t ) in interval 0...t T  .  Its 

Fourier coefficients are calculated as follows, see 
http://stelweb.asu.cas.cz/~slechta/fourier/fourier.html , 
http://www.mathstools.com/section/main/fourier_series_calculator#.VCFKkhZIpKI: 
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  (5.109) 

 

Now let us introduce a coefficient 2 2
n n nc a b    and create a spectrum diagram of the loading. 

For each harmonic from (5.108), plot a point, whose coordinates are  '2
, nn c

T

 
  

. Such a point 
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shows how much important is the nth harmonic (i.e., the harmonic with circular frequency 
2

n
T


) for the loading function, i.e., how much it is excited by the load function ( )f t .  

The recommended solution time increment should be set so that the highest important harmonics 
are integrated in about 10 steps, i.e.,  

 min( )
10significant

T
dt n   (5.110) 

 

By default, the FFT analysis uses a full modal spectrum, i.e., 1..n N  in (5.108). However, the 
modal spectrum can be filtered, e.g. 1 1 2 2 1.. , .. ,... .. ,... ..k k Ln n m n m n m n m . In this case, only values n 

from within the L intervals are used. This technique can be used to filter out some noise signals, 
etc. 

 

Let's take an example: Assume a simplified ElCentro accelerogram loading conditions, whose 
acceleration in time are depicted by the green line in the figure below: 

 

 

Let's approximate this function by the Fourier series. In the first case, we use 300 harmonics, i.e., 
300N  . The approximated accelerations are shown by the blue line, as seen in the figure 

above. In the second case, we use only 50 harmonics, and the corresponding approximation 
function is drawn by the red line. Plotting the functions in more detail, it can be seen that the 
approximation with 300N   is fairly accurate whilst the approximation with 50N   is rather 
crude, see the figure below. This conclusion is endorsed by the calculated average relative 
absolute error of the approximations. These are respectively 0.0314256 and 0.878789 
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The spectrum diagram below shows the contribution of individual approximation harmonics. It 
detects what harmonics are or are not important. Looking at the diagram, we see that the highest 
important harmonics is the one with log10( ) 1nT   , i.e. min 0.1T  . Therefore, the recommended 

solution time increment is min 0.01
10

T
dt   . This dt should ensure reasonably accurate results 

from dynamic analysis of a structure that is loaded by the investigated accelerogram.    
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The described spectrum analysis is fully supported by Atena (incl. all the plots). Its use is simple 
as it requires only a few input commands. For more details, please refer to the examples of 
commands for the input of a multilinear function (in the Atena input file documentation).  
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9 EIGENVALUES AND EIGENVECTORS ANALYSIS  
This section describes methods used by ATENA software to calculate structural eigenvalues 
and eigenvectors. Good knowledge of eigenmodes of a structure is, in many cases, essential 
for understanding its behavior and selection of a method for its further analysis. It applies to 
statics and particularly to dynamic analyses, in which case it helps to choose a proper time 
increment in subsequent loading steps. It also helps in avoiding or reducing oscillation of the 
structure. 

9.1 Inverse Subspace Iteration 
Currently, ATENA uses the Inverse subspace iteration method to compute the eigenvalues 
and eigenvectors.  The method is in detail described in (Bathe 1982), and hence, only its main 
features are presented here. The current implementation can be used only for symmetric 
matrices. The same applies to Jacobi and Rayleigh-Ritz methods that are mentioned later in 
this section. 

It consists of three methods; each of them is capable of solving the eigenvalue problem on its 
own. However, if they are used simultaneously, they yield a very efficient scheme for solving 
eigenvalues and eigenvectors of large sparse structural systems. The significant advantage of 
this approach is that it is possible to search for a selected number of the lowest eigenmodes 
only. The lowest eigenmodes are typically the most important for the behavior of the structure 
because they represent the highest energy that the structure can absorb. On the other hand, the 
highest eigenmode is of low importance, can be neglected, and thereby save a lot of CPU time 
and other computational resources.  

