

mailto:cervenka@cervenka.cz
http://www.cervenka.cz/

 

 (, ')t t

cal 



10.1.2 Mul iple CBCs

This chapter presents the general governing continuum equations for nonlinear analysis. In

general, there exist many variants of nonlinear analysis depending on how many nonlinear

effects are accounted for. Hence, this chapter first introduces some basic terms and entities

commonly used for nonlinear structural analyses, and then it concentrates on formulations that

are implemented in ATENA.

It is important to realize that the whole structure does not have to be analyzed using a full

nonlinear formulation. However, a simplified (or even linear) formulation can be used in many

cases. It is a matter of engineering knowledge and practice to assess, whether the inaccuracies

due to a simplified formulation are acceptable or not.

The simplest formulation, i.e., linear formulation, is characterized by the following assumptions:

The constitutive equation is linear, i.e., the generalized form of Hook's law is used.

The geometric equation is linear; that is, the quadratic terms are neglected. It means that during

analysis, we neglect the change of shape and position of the structure.

Both loading and boundary conditions are conservative, i.e., they are constant throughout the

whole analysis irrespective of the structural deformation, time etc.

Generally, linear constitutive equations can be employed for a material, which is far from its

failure point, usually up to 50% of its maximum strength. Of course, this depends on the type of

material, e.g., rubber needs to be considered as a nonlinear material earlier. But for usual civil

engineering materials, the previous assumption is satisfactory.

Geometric equations can be considered linear if the deflections of a structure are much smaller

than its dimensions. This must be satisfied not only for the whole structure but also for its parts.

Then the geometric equations for the loaded structure can then be written using the original

(unloaded) geometry.

It is also important to realize that a linear solution is permissible only in the case of small strains.

This is closely related to the material property because if strains are high, the stresses are usually,

although not necessarily, high as well.

Despite the fact that for the vast majority of structures linear simplifications are quite acceptable,

there are structures when it is necessary to take into account some nonlinear behavior. The

resulting governing equations are then much more complicated, and normally they do not have a

closed-form solution. Consequently, some nonlinear iterative solution schemes must be used (see

Chapter Solution of Nonlinear Equations further in this document).

Nonlinear analysis can be classified according to a type of nonlinear behavior:

Nonlinear material behavior only needs to be accounted for. This is the most common case for

ordinary reinforced concrete structures. Because of serviceability limitations, deformations

are relatively small. However, the very low tensile strength of concrete needs to be accounted

for.

Deformations (either displacements only or both displacements and rotations) are large enough

such that the equilibrium equations must use the deformed shape of the structure. However,

the relative deformations (strains) are still small. The complete form of the geometric

equations, including quadratic terms, has to be employed, but constitutive equations are

linear. This group of nonlinear analyses includes most stability problems.

The last group uses nonlinear both material and geometric equations. In addition, it is usually not

possible to suddenly apply the total value of load, but it is necessary to integrate in time

increments (or loading increments). This is the most accurate and general approach but

unfortunately, is also the most complicated.

There are two basic possibilities for formulating the general structural behavior based on its

deformed shape:

Lagrange formulation:

In this case, we are interested in the behavior of infinitesimal particles of volume dV . Their

volume will vary dependent on the loading level applied and, consequently, on the extent of

current deformations. This method is usually used to calculate civil engineering structures.

 Euler formulation:

The essential idea of Euler's formulation is to study the "flow" of the structural material through

infinitesimal and fixed volumes of the structure. This is the favorite formulation for fluid

analysis, analysis of gas flow, tribulation etc., where large material flows exist.

For structural analysis, however, the Lagrangian formulation is better, and therefore the attention

will be restricted to this. Two forms of the Lagrangian formulation are possible. The governing

equations can either be written with respect to the original undeformed configuration at time t =

0 or with respect to the most recent deformed configuration at time t. The former case is called

Total Lagrangian formulation (TL), while the latter one is called the Updated Lagrangian

formulation (UL).

It is difficult to say which formulation is better because both have their advantages and

drawbacks. Usually, it depends on a particular structure being analyzed and which one to use is a

matter of engineering judgment. Generally, provided the constitutive equations are adequate, the

results for both methods are identical.

ATENA currently uses the Updated Lagrangian formulation (which is described later in this

chapter) and supports the highest, i.e., 3rd level of nonlinear behavior. Soon, it should also

support Total Lagrangian formulation.

A general analysis of a structure usually consists of the application of many small load

increments. At each of those increments, an iterative solution procedure has to be executed to

obtain a structural response at the end of the increment. Hence, denoting the start and end of the

load increment by t and t t+  , at each step, we know the structural state at the time t (from the

previous steps) and solve for the state at the time t t+  . This procedure is repeated as many

times as necessary to reach the final (total) level of loading.

This process is depicted in Fig. 1-1. At the time 0t = the volume of the structure is 0V , the

surface area is 0S , and any arbitrary point M has coordinates 0 0 0

1 2 3, , X X X . Similarly, at the

time t the same structure has a volume tV , surface area tS , and coordinates of the point M are

1 2 3, , t t tX X X . A similar definition applies for the time t t+  by replacing index t by t t+  .

M0

diffus

ion

concr

ete

(unsat

urated

)

M1

diffus

ion

concr

ete

(unsat

urated

)

M2

diffus

ion

concr

ete

(unsat

urated

)

[
0
X1,

 t
X1,

 t+t
X1]

[
0
X2,

 t
X2,

 t+t
X2]

[
0
X3,

 t
X3,

 t+t
X3]

Configuration 0 Configuration t

Configuration t+t

For the derivations of nonlinear equations, it is important to use clear and simple notations. The

same system of notation will be used throughout this document:

Displacements u are defined in a similar manner to that adopted for coordinates, hence t

iu is the

i -th element of the displacement vector at the time t ,

t t t

i i iu X X+= − is i -th element of the vector of displacement increments at the time t ,

The left superscript denotes the time corresponding to the value of the entity, the left subscript

denotes the configuration with respect to which the value is measured, and subscripts on the

right identify the relationships to the coordinate axis. Thus, for example 0

t t

ij+
 denotes

element i , j of stress tensor  at the time t t+  with respect to the original (undeformed)

configuration.

For derivatives, the abbreviated notation will be used, i.e., all right subscripts that appear after a

comma declare derivatives. For example:

 0 ,

t t t t

i j i

j

u u
X

+ +
=


 (1.2)

The general governing equations can be derived in the form of a set of partial differential

equations (for example, using the displacement method), or an energy approach can be used. The

final results are the same.

One of the most general methods of establishing the governing equations is to apply the principle

of virtual work. There are three basic variants of this:

The principle of virtual displacements,

The principle of virtual forces,

The Clapeyron divergent theorem.

Using the virtual work theorems, it is possible to derive several different variation principles

(Lagrange principle, Clapeyron principle, Hellinger-Reissner principle, Hu-Washizu principle

etc.). There are popular especially in linear analysis. They can be used to establish equilibrium

equations, to study possible deformation modes in finite element discretization etc.

Unfortunately, in the nonlinear analysis, they do not always work.

In this document, all the following derivations will be presented in their displacement forms, and

consequently, the principle of virtual displacements will be used throughout.

The following section deals with the definition of the stress and strain tensors, which are usually

used in nonlinear analysis. All of them are symmetric.

This tensor is well known from linear mechanics. It expresses the forces that act on

infinitesimally small areas of the deformed body at time t. Sometimes, these are also called an

"engineering" stress. The Cauchy stress tensor is the main entity for checking ultimate stress

values in materials. In the following text, it will be denoted by  . It is energetically conjugated

with an Engineering strain tensor described later.

The 2nd Piola-Kirchhoff tensor is a fictitious entity, having no physical representation of it as in

the case of the Cauchy tensor. It expresses the forces, which act on infinitesimal areas of the

body in the undeformed configuration. Hence it relates forces to the shape of the structure, which

no longer exists.

The mathematical definition is given by:

0

0 0

0 , ,

t t

ij t i m mn t j nt
S X X





= (1.3)

where
0

t




 is the ratio of density of the material at time 0 and t ,

 t

mn is the Cauchy stress tensor at time t ,

0

,t i mX is the derivative of coordinates, ref. (1.5).

Using inverse transformation, we can express Cauchy stress tensor in terms of the 2nd Piola-

Kirchhoff stress tensor, i.e.:

 0 , 0 0 ,0

t
t t t t

mn m i mn n jX S X





= (1.4)

The elements
0

,t i mX are usually collected in the so-called Deformation gradient matrix:

 ()0 0

T
t t TX X=  (1.5)

where:

0 0 0 0

1 2 3

, ,

T

T

X X X

   
 =  

   

1 2 3, ,t T t t tX X X X =  

The ratio
0

t




 can be computed using:

 0

0det()t t X = (1.6)

Expression (1.6) is based on the assumption that the weight of an infinitesimal particle is

constant during the loading process.

Some important properties can be deduced from the definition of 2nd Piola-Kirchhoff tensor (1.3)

:

at time 0, i.e., the undeformed configuration, there is no distinction between 2nd Piola-Kirchhoff

and Cauchy stress tensors because 0

0 X E= , i.e., unity matrix and the density ratio
0

t




 = 1.,

2nd Piola-Kirchhoff tensor is an objective entity in the sense that it is independent of any

movement of the body provided the loading conditions are frozen. This is a very important

property. The Cauchy stress tensor does not satisfy this because it is sensitive to the rotation

of the body. It is energetically conjugated with the Green-Lagrange tensor described later.

They're some other stress tensor commonly used for nonlinear structural analysis, e.g., Jaumann

stress rate tensor (describes stress rate rather than its final values) etc.; however, they are not

used in ATENA and therefore not described in this document.

It is the most commonly used strain tensor, comprising strains that are called Engineering strains.

Its main importance is that it is used in linear mechanics as a counterpart to the Cauchy stress

tensor.

1

2

m n
t mn t t

n m

u u
e

X X

  
= + 

  
 (1.7)

This is the energy conjugate of the 2nd Piola-Kirchhoff tensor and its properties are similar (i.e.,

objective etc.). It is defined as:

 ()0 0 , 0 , 0 , 0 ,

1

2

t t t t t

ij i j j i k i k ju u u u = + + (1.8)

If we calculate the length of an infinitesimal fibber prior to and after deformation in the original

coordinates, we get exactly the terms of the Green-Lagrange tensor.

The following equation gives a relation between variation of Green-Lagrange and Engineering

strain tensors:

 () ()0 0 0

t t
t m n

ij t mn

i j

X X
e

X X


 
 = 

 
 (1.9)

These are the strain tensors used in ATENA. From the other strain tensors commonly used in the

nonlinear analysis we can mention Almansi strain tensor, co-rotated logarithmic strain, strain

rate tensor etc.

Although the whole chapter later in this document is dedicated to the problem of constitutive

equations and to material failure criteria, assume for the moment that stress-strain relation can

be written in the following form:

 0 0 0

t t t

ij ijrs rsS C = (1.10)

where 0

t

ijrsC is the constitutive tensor.

This form is applicable for linear materials, or in its incremental form, it can also be used for

nonlinear materials. The following important relations apply for transformation from coordinates

to time 0 to coordinates at the time t :

 0 , 0 , 0 0 , 0 ,0

t
t t t t t t

t mnpq m i n j ijrs p r q sC x x C x x



= (1.11)

or in the other direction

0

0 0 0 0

0 , , , ,

t t

ijrs t i m t j n t mnpq t r p t s qt
C x x C x x




= (1.12)

Using constitutive tensor (1.11) and Almansi strains t

t  , we can write for Cauchy stresses (with

respect to coordinates at time t):

t t t

ij t ijrs t rsC = (1.13)

Almansi strains are defined (related to Green-Lagrange strains
0

t

ij by

0 0

, , 0

t t

t mn t i m t j n ijx x = (1.14)

or can be calculated directly:

 (), , , ,

1

2

t t t t t

t ij t i j t j i t k i t k ju u u u = + − (1.15)

The equation (1.13) is equivalent to the equation (1.10) that was written for the original

configuration of the structure. It is very important to know, with respect to which coordinate

system the stress, strain, and constitutive tensors are defined, as the actual value can significantly

differ. ATENA currently assumes that all these tensors are defined at coordinates at time t .