The Inverse subspace iteration consists of   

 Inverse iteration method 

 Rayleigh-Ritz method 

 Jacobi method    

It solves general eigenvalues and eigenvector problem of  the following form: 

 2u uK M  (8.1) 

where 

K,M  is stiffness and mass matrix of structure, 

u is the vector of eigenvector’s nodal displacements, 

  is circular eigenfrequency 

We are looking for a non-trivial solution, so that we solve for 2  that comes from 

 2det( ) 0 K M  (8.2) 
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9.1.1 Rayleigh-Ritz Method 
This method is used to transform the original eigenproblem of dimension n into an associated 
eigenproblem of dimension m<<n. The solution is to search in space m nV V . Let vectors 

k  constitute linearly independent bases in nV . An eigenvector iu  is computed as a linear 

combination ic  of the base vectors k  , i.e. 

 i iu c Ψ  (8.3) 

where 

Ψ  is the matrix of base vectors , 1..k k m  , 

ic  is the vector of coefficients of the linear combination. 

Rayleigh quotient is defined as  

 ( )
T
i i

i T
i i

u u
u

u u
 

K

M
 (8.4) 

It can be proved that ( )iu  converges from the upper side to the corresponding circular 

frequency 2
i . The condition of a minimum of ( )iu  yields: 

 
,

( )
0, 1..i

i k

u
k m

c


 


 (8.5) 

where  ,i kc  is k  component of the vector ic  

If we introduce 

 ,T T A Ψ KΨ B Ψ MΨ  (8.6) 

the condition (8.5), after substituting (8.6), results in  

 2
i i ic cA B  (8.7) 

which is an equation of eigenproblem of matrices A,B. This problem has dimension m, which 
is significantly smaller than the original dimension n.  

9.1.2 Jacobi Method 
Jacobi method is used for the solution of full symmetric eigensystems of lower dimension. In 
the frame of the Inverse subspace iteration method, it is used to solve (8.7). (Note, however, 
that that the eigenproblem (8.7) can be used by any other method). 

The Jacobi method is based on the property that if we have a matrix A, an orthogonal matrix 
C, and a diagonal matrix D, whereby 

 T C AC D  (8.8) 
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then the matrices A and D  have identical eigenvalues, and they are diagonal elements of the 
matrix D.  The transformation matrix C is calculated in an iterative manner 

 1 2....... , 1..k k  C S S S  (8.9) 

where the individual   kS  has the following form 

 

1 0 0 0

1

1

0 cos( ) 0 sin( ) 0

0 1 0

0 sin( ) cos( ) 0

0 0 0 1

kS  

 

 
 
 
 
   
 
 
 
  

 (8.10) 

The entries cos( ), sin( )   are put in i,j rows and columns, and they are constructed in the 

way that they will zeroize ija  after the transformation. The other diagonal elements are equal 

to 1 and the remaining off-diagonal elements are 0. 

In the case of a general eigenproblem, the whole procedure of constructing kS  is very similar. 

The matrices kS  now adopt the shape 

 

1 0 0 0

1

1

0 1 0 0

0 1 0

0 1 0

0 0 0 1

kS a

b

 
 
 
 
   
 
 
 
  

 (8.11) 

Notice that the matrix kS  is not orthogonal anymore. The two variables a,b are calculated to 

zeroize off-diagonal elements i,j of both matrices K and M. Eigenmodes of the problem are 
then calculated as  

 
'

2
'
ii

i
ii

a

b
   (8.12) 

where   ' ',ii iia b  are diagonal elements of transformed (and diagonalized) matrices A, B.  

Eigenvectors of the problem are columns of the transformation matrix C. 

9.1.3 Inverse Iteration Method 
Inverse iteration method is carried out as follows: Starting with an initial transformation of 

eigenvector ,1iu , we calculate a vector of corresponding inertia forces (step 1)  
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 ,1 ,1i if u M  (8.13) 

Knowing ,1if , we can compute a new approximation of iu , (step 2) 

 1
,2 ,1i iu K f  (8.14) 

and repeat the step 1.  Hence, for iteration k we have  

 
, ,

1
, 1 ,

i k i k

i k i k

f u

u K f






M
 (8.15) 

and the iterating is stop, when , 1 ,i k i ku u  . The above-described algorithm tends to converge 

to the lowest eigenmodes. If any of these are to be skipped, the initial eigenvector ,1iu  must be 

orthogonal to the corresponding eigenvectors. In practice, the vector ,i ku  must be 

orthogonalized with respect to the skipped eigenvectors even during the iterating procedure, 
as the initial orthogonality may get (due to some round-off errors) lost. 

9.1.4 Algorithm of Inverse Subspace Iteration 
Having briefly described the above three methods, we can now proceed to the actual solution 
algorithm of the Inverse subspace iteration method itself: 

 

1

1 1 1

1 1 1

1 1 1 1

1 1 1

Step1- Inverse iteration method:

Step 2-Raylegh quotient method:

Step3 Jacobi method:

Step 4-Correct theeigenvectors:

k k

T
k k k

T
k k k

k k k k

T T
k k k



  

  

   

  













2

KU MU

A U KU

B U MU

A C B C Δ

U U C



 

 



 (8.16) 

In the above 

m is the number of projection eigenmodes (reasonably higher than the number of required 
eigenmodes),   

kU  is the matrix of columnwise arranged m eigenvectors after k- th iteration, 

1kA , 1kB  are transformed stiffness and mass matrices of the problem, (having dimension 

m<<n), 

1kC  is the matrix of eigenvectors of  1kA , 1kB , see (8.9) 
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2Δ  is a matrix with eigenmodes (on its diagonal). Notice that eigenmodes for transformed and 
the original eigenmode problem are the same. 

  

The steps 1 thru 4 are repeated until the difference between the two subsequent operations is 
negligible. 

The solution algorithm (8.16) is in ATENA a bit modified in order to reduce CPU time and 
RAM resources and is described below: 

 

1

1 1

1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1
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ˆ

ˆ
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ˆ
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  



  

1 1 1

ect theeigenvectors:
T T
k k k  U U C  (8.17) 

The advantage of this procedure over the one defined in (8.16) is that now you don’t need to 
store the original and factorized form of the matrix K. Only the factorized form is needed 
during the iterations. 

A special issue in this method is how to set up the initial vectors 1U . This is what we do in 

ATENA. The first vector contains the diagonal elements of M. The next vectors are 
constructed in the way that they have zeros everywhere except one entry. This entry 

corresponds to maximum ii

ii

m

k
 and is set to 1. 

The procedure as it is (because of the Inverse iteration method) cannot solve for zero 
eigenmodes. This may be a problem, especially if we want to analyze structural rigid body 

motions or spurious energy modes. If this is the case, shift matrix K  by an arbitrary value s , 

i.e., solve the associated eigenproblem 

 2( )s s s su u  K M M  (8.18) 

The original eigenvalues and eigenvectors are then calculated by 
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2 2

s

s s

u u

  



 
 (8.19) 

Another problem of Inverse subspace iteration is to compute multiple eigenvectors. 
Unfortenatly, it is not that rare case and it happens, e.g., if the structure has an axis of 
symmetry. The occurrence of multiple eigenmodes in the structure may yield non-orthogonal 
eigenvectors, and thus, some eigenmodes can be missed. There are some techniques for 
resolve this problem (Jendele 1987); however, they have not been implemented in ATENA 
yet. Good news is that in reality, no eigenmodes are usually quite identical due to some 
round-off errors. The case of multiple structural eigenmodes thus typically causes only some 
worsening of accuracy and no eigenmode gets missed. 

Nevertheless, if we want to be sure that no eigenmode was missed, we can assess it by Sturm 
sequence property test.  

9.1.5 Sturm Sequence Property Check 
This property says (Bathe 1982) that if we have an eigenproblem (8.1), perform a shift s  and 

factorize that matrix (i.e., D is a diagonal matrix, L is a lower triangular matrix), 

 T
s K M L DL  (8.20) 

then the number of negative diagonal elements in D  equal to the number of eigenvalues 
smaller than the shift   . This way, we can simply test, whether we missed an eigenvalue 
with the calculated set of m eigenmodes or not 

There are other methods that can be used to compute eigenvalues and eigenvectors of large 
sparse eigensystems. Particularly popular is e.g., Lanczosh method (Bathe 1982). There exist 
also several enhancements for the present Inverse subspace iteration method. For instance, 
using a shifting technique may significantly improve the convergency of the method 
(especially if some eigenvalues are close to each other).  