 This section presents how the principle of virtual displacement can be applied to the analysis of

a structure. For completeness, both the Lagrangian Total and Updated formulations will be

discussed. In all derivations, it is assumed that the response of the structure up to time t is

known. Now, at the time t t+  we apply load increment and using the principle of virtual

displacement will solve for the state of the structure at t t+  .

Virtual work of the structure yields the following. For Total formulation:

 ()()
0

0 0 0

t dt t dt t dt

ij ij

V

S dV R + + += (1.16)

for Updated formulation:

 ()()
t

t dt t dt t dt

t ij t ij t

V

S dV R + + += (1.17)

where 0V , tV denotes the structure volume corresponding to time 0 and t t dt R+ is the total

virtual work of the external forces. The symbol  denotes variation of the entity. Since energy

must be invariant with respect to the reference coordinate system (1.16) and (1.17) must lead to

identical results.

Substituting expressions for strain and stress tensors, the final governing equation for structure

can be derived. They are summarized in (1.18) through (1.29). Note that the relationships are

expressed with respect to configurations at an arbitrary time t and an iteration ()i . Typically, the

time t may by 0 , in which case we have Total Lagrangian formulation or (1)t t i+  − , in which

case, we have Updated Lagrangian formulation, where some terms can be omitted. ATENA also

supports "semi" Updated Lagrangian formulation when t conforms to time at the beginning of

time increment, i.e., the beginning of load step. The following table compares the above-

mentioned formulations:

Lagrangian

formulation

Transform each

iteration

Transform each load

increment

Transform

stress and

strain for

output

Calculate

(1)

,

t t i

t i ju+ − for t ije

IP state

variables

Material

properties

IP state

variables

Material

properties

Total No No No No Yes Yes

Updated Yes Yes Yes Yes No No

"Semi"-

Updated

No No Yes Yes No Yes

Governing equations:

 ()() ()

t

t t i t t i t t t

t ij t ij

V

S dV R+ + + = (1.18)

where 2nd Piola-Kirchhoff stress and Green Lagrange strain tensor are:

 () () () ()

, ,

t
t t i t i t t i t i

t ij t t i m t mn t t j nt t
S x x






+ +

+ ++
= (1.19)

 ()() () () () ()

, , , ,

1

2

t t i t t i t t i t t i t t i

t ij t i j t i j t k i t k ju u u u  + + + + += + + (1.20)

The stress and strain increments:

 () (1) ()t t i t t i i

t ij t ij t ijS S S+ + −= + (1.21)

() (1) ()

() () ()

t t i t t i i

t ij t ij t ij

i i i

t ij t ij t ije

  

 

+ + −= +

= +

 (1.22)

where linear part of the strain increment is calculated by:

 ()() () () (1) () (1) ()

, , , , , ,

1

2

i i i t t i i t t i i

t ij t i j t i j t k i t k j t k j t k ie u u u u u u+ − + −= + + + (1.23)

and nonlinear part by:

 ()() () ()

, ,

1

2

i i i

t ij t k i t k ju u = (1.24)

Using constitutive equations in form:

() ()t t i i

t ij t ijrs t rsS C + = (1.25)

where
()i

t ijrsC is tangent material tensors and noting that () ()() ()t t i i

t ij t ij   + = , an incremental form of

(1.18) can be derived:

 () () ()() () () () () () ()

t t

t t
i i i i t t i i i t t

t ijrs t ij t ij t ij t ij t ij t ij t ijt
V V

C e e dV S e dV R    + ++ + + + =  (1.26)

After linearisation, i.e., neglecting 2nd order terms in (1.26):

 () () ()() () () () () ()

t t

t t
i i i i i i

t ijrs t ij t ij t ij t ij t ijrs t t ij t ijt
V V

C e e dV C e e dV   + +   (1.27)

we arrive to the final form of the governing equations:

() ()

()

() () (1) ()

(1) ()

t t

t

t t
i i t t i i

t ijrs t rs t ij t ij t ij

V V

t
t t t t i i

t ij t ij

V

C e e dV S dV

R S e dV

  



+ −

+ + −

+ =

−

 


 (1.28)

Note that the term () ()()i

t ij t ije e = is constant, i.e., independent of ()i

t iu , hence it is on RHS of

(1.28).

So far only the incremental virtual internal work has been considered. This work has to be

balanced by the work done by the external forces. It is calculated as follows:

 () ()
2 (1)

2
t t t

t t i
t t t t i t t i t t i

i t i t

V S V

u
R fb u dV fs u dS dV

t
  

+ −
+ + + 

= + +
   (1.29)

where ifb and ifs are body and surface forces, t S and tV denotes integration with respect to the

surface with the prescribed boundary forces and volume of the structure (at the time and t).

The 1st integral in (1.29) accounts for external work on a surface (e.g., external forces), the

second one for work done by body forces (e.g., weight), and the last one accounts for work done

by inertia forces, which are applicable only for dynamic analysis problems).

At this point, all the relationships for incremental analysis have been presented. In order to

proceed further, the problem must be discretized and solved by iterations (described in Chapter

Solution of Nonlinear Equations).

Spatial discretization consists of discretizing the primary variable, (i.e., deformation in case of

ATENA) over the domain of the structure. It is done in ATENA by the Finite Element Method.

The domain is decomposed into many finite elements, and at each of these elements, the

deformation field is approximated by

 t t j

i j iu h u= (1.30)

where

j is the index for finite element node, 1...j n= ,

n is the number of element nodes,

jh are interpolation function usually grouped in matrix  1 2(, ,), (, ,)..... (, ,)j nH h r s t h r s t h r s t= ,

, ,r s t are the local element coordinates.

The interpolation functions jh are usually created in the way that 1jh = at the node j and

0jh = at any other element nodes.

Combining (1.30) and equation for strain definition (1.8) it can be derived:

 ()() (1) (1) ()

0 1

t t i t t i t t i t t i

t t L t L t NL U+ + − + − += + +B B B (1.31)

where
()t t i

t 
+ is the vector of Green-Lagrange strains,

()t t iU+ is the vector of displacements,
(1) (1)

0 1, ,t t i t t i

t L t L t NL

+ − + −
B B B are linear strain-displacements transformation matrices (the 1st two of

them) and nonlinear strain-displacements transformation matrix (the last one).

A similar equation can also be written for stress tensor.

 () () ()t t i t t i t t i

t t tS + + += C (1.32)

where:
()t t i

t S
+ is vector of 2nd Piola-Kirchhoff stress tensor and

()t t i

t

+
C is incremental stress-strain material properties matrix.

Applying the above discretization for each finite element of the structure and assembling the

results, the continuum based governing equations in (1.28) can be re-written in the following

form:

 () (1) () (1)

2
()t t t i t t i t t i t t t t i

t L t NLU U R F
t

+ + − + + + −
+ +  = −


M K K (1.33)

where

t LK is the linear strain incremental stiffness matrix,

(1)t t i

t NL

+ −
K is the nonlinear strain incremental stiffness matrix,

t
M is the structural mass matrix,

()t t iU+ is the vector of nodal point displacements increments at the time t t+  , iteration i ;

()()

2

t t iU
t

 +



t+ t is the vector of nodal accelerations,

t t R+ , (1)t t iF+ − is the vector of applied external forces and internal forces,

() (1), i i− superscripts indicate iteration numbers.

Note that (1.33) also contains inertial term needed only for dynamic analysis. Finite element

matrices in (1.33) and corresponding analytical expressions are summarized:

()

()

() () () ()

(1) () (1) (1) (1) () (1) ()

(1) (1)

t t

t t

t

t
i T i i i

t L t L t t L t ijrs t rs t ij

V V

t
t t i i t t i T t t i t t i i t t i i

t NL t NL t ij t NL t ij t ij

V V

t t i t t i

t ij t

V

U C dV U C e e dV

U dV U S dV

F dV



 + − + − + − + − + −

+ − + −

 
 =    

 

 
 =    

 

= 

 

 



K B B

K B S B

S ()(1) ()

() ()
() ()

2 2 2 2

t

t t

t t

t
t t i i

ij t ij

V

t t t t A t t B t t

t t

A V

t t i t t i
t t t i t t t i ti i

V V

S e dV

R f dV dA f dV R

u u
U dV U dV

t t t t



  

+ −

+ + + +

+ +
+ +

= + 

      
=          



 

 

T T

T

H H

M H H

 (1.34)

All derivations and solution procedures in ATENA software are based on the deformational form

of the finite element method. Any structure is solved using the weak (or integral) form of

equilibrium equations. The whole structure is divided into many finite elements, and

displacement u at each particular element (at any location) is approximated by approximation

functions ih and element displacements iu as follows: i

i

i

u h u=  , (i is index of an element

node). It is important to note that in order not to lose any internal energy of the structure, the

displacements over the whole structure must be continuous. The continuity within finite

elements is trivial. The use of continuous approximation functions jh ensures this requirement.

A bit more complicated situation is on boundaries between adjacent elements; however, if the

adjacent elements are of the same type, their displacements are also continuous. Note that there

exist are some techniques that alleviate the continuity requirement, but in ATENA they are not

used.

Unlike displacements, stress and strain fields are typically discontinuous. Moreover, a structure

is investigated within so-called material (or integral) points, which are points located somewhere

within each element. Their position is derived from the requirement to minimize the

approximation error. In other words, the standard finite element method provides stress and

strain values only at those material points, and these values must be later somehow extrapolated

into element nodal points. Often, some sort of smoothing is required in order to remove the

mentioned stress and strain discontinuity. This section describes how this goal is done in

ATENA.

There are two steps in the process of stress and strain smoothing: 1/ extrapolation of stress and

strain from material points to element nodes and 2/ averaging of stress in global node. The whole

technique is described briefly. All details and derivations can be found e.g. (ZIENKIEWICZ,

TAYLOR 1989) and ČERVENKA et. al. 1993.

The extrapolation is done as follows (for each component of structural stress  and strain ).

Let us define a vector of stresses xx at element nodes i such as  ,1 ,2 ,, ,....
T

xx xx xx xx n   = ,

where the 2nd index indicates element node number. Let us also define a vector

 ,1 ,2 ,, ,....
T

xx xx xx xx nP P P P= , whose component are calculated

,

e
xx i i xx eP h d


=  (1.35)

The nodal value xx (with values of xx at nodes i =1..n) is then calculated as follows:

  
inv

xx xxM P = (1.36)

where:

e

ij i j eM h h d


=  (1.37)

In the above xx is an extrapolated field of the stress xx calculated by FEM. It is typically

discontinuous. n is the number of element nods, e is the volume of the investigated finite

element. The same strategy is also used for the remaining stress and strain components.

This smoothing technique is called variational as it is base on averaging energy over the element.

In addition, ATENA also supports another way of extrapolating vales from integration points to

element nodes. In this case, (1.37) is assumed to be a "lumped" diagonal matrix in order to

eliminate the need for solving a system of linear equations. The process of lumping is

characterized as follows:

1,e

ij i k ij e

k n

M h h d


=

=  (1.38)

As most element space approximations satisfy
1,

1k

k n

h
=

= , the above equation is simplified to:

e

ij i ijM h d


=  (1.39)

where ij is Kronecker delta. This "lumped" formulation ATENA uses by default.

The above values are output as nodal element stress/strain values. It follows to calculate

averaged stress/stain value  , ,.....i xx yy xz i
   = in a global node i that is participated by all

elements k with an incidence at the global node i .

k

k

i e

k
i

e

k







=





 (1.40)

where is the vector of stresses  , ,.....i xx yy xz i
   = at a node i ,

ke is the volume of the

element k that has the incidence of global node i . It should be noted that in ATENA, the same

extrapolation techniques are used for other integration point quantities as well such as: fracturing

strains, plastic strains and others.

Simple support and complex support boundary conditions represent boundary conditions of

Dirichlet types, i.e., boundary conditions that prescribe displacements. On the other hand, Simple

load boundary conditions are an example of von Neumann type boundary conditions when

forces are prescribed.

Let K is structural stiffness matrix, u is the vector of nodal displacements, and R is a vector of

nodal forces. Further, let u is subdivided into the vector of free degrees of freedom Nu (with

von Neumann boundary conditions) and constrained degrees of freedom Du (with Dirichlet

boundary conditions):

N

D

u
u

u

 
=  

 
 (1.41)

The problem governing equations can then be written:

NN ND N N

DN DD D D

u R

u R

     
=     

    

K K

K K
 (1.42)

ATENA software supports that any constrained degree of freedom can be a linear combination

of other degrees of freedom plus some constant term:

 ,0i i k

D D k N

k

u u u= +  (1.43)

where ,0i

Du is the constant term and k are coefficients of the linear combination. Of course, the

equation (1.43) can also include the term l

l D

l

u ; however, it is transformed into the constant

term.