These improved techniques may be implemented in the future. In any case, the current 
ATENA implementation of eigenmodes analysis proves to solve the eigenmodes problem in 
most cases quite successfully.     
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10 GENERAL FORM OF DIRICHLET BOUNDARY CONDITIONS 
A unique feature of ATENA software is the way in which it implements Dirichlet boundary 
conditions. It supports to constraint any degree of freedom (DOF) by a linear of any number 
of other structural DOFs. The proposed method of applying and processing the boundary 
conditions is computationally efficient and memory economical because all constraint degrees 
of freedoms (DOFs) are eliminated already during assembly of structural global stiffness 
matrix and load vectors. The adopted concept has a wide range of use, and several of its 
possibilities are discussed. At the end of the Section, a few samples are given.  

10.1 Theory Behind the Implementation 
A crucial part of a typical finite element analysis (whether linear or nonlinear) is the solution 
of a set of linear algebraic equations in the following form 

 
1

, 1..
n

ij j i
j

K u r i n


   (9.1) 

where ijK  is an element ,i j  of a predictor matrix K, (i.e., usually structural stiffness matrix), 

ir  is an external force (or unbalanced force), applied into i-th structural degree of freedom 

(DOF), and finally iu  is displacement (or displacement increment) at the same DOF. Such a 

set of equations is always accompanied by many boundary conditions (BCs). They can be one 
of the following: 

Von-Neumann boundary conditions, (also called right-hand side (RHS) BCs). Number and 
type of these BCs have no impact on dimension n of the problem (9.1). They are accumulated 
in the vector r . This vector is assembled on the per-node basis for concentrated nodal forces 
and/or per-element basis for nodal forces being equivalent to element loads.  

The second type of boundary conditions are Dirichlet boundary conditions (also called left-
hand side (LHS) BCs). ATENA implementation of this type of BCs is now described. A 
simple form of such BCs reads 

 
0

0, 1,

, 1,
l

l l

u l n

u u l n

  

  
 (9.2) 

These kinds of BCs typically represent structural supports with no displacements (the first 
equation) or with prescribed displacements 0lu , (the second equation). Although most LHS 

BCs are of the above form (and only a few finite element packages offer anything better), 
there are cases when a more general LHS BC is required. Therefore, ATENA software 
provides a solution for implementing a form of Dirichlet BCs, where each degree of structural 
freedom can be a linear combination of any other degrees of freedom. Mathematically, this is 
expressed by 

 0
1,

, 1,l l lk k
k n

u u u l n
 

     (9.3) 
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There are many cases in which the above form of Dirichlet conditions proves helpful. Some 
examples are discussed later in the Chapter. The important point about implementing 
Equations (9.3) is that they are utilized already during the assembling of the problem (9.1). It 
means that if we have m of these BCs, then the final dimension of the matrix K becomes only 
( )n m . This fact significantly reduces requirements for computer storage.  

In the following, we shall call such boundary conditions as “Complex Boundary Conditions”, 
or CBCs, (see also ATENA Input file manual, where the same name is used).  

10.1.1 Single CBC 
The procedure of implementing Dirichlet BCs of the form (9.3) is now presented. Let us start 
with just one BC equation (9.4). It says that lu  equals to a constant prescribed displacement 

0lu  plus lk multiple of a displacement ku .   

 0l l lk ku u u   (9.4) 

Substituting (9.4) into the Equation (9.1) yields  

 0
1, 1,

( ) , 1..
n n

ij j il l ij j il l lk k i
j j l j j l

K u K u K u K u u r i n
   

        (9.5) 

which after some manipulation can be simplified into the form  

   0
1

, 1..
n

ij il lk kj j i il l
j

K K u r K u i n 


     (9.6) 

The above set of equations could be already used to solve for the unknown displacements (or 
displacement increments) ju . kj  stands for .k j  Kronecker delta tensor. The trouble is, 

however, that even though the matrix K might be symmetric, the set of equations (9.6) is not 
symmetric anymore. Thus, to preserve the symmetry, add  an lk  multiple of the row l , i.e.,     

    0
1

n

lk lj ll lk kj j lk l ll l
j

K K u r K u   


 
   