The free degrees of freedom are then solved by

 () ()
1

N NN N ND Du R R
−

= −K K (1.44)

and the dependent DR is solved by

 D DN N DD DR u u= +K K (1.45)

The ATENA simple support boundary conditions mean that the boundary conditions use only

constant terms are ,0i

Du , (i.e. 0k =). The complex support boundary conditions use the full

form of (1.43).

The boundary conditions as described above allow to specify for one degree of freedom either

Dirichlet, or von Neumann boundary condition, but not both of them at the same time. It comes

from the nature of the finite element method. However, ATENA can also deal with this case of

more complex boundary conditions by introducing Lagrange multipliers. The derivation of the

theory behind this kind of boundary conditions is beyond the scope of this manual. Details can

be found elsewhere, e.g., in (Bathe 1982). To apply this type of boundary conditions in ATENA,

specify for those degrees of freedom both simple load and complex support boundary condition,

the latter one with the keyword "RELAX" keyword in its definition.

A useful feature of ATENA is that at any time, it stores in RAM only NNK and all the

elimination with the remaining blocks of K is done at element level at the process of assembling

the structural stiffness matrix.

A special type of complex boundary conditions of the Dirichlet type are so-called master-slave

boundary conditions. Such a boundary condition specifies that all (available) degrees of one

finite node (i.e., slave node) are equal to degrees of freedom of another node (i.e., master node).

If more master nodes are specified, then these master nodes are assumed to form a finite element

and degrees of freedom of the slave node are assumed to be a node within that element. Its

(slave) degrees of freedom are approximated by element nodal (i.e., master) degrees of freedom

in the same way as displacements approximation within a finite element. The coefficients k in

(1.43) are thus calculated automatically. This type of boundary condition is used for example, for

fixing discrete reinforcement bars to the surrounding solid element.

BATHE, K.J. (1982), Finite Element Procedures In Engineering Analysis, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey 07632, ISBN 0-13-317305-4.

ČERVENKA, J., KEATING, S.C., AND FELIPPA, C.A. (1993), "Comparison of strain

recovery techniques for the mixed iterative method", Communications in Numerical Methods in

Engineering, Vol. 9, 925-932.

ZIENKIEWICZ, O.C., TAYLOR, R.L., (1989), The Finite Element Method, Volume 1,

McGraw-Hill Book Company, ISBN 0-07-084174-8.

The formulation of constitutive relations is considered in the plane stress state. A smeared

approach is used to model the material properties, such as cracks or distributed reinforcement.

This means that material properties defined for a material point are valid within a certain

material volume, which is in this case associated with the entire finite element. The constitutive

model is based on the stiffness and is described by the equation of equilibrium in a material

point:

    , , , , , ,
T T

x y xy x y xy     = = =s De s e (2.1)

where s, D and e are a stress vector, a material stiffness matrix and a strain vector, respectively.

The stress and strain vectors are composed of the stress components of the plane stress state

, ,x y xy   , Fig. 2-1, and the strain components , ,x y xy   , Fig. 2-2, where xy is the engineering

shear strain. The strains are common for all materials. The stress vector s and the material matrix

D can be decomposed into the material components due to concrete and reinforcement as:

 ,c s c s= + = +s s s D D D (2.2)

The stress vector s and both component stress vectors ,c ss s are related to the total cross section

area. The concrete stress cs is acting on the material area of concrete cA , which is approximately

set equal to the cross section of the composite material c A A (the area of concrete occupied by

reinforcement is not subtracted).

The matrix D has a form of the Hooke's law for either isotropic or orthotropic material, as will be

shown in Section 2.1.11.

The reinforcement stress vector ss is the sum of stresses of all the smeared reinforcement

components:

1

n

s si

i=

= s s (2.3)

where n is the number of the smeared reinforcement components. For the ith reinforcement, the

global component reinforcement stress ssi is related to the local reinforcement stress ,

si by the

transformation:

 ,

si i sip =s T (2.4)

where pi is the reinforcing ratio si
i

c

A
p

A
= , Asi is the reinforcement cross section area. The local

reinforcement stress ,

si is acting on the reinforcement area Asi

The stress and strain vectors are transformed according to the equations bellow in the plane

stress state. New axes u, v are rotated from the global x, y axes by the angle  The angle  is

positive in the counterclockwise direction, as shown in Fig. 2-3.

The transformation of the stresses:

 () ()u x=s T s (2.5)

2 2

2 2

2 2

cos() sin() 2cos()sin()

sin() cos() 2cos()sin()

cos()sin() cos()sin() cos() sin()



   

   

     

 
 

= − 
 − − 

T (2.6)

   () (), , , , ,
TT

u u v uv x x y xy     = =s s

The transformation of the strains:

 () ()u x=e T e (2.7)

2 2

2 2

2 2

cos() sin() cos()sin()

sin() cos() cos()sin()

2cos()sin() 2cos()sin() cos() sin()



   

   

     

 
 

= − 
 − − 

T (2.8)

   () (), , , , ,
TT

u u v uv x x y xy     = =e e .

The angles of principal axes of the stresses and strains, Fig. 2-1, Fig. 2-2, are found from the

equations:

2

tan(2) , tan(2)
xy xy

x y x y

 

 
 

   
= =

− −
 (2.9)

where  is the angle of the first principal stress axis and  is the angle of the first principal

strain axis.

In case of isotropic material (un-cracked concrete) the principal directions of the stress and

strains are identical; in case of anisotropic material (cracked concrete) they can be different. The

sign convention for the normal stresses, employed within this program, uses the positive values

for the tensile stress (strain) and negative values for the compressive stress (strain). The shear

stress (strain) is positive if acting upwards on the right face of a unit element.

The material model SBETA includes the following effects of concrete behavior:

 non-linear behavior in compression including hardening and softening,

 fracture of concrete in tension based on the nonlinear fracture mechanics,

 biaxial strength failure criterion,

 reduction of compressive strength after cracking,

 tension stiffening effect,

 reduction of the shear stiffness after cracking (variable shear retention),

 two crack models: fixed crack direction and rotated crack direction.

Perfect bond between concrete and reinforcement is assumed within the smeared concept. No

bond slip can be directly modeled except for the one included inherently in the tension stiffening.

However, on a macro-level a relative slip displacement of reinforcement with respect to concrete

over a certain distance can arise if concrete is cracked or crushed. This corresponds to a real

mechanism of bond failure in case of the bars with ribs.

The reinforcement in both forms, smeared and discrete, is in the uniaxial stress state and its

constitutive law is a multi-linear stress-strain diagram.

The material matrix is derived using the nonlinear elastic approach. In this approach the elastic

constants are derived from a stress-strain function called here the equivalent uniaxial law. This

approach is like the nonlinear hypo-elastic constitutive model, except that different laws are used

here for loading and unloading, causing the dissipation of energy exhausted for the damage of

material. The detailed treatment of the theoretical background of this subject can be found, for

example, in the book CHEN (1982). This approach can be also regarded as an isotropic damage

model, with the unloading modulus (see next section) representing the damage modulus.

The name SBETA comes from the former program, in which this material model was first used.

It means the abbreviation for the analysis of reinforced concrete in German language -

StahlBETonAnalyse.

The nonlinear behavior of concrete in the biaxial stress state is described by means of the so-

called effective stress
ef

c , and the equivalent uniaxial strain eq . The effective stress is in most

cases a principal stress.

The equivalent uniaxial strain is introduced to eliminate the Poisson’s effect in the plane stress

state.

 eq ci

ciE


 = (2.10)

The equivalent uniaxial strain can be considered as the strain, that would be produced by the

stress ci in a uniaxial test with modulus ciE associated with the direction i. Within this

assumption, the nonlinearity representing a damage is caused only by the governing stress ci .

The details can be found in CHEN (1982).

The complete equivalent uniaxial stress-strain diagram for concrete is shown in Fig. 2-4.

The numbers of the diagram parts in Fig. 2-4 (material state numbers) are used in the results of

the analysis to indicate the state of damage of concrete.

Unloading is a linear function to the origin. An example of the unloading point U is shown in

Fig. 2-4. Thus, the relation between stress
ef

c and strain eq is not unique and depends on a load

history. A change from loading to unloading occurs when the increment of the effective strain

changes the sign. If subsequent reloading occurs the linear unloading path is followed until the

last loading point U is reached again. Then, the loading function is resumed.

The peak values of stress in compression f’c
ef and in tension f’t

ef are calculated according to the

biaxial stress state as will be shown in Sec.2.1.5. Thus, the equivalent uniaxial stress-strain law

reflects the biaxial stress state.

The above defined stress-strain relation is used to calculate the elastic modulus for the material

stiffness matrices, Sect. 2.1.11. The secant modulus is calculated as

s c

c eq
E




= (2.11)

It is used in the constitutive equation to calculate stresses for the given strain state, Sect. 2.1.12.

The tangent modulus Ec
t is used in the material matrix Dc for construction of an element stiffness

matrix for the iterative solution. The tangent modulus is the slope of the stress-strain curve at a

given strain. It is always positive. In cases when the slope of the curve is less then the minimum

value Emin
t the value of the tangent modulus is set Ec

t = Emin
t. This occurs in the softening ranges

and near the compressive peak.

Detail description of the stress-strain law is given in the following subsections.

The behavior of concrete in tension without cracks is assumed linear elastic. cE is the initial

elastic modulus of concrete, 'ef

tf is the effective tensile strength derived from the biaxial failure

function, Section 2.1.5.2.

 ', 0ef eq ef

c c c tE f  =   (2.12)

Two types of formulations are used for the crack opening:

 A fictitious crack model based on a crack-opening law and fracture energy. This formulation

is suitable for modeling of crack propagation in concrete. It is used in combination with the

crack band, see Sect.2.1.3.

 A stress-strain relation in a material point. This formulation is not suitable for normal cases of

crack propagation in concrete and should be used only in some special cases.

In following subsections are described five softening models included in SBETA material

model.

(1) Exponential Crack Opening Law

This function of crack opening was derived experimentally by HORDIJK (1991).

 () ()
3

3

1 2 1 2'
1 exp 1 exp

ef

t c c c

w w w
c c c c

f w w w

      
= + − − + −    

     

, (2.13)

'

5.14
f

c ef

t

G
w

f
=

where w is the crack opening, wc is the crack opening at the complete release of stress,  is the

normal stress in the crack (crack cohesion). Values of the constants are,
1c =3,

2c =6.93. Gf is the

fracture energy needed to create a unit area of stress-free crack, 'ef

tf is the effective tensile

strength derived from a failure function, Eq.(2.22). The crack opening displacement w is derived

from strains according to the crack band theory in Eq.(2.18).

(2) Linear Crack Opening Law

 ()
'

' '

2
,

ef
fc t

c cef

t c t

Gf
w w w

f w f


= − = (2.14)

(3) Linear Softening Based on Local Strain

The descending branch of the stress-strain diagram is defined by the strain c3 corresponding to

zero stress (complete release of stress).

(4) SFRC Based on Fracture Energy

Parameters: 1 2
1 2' '

1 2

2
, ,

f

cef ef

t t

Gf f
c c w

f f f f
= = =

+

(5) SFRC Based on Strain

Fig. 2-9 Steel fiber reinforced concrete based on strain.

Parameters: 1 2
1 2' '

,
ef ef

t t

f f
c c

f f
= =

Parameters c1 and c2 are relative positions of stress levels, and c3 is the end strain.

The formula recommended by CEB-FIP Model Code 90 has been adopted for the ascending

branch of the concrete stress-strain law in compression, Fig. 2-10. This formula enables wide

range of curve forms, from linear to curved, and is appropriate for normal as well as high

strength concrete.

2

' , ,
1 (2)

ef ef o
c c

c c

Ekx x
f x k

k x E






−
= = =

+ −
 (2.15)

Meaning of the symbols in the above formula in:

c
ef - concrete compressive stress,
'ef

cf - concrete effective compressive strength (See Section 2.1.5.1)

x - normalized strain,

 - strain,

c - strain at the peak stress f’c
ef ,

k - shape parameter,

Eo - initial elastic modulus,

Ec - secant elastic modulus at the peak stress,
'ef

c
c

c

f
E


= .

Parameter k may have any positive value greater than or equal 1. Examples: k=1. linear, k=2. -

parabola.

As a consequence of the above assumption, distributed damage is considered before the peak

stress is reached. Contrary to the localized damage, which is considered after the peak.

The softening law in compression is linearly descending. There are two models of strain

softening in compression, one based on dissipated energy, and other based on local strain

softening.

The fictitious compression plane model assumes, that compression failure is localized in a plane

normal to the direction of compressive principal stress. All post-peak compressive displacements

and energy dissipation are localized in this plane. It is assumed that this displacement is

independent on the size of the structure. This hypothesis is supported by experiments conducted

by Van MIER (1986).

This assumption is analogous to the Fictitious Crack Theory for tension, where the shape of the

crack-opening law and the fracture energy are defined and are considered as material properties.

In case of compression, the end point of the softening curve is defined by means of the plastic

displacement wd. In this way, the energy needed for generation of a unit area of the failure plane

is indirectly defined. From the experiments of Van MIER (1986), the value of wd =0.5mm for

normal concrete. This value is used as default for the definition of the softening in compression.

The softening law is transformed from a fictitious failure plane, Fig. 2-11, to the stress-strain

relation valid for the corresponding volume of continuous material, Fig. 2-10. The slope of the

softening part of the stress-strain diagram is defined by two points: a peak of the diagram at the

maximal stress and a limit compressive strain d at the zero stress. This strain is calculated from

a plastic displacement wd and a band size '

dL (see Section 2.1.3) according to the following

expression:

'

d
d c

d

w

L
 = + (2.16)

The advantage of this formulation is reduced dependency on finite element mesh.

A slope of the softening law is defined by means of the softening modulus Ed . This formulation

is dependent on the size of the finite element mesh.

So-called localization limiter controls localization of deformations in the failure state. It is a

region (band) of material, which represents a discrete failure plane in the finite element analysis.

In tension it is a crack, in compression it is a plane of crushing. These failure regions have some

dimension. However, since according to the experiments, the dimensions of the failure regions

are independent on the structural size, they are assumed as fictitious planes. In case of tensile

cracks, this approach is known as rack the “crack band theory“, BAZANT, OH (1983). Here is

the same concept used also for the compression failure. The purpose of the failure band is to

eliminate two deficiencies, which occur in connection with the application of the finite element

model: element size effect and element orientation effect.

y

x

4 noded element

crack
direction

L

L

c

t





1

2

The direction of the failure planes is assumed to be normal to the principal stresses in tension

and compression, respectively. The failure bands (for tension Lt and for compression Ld) are

defined as projections of the finite element dimensions on the failure planes as shown in Fig.

2-12.

The element orientation effect is reduced, by further increasing of the failure band for skew

meshes, by the following formula (proposed by CERVENKA et al. 1995).

' '
,t t d dL L L L = =

 max1 (1)
45


 = + − , 0;45    (2.17)

An angle  is the minimal angle (()1 2min , ) between the direction of the normal to the failure

plane and element sides. In case of a general quadrilateral element the element sides directions

are calculated as average side directions for the two opposite edges. The above formula is a

linear interpolation between the factor =1.0 for the direction parallel with element sides, and

= max , for the direction inclined at 45o. The recommended (and default) value of max =1.5.

The process of crack formation can be divided into three stages, Fig. 2-13. The uncracked stage

is before a tensile strength is reached. The crack formation takes place in the process zone of a

potential crack with decreasing tensile stress on a crack face due to a bridging effect. Finally,

after a complete release of the stress, the crack opening continues without the stress.

The crack width w is calculated as a total crack opening displacement within the crack band.

 '

cr tw L= (2.18)

where cr is the crack opening strain, which is equal to the strain normal to the crack direction in

the cracked state after the complete stress release.

It has been shown that the smeared model based on the refined crack band theory can

successfully describe the discrete crack propagation in plain, as well as reinforced concrete

(CERVENKA et al. 1991, 1992, and 1995).

It is also possible, that the second stress, parallel to the crack direction, exceeds the tensile

strength. Then the second crack, in the direction orthogonal to the first one, is formed using the

same softening model as the first crack. (Note: The second crack may not be shown in a

graphical post-processing. It can be identified by the concrete state number in the second

direction at the numerical output.)

A biaxial stress failure criterion according to KUPFER et al. (1969) is used as shown in Fig.

2-14. In the compression-compression stress state the failure function is

 ' ' 1

2

2

1 3.65
,

(1)

ef c
c c

c

a
f f a

a





+
= =

+
 (2.19)

where 1c , 2c are the principal stresses in concrete and f’c is the uniaxial cylinder strength. In

the biaxial stress state, the strength of concrete is predicted under the assumption of a

proportional stress path.

In the tension-compression state, the failure function continues linearly from the point

1 0c = , '

2c cf = into the tension-compression region with the linearly decreasing strength:

 ' ' 1

'
, (1 5.3278), 1.0 0.9ef c

c c ec ec ec

c

f f r r r
f


= = +   (2.20)

where rec is the reduction factor of the compressive strength in the principal direction 2 due to

the tensile stress in the principal direction 1.

In the tension-tension state, the tensile strength is constant and equal to the uniaxial tensile

strength f’t. In the tension-compression state, the tensile strength is reduced by the relation:

 ' 'ef

t t etf f r= (2.21)

where ret is the reduction factor of the tensile strength in the direction 1 due to the compressive

stress in the direction 2. The reduction function has one of the following forms, Fig. 2-15.

 2

'
1 0.95 c

et

c

r
f


= − (2.22)

 2

'

(1)
, , c

et

c

A A B
r B Kx A x

AB f

+ −
= = + = (2.23)

The relation in Eq.(2.22) is the linear decrease of the tensile strength and (2.23) is the hyperbolic

decrease.

Two predefined shapes of the hyperbola are given by the position of an intermediate point r, x.

Constants K and A define the shape of the hyperbola. The values of the constants for the two

positions of the intermediate point are given in the following table.

type point parameters

 r x A K

a 0.5 0.4 0.75 1.125

b 0.5 0.2 1.0625 6.0208

The smeared crack approach for modeling of the cracks is adopted in the model SBETA. Within

the smeared concept two options are available for crack models: the fixed crack model and the

rotated crack model. In both models the crack is formed when the principal stress exceeds the

tensile strength. It is assumed that the cracks are uniformly distributed within the material

volume. This is reflected in the constitutive model by an introduction of orthotropy.

In the fixed crack model (CERVENKA 1985, DARWIN 1974) the crack direction is given by

the principal stress direction at the moment of the crack initiation. During further loading this

direction is fixed and represents the material axis of the orthotropy.

The principal stress and strain directions coincide in the uncracked concrete, because of the

assumption of isotropy in the concrete component. After cracking the orthotropy is introduced.

The weak material axis m1 is normal to the crack direction, the strong axis m2 is parallel with the

cracks.

In a general case the principal strain axes  and  rotate and need not to coincide with the axes

of the orthotropy m1 and m2. This produces a shear stress on the crack face as shown in Fig.

2-16. The stress components c1 and c2 denote, respectively, the stresses normal and parallel to

the crack plane and, due to shear stress, they are not the principal stresses. The shear stress and

stiffness in the cracked concrete is described in Section 2.1.7.

In the rotated crack model (VECCHIO 1986, CRISFIELD 1989), the direction of the principal

stress coincides with the direction of the principal strain. Thus, no shear strain occurs on the

crack plane and only two normal stress components must be defined, as shown in Fig. 2-17.

If the principal strain axes rotate during the loading the direction of the cracks rotate, too. In

order to ensure the co-axiality of the principal strain axes with the material axes the tangent shear

modulus Gt is calculated according to CRISFIELD 1989 as

 1 2

1 22()

c c
tG

 

 

−
=

−
 (2.24)

In case of the fixed crack model, the shear modulus is reduced according to the law derived by

KOLMAR (1986) after cracking. The shear modulus is reduced with growing strain normal to

the crack, Fig. 2-18 and this represents a reduction of the shear stiffness due to the crack

opening.

1

3

2

1000
ln

,

u

g c g

c
G r G r c

c

 
−  

 = = (2.25)

 02.00),005.0(16710),005.0(3337 21 −−=−+= ppcpc

where gr is the shear retention factor, G is the reduced shear modulus and Gc is the initial

concrete shear modulus:

2(1)

c
c

E
G


=

+
 (2.26)

where Ec is the initial elastic modulus and  is the Poisson's ratio. The strain  is normal to the

crack direction (the crack opening strain), c1 and c2 are parameters depending on the reinforcing

crossing the crack direction, p is the transformed reinforcing ratio (all reinforcement is

transformed on the crack plane) and c3 is the user’s scaling factor. By default, c3=1. In ATENA

the effect of reinforcement ratio is not considered, and p is assumed to be 0.0.

There is an additional constraint imposed on the shear modulus. The shear stress on the crack

plane uv G = is limited by the tensile strength f’t. The secant and tangent shear moduli of

cracked concrete are equal.

A reduction of the compressive strength after cracking in the direction parallel to the cracks is

done by a similar way as found from experiments of VECCHIO and COLLINS 1982 and

formulated in the Compression Field Theory. However, a different function is used for the

reduction of concrete strength here, to allow for user's adjustment of this effect. This function

has the form of the Gauss's function, Fig. 2-19. The parameters of the function were derived

from the experimental data published by KOLLEGER et al. 1988, which also included data of

Collins and Vecchio (VECCHIO at al.1982)

2(128)' ' , (1) uef

c c c cf r f r c c e
−

= = + − (2.27)

For the zero normal strain,  there is no strength reduction, and for the large strains, the

strength is asymptotically approaching to the minimum value ' 'ef

c cf cf= .

The constant c represents the maximal strength reduction under the large transverse strain. From

the experiments by KOLLEGGER et all. 1988, the value c = 0.45 was derived for the concrete

reinforced with the fine mesh. The other researchers (DYNGELAND 1989) found the reductions

not less than c=0.8. The value of c can be adjusted by input data according to the actual type of

reinforcing.

However, the reduction of compressive strength of the cracked concrete does not have to be

affected only by the reinforcing. In the plain concrete, when the strain localizes in one main

crack, the compressive concrete struts can cross this crack, causing so-called "bridging effect".

The compressive strength reduction of these bridges is also captured by the above model.

The tension stiffening effect can be described as a contribution of cracked concrete to the tensile

stiffness of reinforcing bars. This stiffness is provided by the uncracked concrete or not fully

opened cracks and is generated by the strain localization process. It was verified by simulation

experiments of HARTL, G., 1977 and published in the paper (MARGOLDOVA et.al. 1998).

Including an explicit tension stiffening factor would result in an overestimation of this effect.

Therefore, in the ATENA versions up to1.2.0 no explicit tension stiffening factor is possible in

the input.

In the case of uncracked concrete, the stress symbols have the following meaning:

 1c - maximal principal stress

2c - minimal principal stress

 (tension positive, compression negative)

In the case of cracked concrete, Fig. 2-16 stresses are defined on the crack plane:

 1c - normal stress normal to the cracks

 2c - normal stress parallel to the cracks

 c - shear stress on the crack plane

The material stiffness matrix for the uncracked concrete has the form of an elastic matrix of the

isotropic material. It is written in the global coordinate system x and y.

2

1 0

1 0
1

1
0 0

2

c

E







 
 
 

=  
−

 −
 
 

D (2.28)

In the above E is the concrete elastic modulus derived from the equivalent uniaxial law. The

Poisson's ratio  is constant.