 
  (9.7) 

to the row k, i.e., 

   0
1

n

kj kl lk kj j k kl l
j

K K u r K u 


    (9.8) 

This results in the row k getting the form 

 

  

  
 

1

1

0 0

n

kj kl lk kj lk lj ll lk kj j
j

n

kj lk lj kl lk lk lk ll kj j
j

k kl l lk l lk ll l

K K K K u

K K K K u

r K u r K u

    

    

 





   

   

  



  (9.9) 
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Hence, the final form of the governing set of equations will read 

 
 

 

2

1

0 0

n

ij il lk kj ik lk lj ik kj lk ll j
j

i il l ik lk l ll l

K K K K u

r K u r K u

      

 


   

  


 (9.10) 

The above equations can be written as 

 
1

, 1..
n

ij j i
j

K u r i n


     (9.11) 

where 

 

11 1 1 1 1 1
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
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 
 
 
 
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 
 
 
 
 
  

 (9.12) 
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 
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 
 
  



 (9.13) 

 

Providing the original matrix K is symmetric, i.e. ij jiK K , then the matrix K  is now also 

symmetric, i.e. ij jiK K  . 

The displacement lu  constrained by Equation (9.4) has a constant part 0lu  and a variable part 

lk ku ,  in which lu  depends only on a single ku . A more general form of this BC would be if 

lu  depends on more displacements. It corresponds to the following form of the boundary 

condition: 
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 0l l lk k
k

u u u   (9.14) 

In this case, the displacement lu  is calculated as a constant part 0lu  plus a linear combination 

lk  of displacements ku . k can be any displacement, i.e. 1..k n  . Replacing BC defined 

by Equation (9.4) by the above Equation (9.14), the equation will change to the form 

 
 

  

2

1 ,

0 0
,

n

ij il lk kj ik lk lj ik kj lk ll j
j k k l

i il l ik lk l ll l
k k l

K K K K u

r K u r K u

      

 
 



 
    
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10.1.2 Multiple CBCs 

The previous paragraph derived all the necessary relations for implementing a single 
boundary condition. Now we will proceed to the case of multiple boundary conditions. Each 
particular BC is again written in the form (9.14). 

 0 1 2, 1, , { , ,... }l l lk k r
k

u u u l n l l l l      (9.16) 

The problem is, however, that displacements ku  in (9.16) need not be free but fixed by 

another BC, k can also run through l, (resulting in a recursive formulation), more BCs can be 
specified for the same lu , a particular BC can be specified more times and in more forms etc. 

For example, we may have a set of boundary equations that contains BCs 

 1 2 2 1,u u u u   (9.17) 

or it can contain  

 1 2 2 1 1, , 0.003u u u u u    (9.18) 

Both of these are correct. Unfortunately, the set can also contain  

   1 2 2 2 1 1, 0.003, , 0.003u u u u u u      (9.19) 

which is definitely wrong. Therefore, before any use of such set of BCs it is necessary to 
detect and fix all redundant and contradictory multiple BCs present in it. It is easily done in 
case of a simple set of BCs like the one above, but in real analyses with thousands of BCs in 
the form (9.16), (some of them quite complex, i.e., k runs through many DOFs) the only way 
to proceed is to treat (9.16) as a set of equations to be solved prior their use in (9.13). 
Redundant BCs are ignored, and contradictory BCs are fulfilled after their summation.  Let us 
suppose that all structural constraints are specified in the set of equation (9.16). This can be 
written in matrix form 

 0l l ku u u  A  (9.20) 

The above relationship represents a system of algebraic linear equations. The system is 
typically non-symmetric, sparse and has a different number of rows (i.e., the number of BCs) 
and columns, (i.e., the number of master and slave DOFs). Moreover, it is often ill-
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conditioned, with a number of equations being linear combinations of the others, e.g., see the 
example in (9.17). In the beginning, it is often not known which DOF is dependent, (i.e., 
slave) and which is independent, (i.e., master), (e.g., see also (9.17)). 

Based on the above properties, the following procedure has been developed to solve the 
problem (9.20):  

1. Allocate "columns" for all slave and master DOFs, i.e., loop through all BCs in (9.16) 
and allocate DOFs for both slave (i.e., LHS) and master (i.e., RHS) displacements iu . 