For the cracked concrete, the matrix has the form of the elastic matrix for the orthotropic

material. The matrix is formulated in a coordinate system m1, m2, Fig. 2-16 and Fig. 2-17, which

is coincident with the crack direction. This local coordinate system is referred to the superscript

L later. The direction 1 is normal to the crack and the direction 2 is parallel with the crack. The

definition of the elastic constants for the orthotropic material in the plane stress state follows

from the flexibility relation:

21

1 2
1 1

12
2 2

1 2

1
0

1
0

1
0 0

E E

E E

G



 


 

 

 
− 

    
    

= −    
       

 
 
 

 (2.29)

First, we eliminate the orthotropic Poisson’s ratios for the cracked concrete, because they are

commonly not known. For this we use the symmetry relation
12 2 21 1E E = . Therefore, in (2.29)

there are only three independent elastic constants 1 2 21, ,E E  . Assuming that 21 = is the

Poisson's ratio of the uncracked concrete and using the symmetry relation, we obtain

 1
12

2

E

E
 = (2.30)

The stiffness matrix
L

cD is found as the inverse of the flexibility matrix in (2.30):

)1(,

,

00

01

0

2

1

2

1 





−==

















=

EH
E

E

G

H
L

cD

 (2.31)

In the above relation E2 must be nonzero. If E2 is zero and E1 is nonzero, then an alternative

formulation is used with the inverse parameter 2

1

1 E

E
= . In case that both elastic modules are

zero, the matrix
L

cD is set equal to the null matrix.

The matrix
L

cD is transformed into the global coordinate system using the transformation matrix

T from (2.8).

  TDTD
L

c

T

c = (2.32)

The angle  is between the global axis x and the 1st material axis m1, which is normal to the

crack, Fig. 2-16.

The material stiffness matrix of the ith smeared reinforcement is

4 2 2 3

2 2 4 3

3 3 2 2

cos() cos() sin() cos() sin()

cos() sin() sin() cos()sin()

cos() sin() cos()sin() cos() sin()

i i i i i

si i si i i i i i

i i i i i i

p E

    

    

     

 
 

=  
 
 

D (2.33)

The angle  is between the global axis x and the ith reinforcement direction, and Esi is the elastic

modulus of reinforcement. The reinforcing ratio pi =As/Ac.

The total material stiffness of the reinforced concrete is the sum of material stiffness of concrete

and smeared reinforcement:

1

n

c si

i=

= + D D D (2.34)

The summation is over n smeared reinforcing components. In ATENA the smeared

reinforcement is not added on the constitutive level, but it is modeled by separate layers of

elements whose nodes are connected to those of the concrete elements. This corresponds to the

assumption of perfect bond between the smeared reinforcement and concrete.

The material stiffness matrices in the above Subsections 2.1.11.1, 2.1.11.2, 2.1.11.3, 2.1.11.4 are

either secant or tangent, depending on the type of elastic modulus used.

The secant material stiffness matrix is used to calculate the stresses for the given strains, as

shown in Section 2.1.12.

The tangent material stiffness matrix is used to construct the element stiffness matrix.

The stresses in concrete are obtained using the actual secant component material stiffness matrix

s

c c=s D e (2.35)

where
s

cD is the secant material stiffness matrix from Section 2.1.11 for the uncracked or

cracked concrete depending on the material state. The stress components are calculated in the

global as well as in the local material coordinates (the principal stresses in the uncracked

concrete and the stresses on the crack planes).

The stress in reinforcement and the associated tension stiffening stress is calculated directly from

the strain in the reinforcement direction.

Default formulas of material parameters:

Parameter: Formula:

Cylinder strength ' '0.85c cuf f=

Tensile strength 2

' ' 30.24t cuf f=

Initial elastic modulus ' '(6000 15.5)c cu cuE f f= −

Poisson's ratio 0.2 =

Softening compression 0.0005dw m= −

Type of tension softening 1 – exponential, based on GF

Compressive strength in cracked concrete c = 0.8

Tension stiffening stress 0.st =

Shear retention factor variable (Sect.2.1.7)

Tension-compression function type linear

Fracture energy Gf according to VOS 1983 '0.000025 ef

F tG f= [MN/m]

Orientation factor for strain localization
max 1.5 = (Sect.2.1.3)

The SBETA constitutive model of concrete includes 20 material parameters. These parameters

are specified for the problem under consideration by user. In case of the parameters are not

known automatic generation can be done using the default formulas given in the table above. In

such a case, only the cube strength of concrete f’cu (nominal strength) is specified and the

remaining parameters are calculated as functions of the cube strength. The formulas for these

functions are taken from the CEB-FIP Model Code 90 and other research sources.

Used units are MPa.

The parameters not listed in the table have zero default value.

The values of the material parameters can be also influenced by safety considerations. This is

particularly important in cases of a design, where a proper safety margin should be met. For that

reason, the choice of material properties depends on the purpose of analysis and the filed of an

application. The typical examples of the application are the design, the simulation of failure and

the research.

In case of the design application, according to most current standards, the material properties for

calculation of structural resistance (failure load) are considered by minimal values with applied

partial safety factors. The resulting maximum load can be directly compared with the design

loads.

According to some researchers, more appropriate approach would be to consider the average

material properties in nonlinear analysis and to apply a safety factor on the resulting integral

response variable (force, moment). However, this safety format is not yet fully established.

In cases of the simulation of real behavior, the parameters should be chosen as close as possible

to the properties of real materials. The best way is to determine these properties from mechanical

tests on material sample specimens.

Fracture-plastic model combines constitutive models for tensile (fracturing) and compressive

(plastic) behavior. The fracture model is based on the classical orthotropic smeared crack

formulation and crack band model. It employs Rankine failure criterion, exponential softening,

and it can be used as rotated or fixed crack model. The hardening/softening plasticity model is

based on Menétrey-Willam failure surface. The model uses return mapping algorithm for the

integration of constitutive equations. Special attention is given to the development of an

algorithm for the combination of the two models. The combined algorithm is based on a

recursive substitution, and it allows for the two models to be developed and formulated

separately. The algorithm can handle cases when failure surfaces of both models are active, but

also when physical changes such as crack closure occur. The model can be used to simulate

concrete cracking, crushing under high confinement, and crack closure due to crushing in other

material directions.

Although many papers have been published on plasticity models for concrete (for instance,

PRAMONO, WILLAM 1989, MENETREY et al 1997, FEENSTRA 1993, 1998 ETSE 1992) or

smeared crack models (RASHID 1968, CERVENKA and GERSTLE 1971, BAZANT and OH

1983, DE BORST 1986, ROTS 1989), there are not many descriptions of their successful

combination in the literature. OWEN et al. (1983) presented a combination of cracking and

visco-plasticity. Comprehensive treatise of the problem was provided also by de BORST (1986),

and recently several works have been published on the combination of damage and plasticity

(SIMO and JU 1987, MESCHKE et al. (1998). The presented model differs from the above

formulations by ability to handle also physical changes like for instance crack closure, and it is

not restricted to any shape of hardening/softening laws. Also, within the proposed approach it is

possible to formulate the two models (i.e. plastic and fracture) entirely separately, and their

combination can be provided in a different algorithm or model. From programming point of

view such approach is well suited for object-oriented programming.

The method of strain decomposition, as introduced by DE BORST (1986), is used to combine

fracture and plasticity models together. Both models are developed within the framework of

return mapping algorithm by WILKINS (1964). This approach guarantees the solution for all

magnitudes of strain increment. From an algorithmic point of view the problem is then

transformed into finding an optimal return point on the failure surface.

The combined algorithm must determine the separation of strains into plastic and fracturing

components, while it must preserve the stress equivalence in both models. The proposed

algorithm is based on a recursive iterative scheme. It can be shown that such a recursive

algorithm cannot reach convergence in certain cases such as, for instance, softening and dilating

materials. For this reason, the recursive algorithm is extended by a variation of the relaxation

method to stabilize convergence.

The material model formulation is based on the strain decomposition into elastic e

ij , plastic p

ij

and fracturing f

ij components (DE BORST 1986).

 f

ij

p

ij

e

ijij  ++= (2.36)

The new stress state is then computed by the formula:

)(1 f

kl

p

klklijkl

n

ij

n

ij E  −−+= − (2.37)

where the increments of plastic strain
p

ij and fracturing strain
f

ij must be evaluated based on

the used material models.

Rankine criterion is used for concrete cracking

 0−=
it

t

ii

f

i fF  (2.38)

It is assumed that strains and stresses are converted into the material directions, which in case of

rotated crack model correspond to the principal directions, and in case of fixed crack model, are

given by the principal directions at the onset of cracking. Therefore, t

ii  identifies the trial

stress and
itf  tensile strength in the material direction i . Prime symbol denotes quantities in the

material directions. The trial stress state is computed by the elastic predictor.

 klijkl

n

ij

t

ij E  += −1 (2.39)

If the trial stress does not satisfy (2.38), the increment of fracturing strain in direction i can be

computed using the assumption that the final stress state must satisfy (2.40).

 0=−−=−=
it

f

kliikl

t

iiit

n

ii

f

i fEfF  (2.40)

This equation can be further simplified under the assumption that the increment of fracturing

strain is normal to the failure surface, and that always only one failure surface is being checked.

For failure surface k , the fracturing strain increment has the following form.

 ik

ij

f

kf

ij

F





 == (2.41)

After substitution into (2.40) a formula for the increment of the fracturing multiplier  is

recovered.

kkkk

kt

t

kk

kkkk

kt

t

kk

E

wf

E

f)(max−
=

−
=


 and)ˆ(max  += f

kktk Lw (2.42)

This equation must be solved by iterations since for softening materials the value of current

tensile strength)(max

kt wf  is a function of the crack opening w , and is based on Hordijk’s formula

(defined in SBETA model).

The crack opening w is computed from the total value of fracturing strain f

kk ˆ in direction k ,

plus the current increment of fracturing strain  , and this sum is multiplied by the

characteristic length tL . The characteristic length as a crack band size was introduced by

BAZANT and OH. Various methods were proposed for the crack band size calculation in the

framework of finite element method. FEENSTRA (1993) suggested a method based on

integration point volume, which is not well suited for distorted elements. A consistent and rather

complex approach was proposed by OLIVIER. In the presented work the crack band size Lt is

calculated as a size of the element projected into the crack direction, Fig. 2-20. CERVENKA V.

et al. (1995) showed that this approach is satisfactory for low order linear elements, which are

used throughout this study. They also proposed a modification, which accounts for cracks that

are not aligned with element edges.

Equation (2.42) can be solved by recursive substitutions. It is possible to show by expanding

)(max

kt wf  into a Taylor series that this iteration scheme converges if:

t

kkkkkt

L

E

w

wf





−

)(max

 (2.43)

Equation (2.43) is violated for softening materials only when snap back is observed in the stress-

strain relationship, which can occur if large finite elements are used. In the standard

displacement based finite element method, the strain increment is given, therefore, a snap back

on the constitutive level cannot be captured. This means that the critical region, with snap back

on the softening curve, will be skipped in a real calculation, which physically means, that the

energy dissipated by the system will be over estimated. This is of course undesirable, and finite

elements smaller then
w

fE
L tkkkk






)0(
 should be used, where

w

f t



)0(
 denotes the initial slope

of the crack softening curve.

It is important to distinguish between total fracturing strain f

ij ˆ , which corresponds to the

maximal fracturing strain reached during the loading process, and current fracturing strain f

ij  ,

which can be smaller due to crack closure, and is computed using (2.44) derived by ROTS and

BLAUWENDRAAD.

 mnklmn

cr

ijklijkl

f

kl EEE  += −1)(, and cr

ijlkE is defined by f

kl

cr

ijklij E  = (2.44)

The fourth order crack tensor cr

ijklE represents the cracking stiffness in the local material directions.

In the current formulation, it is assumed, that there is no interaction between normal and shear

components. Thus, the crack tensor is given by the following formulas.

 0=cr

ijklE for ki  and lj  (2.45)

Mode I crack stiffness equals

f

ii

itcr

iiii

wf
E

 


=

ˆ

)(max

, (no summation of indices) (2.46)

and mode II and III crack stiffness is assumed as:

()´ ´min ,cr cr cr

ijij F iiii jjjjE s E E = , (no summation of indices) (2.47)

where ji  , and Fs is a shear factor coefficient that defines a relationship between the normal

and shear crack stiffness. The default value of Fs

is 20.

Shear strength of a cracked concrete is calculated using the Modified Compression Field Theory

of VECHIO and COLLINS (1986).

0.18

24
0.31

16

c

ij

g

f

w

a






+
+

, i j (2.48)

Where cf  is the compressive strength in MPa, ga is the maximum aggregate size in mm and w

is the maximum crack width in mm at the given location. This model is activated by specifying

the maximum aggregate size ga

otherwise the default behavior is used where the shear stress on

a crack surface cannot exceed the tensile strength.

The secant constitutive matrix in the material direction was formulated by ROTS and

BLAUWENDRAAD in the matrix format.

 EE)EE(-EE 1-crs += (2.49)

Strain vector transformation matrix 
T (i.e. global to local strain transformation matrix) can be

used to transform the local secant stiffness matrix to the global coordinate system.

  TETE sTs = (2.50)

It is necessary to handle the special cases before the onset of cracking, when the crack stiffness

approaches infinity. Large penalty numbers are used for crack stiffness in these cases.

Crack closure stiffness is controlled by the unloading factor (material parameter) 0 ≤ fU < 1.

The value of 0 corresponds to unloading to origin (default value for backward compatibility),

fU =1 means unloading direction parallel to the initial elastic stiffness.

New stress state in the plastic model is computed using the predictor-corrector formula.

 () (1) ()n n p t p t p

ij ij ijkl kl kl ij ijkl kl ij ijE E       −= +  −  = −  = − (2.51)

The plastic corrector p

ij is computed directly from the yield function by return mapping

algorithm.

 () () 0p t p p t

ij ij ij ijF F l   − = −  = (2.52)

The crucial aspect is the definition of the return direction ijl , which can be defined as

 l E
G

ij ijkl

p

kl

t

kl

=
 

 

()
 then

()p t

ijp

ij

ij

G 
 


 =  (2.53)

where ()ijG  is the plastic potential function, whose derivative is evaluated at the predictor stress

state t

ij to determine the return direction.

The failure surface of MENETREY, WILLAM is used in the current version of the material

model.

 F
f

m
f

r e
f

cP

p

c c c

3

2

15
6 3

0=








 + +















− =. (,)' ' '

 



 (2.54)

where

'2 '2

' '
3

1

c t

c t

f f e
m

f f e

−
=

+
,

 
r e

e e

e e e e e

(,)
() cos ()

() cos () () cos




 

=
− + −

− + − − + −

4 1 2 1

2 1 2 1 4 1 5 4

2 2 2

2 2 2 2

1

2

In the above equations (, ,)   are Heigh-Vestergaard coordinates, cf  and tf  is compressive

strength and tensile strength respectively. Parameter e  0510. , . defines the roundness of the

failure surface. The failure surface has sharp corners if e = 05. , and is fully circular around the

hydrostatic axis if e = 10. .

The position of failure surfaces is not fixed but it can move depending on the value of strain

hardening/softening parameter. The strain hardening is based on the equivalent plastic strain,

which is calculated according to the following formula.

)min(p

ij

p

eq  = (2.55)

For Menétrey-Willam surface the hardening/softening is controlled by the parameter 1,0c ,

which evolves during the yielding/crushing process by the following relationship:

2

)(


















=

c

p

eqc

f

f
c


 (2.56)

In the above two formulas the expression)(p

eqcf  indicates the hardening/softening law, which is

based on the uniaxial compressive test. The law is shown in Fig. 2-21, where the softening curve

is linear, and the elliptical ascending part is given by the following formula:

 ()

2

1

p

c eq

co c co

c

f f f
 




 −
= + − −   

 

 (2.57)

f'c

eq

p

c c

p
=f' /E

f’ = 2f’c0 t

The law on the ascending branch is based on strains, while the descending branch is based on

displacements to introduce mesh objectivity into the finite element solution, and its shape is

based on the work of VAN MIER. The onset of nonlinear behavior '

0cf is an input parameter as

well as the value of plastic strain at compressive strength p

c . The Fig. 2-21 shows typical values

of these parameters. In general case, however, p

c should be calculated from the total strain at the

peak by subtracting the elastic part
'

1

p c
c

f

E
 = − , where 1 is the compressive strain when the

compressive strength '

cf is reached. Especially the choice of the parameter '

0cf should be

selected with care, since it is important to ensure that the fracture and plastic surfaces intersect

each other in all material stages. On the descending curve the equivalent plastic strain is

transformed into displacements through the length scale parameter cL . This parameter is defined

by analogy to the crack band parameter in the fracture model in Sec. 2.2.3, and it corresponds to

the projection of element size into the direction of minimal principal stresses. The square in

(2.56) is due to the quadratic nature of the Menétry-Willam surface.

Return direction is given by the following plastic potential

 21 2
3

1
)(JIG ij

p +=  (2.58)

where  determines the return direction. If   0 material is being compacted during crushing,

if  = 0 material volume is preserved, and if   0 material is dilating. In general, the plastic

model is non-associated, since the plastic flow is not perpendicular to the failure surface

The return mapping algorithm for the plastic model is based on predictor-corrector approach as

is shown in Fig. 2-22. During the corrector phase of the algorithm the failure surface moves

along the hydrostatic axis to simulate hardening and softening. The final failure surface has the

apex located at the origin of the Haigh-Vestergaard coordinate system. Secant method-based

Algorithm 1 is used to determine the stress on the surface, which satisfies the yield condition and

also the hardening/softening law.

Algorithm 1: (Input is (1) (1) (), ,n n p n

ij ij ij  − − )

Elastic predictor: (1) ()t n n

ij ij ijkl klE  −= +  (2.59)

Evaluate failure criterion: (1)(,)p p t n p

A ij ijf F  −= , 0= A (2.60)

If failure criterion is violated i.e. 0p

Af

Evaluate return direction:
()p t

ij

ij

ij

G
m






=


 (2.61)

Return mapping: (1)(,) 0p t n p

ij B ij ij BF E m   −−  =   (2.62)

Evaluate failure criterion: (1)(,)p p t n p

B ij B ij ij B ijf F E m m   −= −  +  (2.63)

Secant iterations)(i as long as A B e  −   (2.64)

New plastic multiplier increment:
p

A

p

B

ABp

AA
ff

f
−

−
−=


 (2.65)

New return direction:

(1)

()
()p t i

ij iji

ij

ij

G E m
m

 



− − 
=


 (2.66)

Evaluate failure criterion:
() (1) ()(,)p p t i n p i

ij ij ij ijf F E m m   −= − +  (2.67)

New initial values for secant iterations:

  == B

pp

B

p

B fff ,0 (2.68)

  ==== B

pp

BBA

p

B

p

A

p

B fffff ,,,0 (2.69)

End of secant iteration loop

End of algorithm update stress and plastic strains.

 () (1) ()n p n p i

ij ij B ijm  −= +  ,
() ()n t i

ij ij B ijE m  = − (2.70)

The objective is to combine the above models into a single model such that plasticity is used for

concrete crushing and the Rankine fracture model for cracking. This problem can be generally

stated as a simultaneous solution of the two following inequalities.

(1)(()) 0p n f p

ij ijkl kl kl klF E   − +  − −  solve for kl

p (2.71)

(1)(()) 0f n p f

ij ijkl kl kl klF E   − +  −  −   solve for kl

f (2.72)

Each inequality depends on the output from the other one, therefore the following iterative

scheme is developed.

Algorithm 2:

Step 1: (1) (1) (1) ()(()) 0p n i f i cor i p

ij ijkl kl kl kl klF E b    − − −+  −  +  −   solve for
()i p

kl

Step 2: (1) () ()(()) 0f n i p i f

ij ijkl kl kl klF E   − +  −  −   solve for
()i f

kl

Step 3: () () ()i cor i f i f

ij ij ij   =  − (2.73)

Iterative correction of the strain norm between two subsequent iterations can be expressed as

() ()(1)i cor f p i cor

ij ijb    = −  (2.74)

 where

() (1)

() (1)

i f i f

ij ijf

i p i p

ij ij

 


 

−

−

 − 
=

 − 
 ,

() ()i p i p

ij ijp

cor

ij

 




 − 
=



and b is an iteration correction or relaxation factor, which is introduced to guarantee

convergence. It is to be determined based on the run-time analysis of f and p , such that the

convergence of the iterative scheme can be assured. The parameters f and p characterize the

mapping properties of each model (i.e. plastic and fracture). It is possible to consider each model

as an operator, which maps strain increment on the input into a fracture or plastic strain

increment on the output. The product of the two mappings must be contractive to obtain a

convergence. The necessary condition for the convergence is:

(1) 1f pb  −  (2.75)

If b equals 0 , an iterative algorithm based on recursive substitution is obtained. The

convergence can be guaranteed only in two cases:

One of the models is not activated (i.e. implies f or 0p =),

There is no softening in either of the two models and dilating material is not used in the plastic

part, which for the plastic potential in this work means 0 , (2.58). This is a sufficient but

not necessary condition to ensure that f and 1p .

It can be shown that the values of f and p are directly proportional to the softening rate in

each model. Since the softening model remains usually constant for a material model and finite

element, their values do not change significantly between iterations. It is possible to select the

scalar b such that the inequality (2.75) is satisfied always at the end of each iteration based on

the current values of f and p . There are three possible scenarios, which must be handled, for

the appropriate calculation of b :

 pf , where  is related to the requested convergence rate. For linear rate it can be

set to 2/1= . In this case the convergence is satisfactory and 0=b .

1 pf  , then the convergence would be too slow. In this case b can be estimated

as


 pf

b −= 1 , in order to increase the convergence rate.

pf 1 , then the algorithm is diverging. In this case b should be calculated as

pf
b




−= 1 to stabilize the iterations.

This approach guarantees convergence as long as the parameters fp  , do not change

drastically between the iterations, which should be satisfied for smooth and correctly formulated

models. The rate of convergence depends on material brittleness, dilating parameter  and finite

element size. It is advantageous to further stabilize the algorithm by smoothing the parameter b

during the iterative process:

 () (1)() / 2i ib b b−= + (2.76)

where the superscript i denotes values from two subsequent iterations. This will eliminate

problems due to the oscillation of the correction parameter b . Important condition for the

convergence of the above Algorithm 2 is that the failure surfaces of the two models are

intersecting each other in all possible positions even during the hardening or softening.

Additional constraints are used in the iterative algorithm. If the stress state at the end of the first

step violates the Rankine criterion, the order of the first two steps in Algorithm 2 is reversed.

Also, concrete crushing in one direction influences the cracking in other directions. It is assumed

that after the plasticity yield criterion is violated, the tensile strength in all material directions is

set to zero.

On the structural level secant matrix is used to achieve a robust convergence during the strain

localization process.

The proposed algorithm for the combination of plastic and fracture models is graphically shown

in Fig. 2-23. When both surfaces are activated, the behavior is quite like the multi-surface

plasticity (SIMO et al. 1988). Contrary to the multi-surface plasticity algorithm the proposed

method is more general in the sense that it covers all loading regimes including physical changes

such as for instance crack closure. Currently, it is developed only for two interacting models, and

its extension to multiple models is not straightforward.

There are additional interactions between the two models that need to be considered to properly

describe the behavior of a concrete material:

(a) After concrete crushing the tensile strength should decrease as well

(b) According to the research work of Collins (VECHIO and COLLINS (1986)) and

coworkers it was established the also compressive strength should decrease when

cracking occurs in the perpendicular direction. This theory is called compression field

theory and it is used to explain the shear failure of concrete beams and walls.

The interaction (a) is resolved by adding the equivalent plastic strain to the maximal fracturing

strain in the fracture model to automatically increase the tensile damage based on the

compressive damage such that the fracturing strains satisfies the following condition:

ˆ f pt
kk eq

c

f

f
 


 


 (2.77)

The compressive strength reduction (b) is based on the following formula based proposed by

Collins:

c c cr f =

 lim

1

1
, 1.0

0.8 170
c c cr r r


=  

+
 (2.78)

Where
1 is the tensile strain in the crack. In ATENA the largest maximal fracturing strain is

used for
1 and the compressive strength reduction is limited by lim

cr . If lim

cr is not specified, then

no compression reduction is considered.