2. Allocate storage for the matrix A  and vectors 0,l lu u  in (9.20). The matrix has rl  the 

number of rows (see (9.16)) and cl  the number of columns. cl  is the dimension of the 

DOFs map created in the point add. 1. 

3. Assemble the matrix A  and the vectors 0,l lu u .  

4. Detect constant BCs, i.e., 0l lu u  and swap rows of A so that the rows corresponding 

to constant BCs are pushed to the bottom.  

5. Detect constant fixed DOFs, i.e., those with 0lk   and variable fixed DOFs, i.e., that 

are those dependent on other (master) DOFs and having 0lk  . 

6. Swap columns of A , so that the former DOFs are pushed to the right and the latter 
DOFs to the left. The operations described at the point 5 and 6 are needed to assure 
order, in which the constrained DOFs are eliminated. This is important for later 
calculation of the structural reactions. 

7. Using the Gauss method to triangulate the set of BC equations. The triangulation is 
carried out in the standard way with the following differences. 

a. Before eliminating entries of A located in column below kka , check for a non-

zero entry in the row k. If all its entries are zero, then ignore this row and 
proceed to the next one.  (It is the case of multiple BCs having the same 
content). 

b. Check, whether the row k specifies BC for constant or variable DOF, (see 
explanation in the point 5 above). In the former case push the row k to the 
bottom and proceed to the next row. 

c. Swap columns ... ck l   so that ( )kkabs a becomes maximum.  

d. If 0kka  , swap lines ... rk l   to find a non-zero entry in kka . Thereafter, 

swap columns ... ck l   to find maximum kka . 

e. Eliminate entries below kka  as usually. 

As it was already mentioned, the matrix A is typically very sparse. Hence, a special storage 
schemes are used that stores only non-zero entries of A. The data are stored by rows. Each 
row has a number of data series, i.e., sequences or chunks of consecutive non-zero data 
(within the row). The data are in a three-dimensional container.  For each such chunk of data, 
we also need to store its first position and length. This is done in two two-dimensional 
containers.  
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As an example, suppose that we have the following matrix A: 
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A  (9.21) 

 It is stored as follows ( .A data stores the actual data, .A rowbase stores base indices for non-

zero entries in rows, .Arowlength  contains dimension of non-zero data chunks; all arranged 

by rows): 

 

11

22 23 26 27

33

42 44

. (1)(1)(1)

. (2)(1)(1) , . (2)(1)(2) , . (2)(2)(1) , . (2)(2)(2)

. (3)(1)(1) ,

. (4)(1)(1) , . (4)(2)(1)

.......

. (1)(1) 1

. (2)(1) 2,

A data a

A data a A data a A data a A data a

A data a

A data a A data a

A rowbase

A rowbase A


   

 


 . (2)(2) 6

. (3)(1) 3

. (4)(1) 2, . (4)(2) 4

.....

. (1)(1) 1

. (2)(1) 2, . (2)(2) 2

. (3)(1) 1

. (4)(1) 1, . (4)(2) 1

rowbase

A rowbase

A rowbase A rowbase

A rowlength

A rowlength A rowlength

A rowlength

A rowlength A rowlength



 


 

 

 (9.22) 

A number of optimisation techniques are used to speed up the process of triangularization of 
the matrix A. These are summarized below: 

The data are stored by rows and the elimination is also carried out by rows. (Row-based 
storage is also more convenient during assembling the A from (9.16)). All the operations 
needed for the elimination are carried out only for nonzero data. Their horizontal position is 
stored in .A rowbase  and .A rowlength , hence it is no problem to skip all zero entries. A 

typical total number of columns cl , see (9.16), is of order from thousands to hundred 

thousands DOFs. On the other hand .a rowlength is on average only of order of tens. This is 

where the CPU savings comes from. 

By the way, the same mapping of non-zero entries is also used for columns. This is achieved 
by additional arrays .Acolumnbase  and .Acolumnlength  that are also included in the storage 

scheme A. (Their construction is similar to .A rowbase  and .Arowlength ; instead by rows 
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they are arranged by columns). These two additional arrays make possible to skip all zero 
entries during column-base operations. The resulting significant increase of triangularization 
speed pays off for a small amount of an extra RAM that is needed to store .Acolumnbase  and 

.Acolumnlength . 