The several ATENA material models are based on the above theories:

CC3DCementitious,

CC3DNonLinCementitious,

CC3DNonLinCementitious2,

 CC3DNonLinCementitious2Variable,

CC3DNonLinCementitious2Fatigue (described in section 2.2.10),

 CC3DNonLinCementitious2User,

CC3DNonLinCementitious2FRC (described in section 2.2.11),

CC3DNONLINCEMENTITIOUS2SHCC,

CC3DNONLINCEMENTITIOUS2HPFRC (described in section 2.2.12),

and CC3DNonLinCementitious3 (described in section 2.2.13),

with the following differences: CC3DCementitious assumes linear response up to the point when

the failure envelope is reached both in tension and compression. This means that there is no

hardening regime in Fig. 2-21. The material CC3DNonLinCementitious on the contrary assumes

a hardening regime before the compressive strength is reached. The material

CC3DNonLinCementitious2 is equivalent to CC3DNonLinCementitious but purely incremental

formulation is used (in CC3DNonLinCementitious a total formulation is used for the fracturing

part of the model), therefore this material can be used in creep calculations or when it is

necessary to change material properties during the analysis. The material

CC3DNonLinCementitious2Variable is based on the material CC3DNonLinCementitious2 and it

allows to define history evolution laws for selected material parameters. The following material

parameters can be defined using an arbitrary evolution laws: young modulus E , tensile strength
'

tf , compressive strength '

cf and '

0cf . It is the responsibility of the user to define the parameters

in a meaningful way. It means that at any time (please note compressive strength parameters '

cf

and '

0cf are defined as negative values in ATENA):

 ' '1
2 0t cf f (2.79)

 ' ' '

0 0 0, 0c c cf f f  (2.80)

The material CC3DNonLinCementitious2User allows for user defined laws for selected material

laws such as: diagrams for tensile and softening behavior (see Fig. 2-24 and Fig. 2-25), shear

retention factor (Fig. 2-26) and the effect of lateral compression on tensile strength (Fig. 2-27).

t t/f’

1.0

tloc

() L /L − 1 t chloc

t t

1
f

f

c c/f’

1.0

cloc

() L /L − eq c chloc

c c

 eq

p

p

G/Gc

1.0

shloc

() L /L − 1 t chloc

sh t

1

f

f

In the user defined material mode II and III crack stiffness are evaluated with the help of the

shear retention factor gr
as:

~

~

~

1

gcr

ijij

g

r G
E

r
 =

−
 (2.81)

where ji  , min(,)i j

g g gr r r= is the minimum of shear retention factors on cracks in directions

i , j , and G is the elastic shear modulus. Shear retention factor on a crack in direction i is

evaluated from the user specified diagram as shown in Fig. 2-26.

In the above diagrams tL and cL represents the crack band size and crush band size respectively

as it is defined Section 2.1.3. t

chL and c

chL represents a size for which the tensile and compression

diagram respectively is valid. For instance, it represents the measuring base that was used in an

experiment to determine the strain values in the diagrams above. loc represents the strain value,

after which strain localization can be expected. Usually, this is the strain after which the diagram

is entering into the softening regime. For instance, the strain value that is used to determine the

tensile strength is calculated based on the following assumptions:

1

f f

locif  

1 1

f f =

else

1 1()f f f f t
tloc loc
ch

L

L
   = + − (2.82)

The calculation of the strain value for graphs in Fig. 2-25 and Fig. 2-26 is analogical to Eq.

(2.82) but the appropriate values of loc , L and chL should be used. It should be noted that the

strain 1

f is the strain that is calculated from the strain tensor at the finite element integration

points, while the strain 1

f is used to determine the current tensile strength from the provided

stress-strain diagram (see Fig. 2-24). The equation (2.82) then represents a scaling that considers

the difference between the experimental size and the size of the integration point. This approach

guarantees that the same amount of energy is dissipated when using large and small finite

elements.

It is also possible to define a material law for the shear strength of a cracked concrete and for the

compressive strength reduction after cracking.

Compressive strength of cracked concrete 1()f

c c cr f  = (2.83)

Shear strength of cracked concrete
1()f

ij sh tf f   (2.84)

It should be realized that the compressive strength of the cracked concrete i.e. (2.83) is a

function of the maximal fracturing strain, i.e. maximal tensile damage at the given point. The

shear strength should be a function of the crack opening. Because of that the shear strength is

specified as a function of the fracturing strain 1

f after the localization transformation (2.82).

The shear strength law is specified as a value relative to tf
 . The compressive strength reduction

is specified as a function relative to cf  .

t t/f’

1.0

3 c/f’1.0

In heavily reinforced concrete structures, the cracks cannot fully developed and concrete

contributes to the steel stiffness. This effect is called tension stiffening and in

CC3DNonLinCementitious2 material it can be simulated by specifying a tension stiffening

factor tsc . This factor represents the relative limiting value of tensile strength in the tension

softening diagram. The tensile stress cannot drop below the value given by the product of ts tc f

(see Fig. 2-28). The recommended default value for tsc is 0.4 as recommended by CEB-FIP

Model Code 1990.

f
t

cts



ft



In heavily reinforced concrete structures, or structures with large finite elements, when many

reinforcement bars are crossing each finite element, the crack band approach described in

Section 2.1.3 will provide too conservative results, and the calculated crack widths may be

overestimated. This is the consequence of the fact that the crack band approach assumes that the

crack spacing is larger than a finite element size. In heavily reinforced structures, or if large

finite elements are used, it may occur that the crack spacing will be smaller than finite element

size. This is especially true if shell/plate elements are used. In this case, typically large finite

elements can be used, and they usually contain significant reinforcement. In these cases, it is

useful to provide the crack spacing manually, since otherwise the program will overestimate the

cracking and due to that also larger deflections may be calculated. The program ATENA allows

the user to manually define the crack spacing. This user defined spacing is used as crack band

size tL in cases when the user defined crack spacing is smaller than the tL that would be

calculated by formulas presented in Section 2.1.3.

Similarly, to the SBETA material, the Cementitious material family offers the choice of fixed

and rotated crack models (see section 2.1.6). The fixed crack material parameter determines at

which maximum residual tensile stress level the crack direction gets fixed. In other words, 0.0

means fully rotated crack model (as 0 in SBETA), 1.0 means fixed crack model (as 1 in

SBETA), values between 0.0 and 1.0 determine the crack direction locking level, e.g., 0.7 fixes

the crack direction as soon it opens so far that the softening law drops to 0.7 times the [initial]

tensile strength.

For modelling fatigue behavior of concrete (CEB 1988 and SAE AE-4) under tensile load, a new

material has been implemented in ATENA. The new material

(CC3DNonLinCementitious2Fatigue) is based on the existing three-dimensional fracture plastic

material (CC3DNonLinCementitious2) and uses a stress-based model (2.2.10.1). It has an

additional parameter, fatigue , and additional data attributes for base , N , and fatigue , used in the

damage calculation as described in section 2.2.10.2. For details and validation against tests

conducted by KESSLER-KRAMER (2002) see ČERVENKA, PRYL (2007) or PRYL,

CERVENKA, PUKL (2010). Modelling 3-point bending tests with this material is presented in

PRYL, PUKL, CERVENKA (2013) and PRYL, D., MIKOLÁŠKOVÁ, J., PUKL, R. (2014).

In this approach the fatigue is represented by the so-called S-N curves relating the applied stress,

S, and the number of cycles, N, to failure. Such curves must be determined by tests, see Fig.

2-29.

For steel reinforcement bars the performance can be normally expressed as a simple power law

by BASQUIN (1910).

 m

r N C = (2.85)

where r is the stress range, N is the number of cycles to failure and m and C are constants.

This means a linear relationship between  and N in a full logarithmic diagram. The equation

(2.85) is generally valid for the high-cycle range.

For plain concrete, the performance can normally be expressed as a straight line in a semi-

logarithmic diagram of the form:

 ()max 1 1 logR N
f


= − − (2.86)

where max is the maximum stress, f is static concrete strength, min

max

R



= ,

min is minimum

stress and  is a material constant. The equation (2.86) holds for both compressive and tensile

stresses, however, the value of  is not necessarily the same for tensile and compressive

behavior of a material. The value should be determined from experiments. For example,

 =0.052 was used based on the experimental results for load levels 0.7 and 0.9 statF when

modelling the test on a probe sealed during curing with a notch from section 3.5.2.4 of

KESSLER-KRAMER (2002) for validation.

The S-N relations mentioned above are mainly obtained by constant amplitude tests. However,

in real structures the stresses are varying. One method which can be of help in this context is the

well-known Palmgren-Miner hypothesis PALMGREN (1924), MINER (1945).

1

1
k

i

i i

n

N=

= (2.87)

where in is the number of constant amplitude cycles at stress level i , iN is the number of cycles

to failure at stress level i , and k is the number of stress levels. As a rough tool this hypothesis is

useful, especially concerning steel. It can also be used for concrete although some investigations

have suggested that a value lower than 1 should be used.

In the implemented model, fatigue damage consists of a contribution based on cyclic stress

(2.2.10.2.1), and an additional contribution from crack opening and closing in each cycle

(2.2.10.2.3). The former is dominant before cracking occurs, the latter in already cracked

regions.

The number of cycles to failure N is determined from a simple stress based model, so called S-

N or Wöhler curve as described in the previous section 2.2.10.1.

()1 1 log
upper

fatigue R N
f


= − − , i.e.,

()

1

1

10

upper

fatigue

f

R

N





 
− 

 
 −
 
 = , where upper stands for the maximum

tensile or compressive stress and f for the corresponding strength, tf or cf , base

upper

R



= .

Then, the damage due to fatigue after n cycles is calculated as an increase of the maximum

fracturing strain f

ij ˆ (see section 2.2.3). The maximum fracturing strain in each principal

direction is adjusted by adding

fatigue

fatigue

w

ElemSize
 = , where fatigue fail

n
w w

N
= and the failing displacement for the given stress

_ _ ()fail upperw invert soft law = (see Fig. 2-30).

In ATENA 4.0, a single value of fatigue is used to calculate fatigue damage caused by both

tensile and compressive stresses. So far, there is also no special provision implemented for loads

crossing zero, i.e., changing from tension to compression and back in each cycle, which lead to

faster damage according to experimental results presented in CEB 1988 and SAE AE-4. In that

situation, the damage is calculated separately for cyclic loading from 0 to max. compression and

from 0 to max. tension, and then the worse of both damage values is considered. It should be

also noted that the damage is only introduced in form of maximum fracturing strain, which has

no direct impact on compressive material properties, i.e., the fatigue damage effectively only has

influence on tensile behaviour of the material.

Hardcoded definition of damage evolution during the fatigue process, with the breakpoints

wf1 = wfr_1 * wfail and wf2 = wfr_2 * wfail.

fatiguew = n * wf1 / N1 for n_tot < N1

 wf1 + ((n_tot - N1) * (wf2 - wf1) / (N2 - N1)) - wf_curr for N1 <= n_tot < N2

 wf2 + ((n_tot - N2) * (wfail - wf2) / (N - N2)) - wf_curr for N2 <= n_tot < N

 wfail * n_tot / N - wf_curr for N <= n_tot

where

n_tot = n + N_beg, N_curr = N - N_beg,

N_beg = wf_curr * N1 / wf1 for wf_curr < wf1

 N1 + (wf_curr - wf1) * (N2 - N1)/(wf2 - wf1) for wf1 <= wf_curr < wf2

 N2 + (wf_curr - wf2) * (N - N2)/(wfail - wf2) for wf2 <= wf_curr

0 < N_beg < N

and

wfr_1 = 0.1, Nr_1 = 0.1, wfr_2 = 0.5, Nr_2 = 0.9, N1 = Nr_1 * N, N2 = Nr_2 * N.

The damage due to cracks that open and close during the cyclic loading is determined as

fatigueCOD

fatigueCOD

w

ElemSize
 = , where /fatigueCOD fatigue COD fatigueCODloadw n R c COD=  2,

CODR is the crack

opening ratio (similar to the cycle asymmetry ratio R used in the stress based contribution; with

a bottom limit of 0.01), and COD denotes the difference between the maximum and minimum

crack opening during a cycle. The resulting fatigueCOD is added to fatigue before the fatigue

damage is introduced into the material.

1 Available since version 5.3.0

2 In ATENA versions prior to 5.1.3 and 5.3.4: fatigueCOD fatigue fatigueCODloadw n c COD= 

It is recommended to introduce the fatigue induced damage into the unloaded structure (i.e., at

the lower stress level). Several other approaches of introducing the damage into the model were

also tested, i.e., introducing the damage at the upper load level or during reloading, but they

usually bring more convergence problems, especially during unloading.

The CC3DNonLinCementitious2FRC material model is based on CC3DNonLinCementitious2

as described above in Sections 2.2.1 - 2.2.6. In case of FRC, the fibers added to the concrete

mixture increase the residual strength and ductility of the material, which is reflected by the

tension softening law. In the FRC material model, the added fractural energy approach proposed

by Juhász (2013) is implemented in the stress-crack width diagram. The total fractural energy of

the fiber reinforced concrete reads:

 FFRC F FfG G G= + ,

where GFFRC and GF, are the fractural energies of the fiber reinforced concrete and the plain

concrete matrix, respectively, and GFf is the additional fractural energy, which corresponds to the

pull-out energy of the fibers.