The adopted procedure of triangularization many times swaps lines and/or columns of A. In 
view of the adopted storage scheme, it can be a quite expensive procedure. To alleviate this 
problem, the storage scheme includes four additional arrays, namely .A rowindex , 

.A rowinverseindex , .Acolumnindex  and .A rowinverseindex . In the 

beginning, . ( )A rowindex i i  and similarly . ( ) , 1... cA rowinverseindex i i i l  . When a row 1r  

should be swapped with a row 2r , the data in .A data  remains unchanged and we swap only 

corresponding row indices in .A rowindex , (and accordingly also entries in the array for 
inverse mapping .A rowinverseindex ).  The same strategy is used for swapping the columns. 
As a result, any swapping operation does not require any moving of actual data (except of 
swapping corresponding indices for mapping the rows and columns) and thus it is extremely 
fast. On the other hand, in order to access ija we must use ' 'i ja , where ' ( )i rowindex i  and 

' ( )j columnindex j . The incurred CPU overhead is well acceptable, because the matrix A is 

very sparse.  

10.2 Application of Complex Boundary Conditions 
This section presents several examples where the developed Dirichlet boundary conditions are 
advantageously used. In each case, the corresponding finite element model exploits the 
general form of BC defined by Equation (9.16).  

10.2.1 Finite Element Mesh Refinement 
Suppose we need to refine a mesh as shown in Fig. 10-1. The mesh should refine from 5 
elements per row to 10 elements per row. The figure depicts three possible techniques to 
achieve the goal.  

In the case A, the fine and coarse parts of the mesh (consisting of quadrilateral elements) are 
connected by a row of triangular elements. This way of mesh refinement is used the most 
often. However, mixing quadrilateral and triangular elements is not always the best solution. 

In the case B, the refinement is achieved by using hierarchical finite elements,  see (Bathe 
1982). The coarse mesh near the interface employs five nodes hierarchical elements. This 
refinement is superior to the others; however, it requires special finite elements and special 
mesh generator; both of these rarely available in a typical finite element package.   

In the case C, the fine and coarse parts of the mesh are generated independently. After the 
generation of all nodes and elements, the interface nodes are connected by complex boundary 
conditions. For example, we can use , , 0.5 0.5i m k n j m nu u u u u u u    . The main advantage 

of this approach is that it is simple for both finite element pre/postprocessor and finite element 
modeler (namely its finite element library). Hence it is preferable! 
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Fig. 10-1 Mesh refinement  

Note that all the above techniques are supported in ATENA finite element package, the last 
one requiring implementation of CBCs in the form (9.14). 

10.2.2 Mesh Generation Using Sub-Regions 
This example demonstrates another advantage of using the proposed CBCs: It is possible to 
generate meshes within sub-regions without requirement of nodes coincidence on their 
interfaces. Because mesh structure on the sub-regions’ surfaces is not prescribed, this 
approach provides more flexibility to mesh generation. This feature is heavily used by 
ATENA 3D pre-processor. 

  

Compatible meshes on the contact between the blocks 

Fig. 10-2 Mesh generation from simple blocks 
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Incompatible meshes on the contact between the blocks using CBCs 

Fig. 10-2 (cont) Mesh generation from simple blocks 

In the above example, two blocks are connected to form a structure, where the top (smaller) 
block is placed atop of the bottom (larger) block. The position of the top block is arbitrary 
with respect to the bottom block. Unless the concept of CBCs is used, the meshes on the 
interface of the two blocks must be compatible (see top of Fig. 10-2). On the other hand, the 
proposed CBCs allow using of incompatible meshes (see the bottom of Fig. 10-2). In this 
case, the mesh in each block is generated independently, which is significantly simpler. After 
they are done, the proposed CBCs are applied to connect the interface nodes. (Typically, the 
surface with the finer mesh is fixed to the surface with the coarse mesh).  The latter approach 
also demonstrates the possibility of a mesh refinement while still using well-structured and 
transparent meshes. This is particularly useful in the case of complex numerical models.       

10.2.3 Discrete Reinforcement Embedded in Solid Elements 
In this example, the described boundary conditions are used to simplify the modeling of the 
reinforced concrete beam, see Fig. 10-3. The procedure to create the model is as follows. 
Firstly, the mesh for solids, i.e., concrete elements are generated. It poses no problem, as it is 
a regular mesh consisting of 48 quadrilateral elements. At this point, no attention needs to be 
paid to the geometry of reinforcing bars present in the beam. Thereafter, the reinforcing bars 
are inserted and their meshes are generated based on the existing mesh of solid elements. The 
first step is to find all nodes, where the bar changes direction. These nodes are called principal 
nodes; see e.g., node n in Fig. 10-3. Then, the intersection of all straight parts of the bar with 
underlying solid elements are detected, e.g., the nodes m,p. Thus, all end nodes of embedded 
bar elements are defined. The last step is to link displacements of the nodes of the bar to the 
underlying solid elements.  
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Fig. 10-3 Discrete bar reinforcement 

For example, if we want to connect the node n to the an embedding solid element, i.e., to 

nodes i,j,k,l, see Fig. 10-3, we use the standard interpolation 
4

1

( , ) ( , )i i
i

u r s h r s U


 , where 

( , ),i ih r s U  are element interpolation function and Ui are nodal displacements for the 

underlying solid element, respectively. For displacement at the node n we can write 
4

1

( , ) ( , )n n i n n i
i

u r s h r s U


 .  ( ,n nr s ) are coordinates of the node n. Comparing this formula with 

(9.3), it is obvious that 0( , ), 0ni i n n nh r s u   . Consequently, the bar DOFs are always 

kinematically dependent on the DOFs of underlying solid elements.  

This technique can also be applied when bond elements are inserted between solid and 
embedded bar elements. This is treated in a separate paper by authors in ref. (Jendele, 2003). 

Currently, ATENA software can generate discrete reinforcement to all 2D and 3D linear and 
nonlinear elements (triangles, quads, tetrahedral elements, wedges, bricks…). The user only 
draws the position of the principal nodes of reinforcement bars and the rest is done 
automatically. 

10.2.4 Curvilinear Nonlinear Beam and Shell Elements 
In the following text, another possible use of the present boundary conditions is presented. A 
curvilinear nonlinear beam from Chapter 3.17 is discussed. A particular feature we would like 
to point out here is that although it originally has only three displacements and three rotations 
in the nodes 13,14,15, see Fig. 3-40, its implementation in ATENA has also 3 displacements 
in the nodes 1 to 12. However, these DOFs are linked to the original DOFs in the nodes 13 to 
15 by the proposed CBCs. This concept has several advantages. 

 The beam finite element has native 3D geometry and its pre- and post-processing 
visualization is more realistic than using its original 1D geometry. 

 It is simple to connect such beam elements to any adjacent 3D finite elements, e.g., 
brick elements. 

 Mesh generation is easily done by any 3D solid element generator that can pull off 
nonlinear hexahedral elements. It suffices to generate only the nodes 1 to 12 (with 3 
displacement DOFs) and the three original beam nodes (each beam node has 3 
displacement and 3 rotation DOFs) are generated automatically. The pre-processor 
need not to support rotational DOFs.  
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 The post-processing of this element and an ordinary nonlinear hexahedral element is 
the same. Consequently, this element does not need any extra support for the 
visualisation of the results. It makes its implementation and use simple. 

Derivation of all ij  coefficients and 0iu  constants for all nodes 1 to 12 is beyond the scope 

of this document. Nevertheless, a similar procedure is used, as it was in the previous example. 

ATENA package also covers Ahmad element for curved shell structures, see Chapter 3.12. 
The usual 2D shape of the shell element is in the same manner, replaced by geometry of a 3D 
nonlinear hexahedral element. Originally, the shell element has 3 displacements and 2 
rotations at each node located in the middle thickness of the shell. These 5 DOFs are in by use 
of CBCs replaced by 3 displacements at the top and 2 displacements at the bottom at the 
respective nodes from the hexahedron, (i.e., brick)  geometry. Advantages of this approach 
are the same as those in the case of the curvilinear beam above: simpler pre/post-processing, 
simpler connection to the adjacent 3D elements, no need to support rotational DOFs during 
pre/post-processing, no need for extra support for geometry of the shell element. 
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