The fracture energy added by the fibers is assumed as:

 Ff f tG w f=  ,

where wf is the maximum crack opening width of the FRC, which depends on the type and

length of the fibers, and ft is the post-cracking residual tension strength. It should be noted that

the value of ft defined as fFtu in the fib model code 2010 (Taerwe and Matthys, 2013).

The CC3DNONLINCEMENTITIOUS2SHCC is suitable for fibre reinforced concrete, such as

SHCC (Strain Hardening Cementitious Composites) and HPFRCC or UHPFRC (high and ultra-

high performance fiber reinforced concrete) materials. The theory of this material model is

identical to those described in Sections 2.2.1 - 2.2.6. The tensile softening regime (Fig. 2-33) and

the shear retention factor (Eq. (2.94)) are modified based on the model, proposed in KABELE, P.

(2002). This model is based on a notion of a representative volume element (RVE), which

contains distributed multiple cracks (hardening) as well as localized cracks (softening) – see Fig.

2-32.





primary crack set

seco
n
d
ary

 crack
 set

a) Multiple cracking regime





b) Localized cracking regime

a) multiple cracking regime (hardening)

• A set of parallel planar multiple cracks forms when maximum principal stress max = fc (first

crack strength).

• Crack planes are perpendicular to the direction of max (-axis).

• The direction of a crack set is fixed.

• Secondary crack set may form in direction perpendicular to primary set if the maximum

normal stress in the corresponding direction (-axis) exceeds fc.

• Cracks may slide if the direction of principal stress changes.

• Crack opening and sliding are resisted by fiber bridging.

• Crack opening and sliding displacements are averaged over the RVE as cracking strains

ij

mc ,
, ij

mc ,
(notation: lower indices – components of tensor or vector, upper indices –

multiple or localized crack mc, lc and association with primary or secondary crack direction ,

)

b) localized cracking regime (softening)

• A localized crack forms within a set of multiple cracks if the corresponding normal cracking

strain exceeds the level of mc
mb (cracking strain capacity, a material constant).

• Opening and sliding displacements of the i , i localized cracks are treated by the crack

band model (i.e. they are transformed into cracking strains ij

lc,
, ij

lc,
by dividing them with

corresponding band width w
c or w

c).

The overall strain of the RVE is then obtained as a sum of strain of material between cracks

(which may possibly contain nonlinear plastic strain due to compressive yielding), cracking

strains due to multiple cracks, and cracking strains due to localized cracks:

 ij ij

s

ij

mc ,

ij

mc ,

ij

lc,

ij

lc ,
 (2.88)

where
s

ij represents the strain of the continuous material between cracks.

The crack-normal stress components are related to cracking strains corresponding to opening of

multiple and localized cracks by piecewise linear relations depicted in Fig. 2-33 [although linear

hardening and softening are shown, a user should be allowed to input piecewise linear curves].

Note that for multiple cracks, it is assumed that they do not close unless exposed to crack-normal

compression (plasticity-like unloading) while a localized crack is assumed to close so that

normal stress decreases linearly to reach zero at zero COD [these assumptions may need to be

revised in the future to some combination of plasticity and damage-like closure]. See also section

2.2.3.

multiple cracking regime




cracking strain mc


loading

unloading/

reloading




crack

opening

unloading/

reloading
mc

mb




COD 
cracking strain mc



localized cracking regime

The model for crack sliding phenomena is implemented by means of a variable shear retention

factor  The shear retention factor is defined as a ratio of the material post-cracking shear

stiffness Gc to its elastic shear stiffness G,

cG

G
 = . (2.89)

Let us determine stiffness Gc, while considering the most general 2-D case of an element, which

contains two perpendicular sets of multiple cracks and two perpendicular localized cracks. If the

problem is defined in plane −, then the total engineering shear strain has only one non-zero

component, which is obtained as:

 2
s

2
mc ,

2
mc ,

2
lc ,

2
lc ,

, (2.90)

which can be rewritten with use of the shear bridging model (Kabele, 2000) as:

1

G

1

M
mc ,

1

M
mc ,

1

wc L

1

wc L

1

G
c (2.91)

Functions M and L are defined by

 ()
2

f fV k G
M 


= (2.92)

2

0

1
()

2 2 4
1

3

f f

f

f f

V k G
L

k G

E d

 
 = − 

     
  +      

, for 0  

 () 0L  = , for 0   (2.93)

Here Vf is the fiber volume fraction, Gf is the fiber shear modulus, Ef is the fiber Young’s

modulus, df is the fiber diameter, and k is the fiber cross-section shape correction factor. The

quantity  and  indicates the crack opening in direction  and  respectively. The parameter

0 represents the limiting value of the crack opening displacement, when no tensile stress can be

transferred across the crack, i.e. the point when the stress-displacement diagram in Fig. 2-33

drops to zero. These parameters are to be supplied by the user except for the parameter 0 ,

which is automatically extracted from the provided stress-strain law for tension. The shear

retention factor is then expressed as

, ,

1

1 1 1 1
1

() () () ()mc mc

c c

G
M M w L w L     

   



 

=
 

+ + + + 
   

 (2.94)

Note that for an element containing only multiple cracks (before localization) 0 and

1/L terms approach zero. For an uncracked element,
mc , mc ,

0 and 1/M and 1/L

approach zero, giving =1.

The CC3DNonLinCementitious3 fracture-plastic constitutive model is an advanced version of

the CC3DNonLinCementitious2 material that can handle the increased deformation capacity of

concrete under triaxial compression. It is suitable for problems including confinement effects

such as confined reinforced concrete members (columns, bridge piers), nuclear vessels and

triaxial compression tests of plain concrete. A detailed description of the model formulation is

presented in PAPANIKOLAOU and KAPPOS (2007). In this section, only the main differences

between the CC3DNonLinCementitious3 and the CC3DNonLinCementitious2 model are

described, which are mainly focused on the plasticity part of the model (section 2.2.4).

The position of failure surface can expand and move along the hydrostatic axis (simulating the

hardening and softening stages), based on the value of the hardening/softening parameter (κ). In

the present model, this parameter identifies with the volumetric plastic strain (GRASSL et al.,

2002) :

 p p p p

v 1 2 3dκ dε dε dε dε= = + + (2.95)

The instantaneous shape and location of the loading surface during hardening is defined by a

hardening function (k), which depends on the hardening/softening parameter (κ). This function is

directly incorporated in the Menétrey-Willam failure surface equations (2.54), operating as a

scaling factor on the compressive concrete strength (fc). It has the same elliptic form with

CC3DNonLinCementitious2 (2.57), but herein in terms of the plastic volumetric strain:

 ()

2
p p

v,t vp

v o o p

v,t

ε ε
k(κ) k(ε) k 1 k 1

ε

 −
= = + −  −   

 

 (2.96)

where p

v,tε is the plastic volumetric strain at uniaxial concrete strength (onset of softening) and ko

is the value that defines the initial yield surface that bounds the initial elastic regime (onset of

plasticity). At the end of the hardening process, the hardening function retains a constant value

of unity and the material enters the softening regime, which is controlled by the softening

function (c). This function simulates the material decohesion by shifting the loading surface

along the negative hydrostatic axis. It is assumed that it follows the softening function originally

proposed by VAN GYSEL and TAERWE (1996) for uniaxial compression:

2

2p

v 1

2

1

c(κ) c(ε) n 1
1

n 1

 
 
 

= =  − +   −  
 

 (2.97)

where:

p p

1 v v,tn ε / ε= (2.98)

p p

2 v,t v,tn (ε t) / ε= + (2.99)

Parameter t in equation (2.99) controls the slope of the softening function and the outmost square

is necessary due to the quadratic nature of the loading surface. The softening function value

starts from unity and complete material decohesion is attained at c = 0. The evolution of both

hardening and softening functions with respect to the hardening/softening parameter is

schematically shown in Fig. 2-34.

0.0

0.2

0.4

0.6

0.8

1.0

κ = ε
p
vε

p
v,t

ko

k

c

kc

k(κ) / c(κ)

The present plasticity model incorporates a non-associated flow rule using a polynomial plastic

potential function (g), with Lode angle (θ) dependency and adjustable order (n):

n

c c c

ρ 1 ρ ξ
g A C (B C)(1 cos3θ) a

2k c f k c f k c f

   
=  + + − −  + −          

 (2.100)

Parameters A, B and C define the shape of the plastic potential function in stress space and their

calibration is based on the assumption that the inclination (ψ) of the incremental plastic strain

vector identifies with the inclination of the total plastic strain vector at three distinct stress states,

namely the uniaxial, biaxial and triaxial compressive concrete strength (Fig. 2-35). The attraction

constant (a) is included for mathematical clarity and is not a user parameter, due to plastic

potential function differentiation in the flow rule.

A detailed calibration scheme for the plasticity model parameters, based on and extensive

experimental database can be found in PAPANIKOLAOU and KAPPOS (2007) and suggested

values (including the fracture model parameters) for various uniaxial compressive concrete

strengths (fc) are shown in the following table (see Atena Input File Format document for the

material definition details):

fc (ΜPa) 20 30 40 50 60 70

Εc (MPa) 24377 27530 30011 32089 33893 35497

ν 0.2 0.2 0.2 0.2 0.2 0.2

ft (MPa) 1.917 2.446 2.906 3.323 3.707 4.066

λt 1.043 1.227 1.376 1.505 1.619 1.722

e 0.5281 0.5232 0.5198 0.5172 0.5151 0.5133

fco (MPa) -4.32 -9.16 -15.62 -23.63 -33.14 -44.11

p

v,tε 4.92∙10-4 6.54∙10-4 8.00∙10-4 9.35∙10-4 1.06∙10-3 1.18∙10-3

t 1.33∙10-3 2.00∙10-3 2.67∙10-3 3.33∙10-3 4.00∙10-3 4.67∙10-3

A 7.342177 5.436344 4.371435 3.971437 3.674375 3.43856

B -8.032485 -6.563421 -5.73549 -5.430334 -5.202794 -5.021407

C -3.726514 -3.25626 -3.055953 -2.903173 -2.797059 -2.719067

n 3 3 3 3 3 3

Gf (MN/m) 4.87∙10-5 6.47∙10-5 7.92∙10-5 9.26∙10-5 1.05∙10-4 1.17∙10-4

fc (ΜPa) 80 90 100 110 120

Εc (MPa) 36948 38277 39506 40652 41727

ν 0.2 0.2 0.2 0.2 0.2

ft (MPa) 4.405 4.728 5.036 5.333 5.618

λt 1.816 1.904 1.986 2.063 2.136

e 0.5117 0.5104 0.5092 0.5081 0.5071

fco (MPa) -56.50 -70.30 -85.48 -102.01 -114.00

p

v,tε 1.30∙10-3 1.41∙10-3 1.52∙10-3 1.62∙10-3 1.73∙10-3

t 5.33∙10-3 6.00∙10-3 6.67∙10-3 7.33∙10-3 8.00∙10-3

A 3.245006 3.082129 2.942391 2.820644 2.713227

B -4.871993 -4.745867 -4.637358 -4.542587 -4.458782

C -2.659098 -2.611426 -2.572571 -2.540158 -2.512681

n 3 3 3 3 3

Gf (MN/m) 1.29∙10-4 1.40∙10-4 1.50∙10-4 1.61∙10-4 1.71∙10-4

Von Mises plasticity model called also as J2 plasticity is based only on one parameter k. The

yield function is defined as:

 ()2() 0p p

ij eqF J k = − = (2.101)

where
2J denotes the second invariant of stress deviator tensor. The parameter

() ()1
3

p p

eq y eqk   = is the maximal shear stress and y is the uniaxial yield stress. This

parameter controls the isotropic hardening of the yield criterion.

 () ()2
3

1

, :
incN

p p p p p

y eq y eq eq

i

H    
=

= + =   ε ε (2.102)

y is the yield stress, H the hardening modulus and
p

eq is the equivalent plastic strain

calculated as a summation of equivalent plastic strains during the loading history.

In case of von Mises plasticity the plastic potential function is identical with the yield function:

)()(ij

P

ij

p FG  = (2.103)

The associated flow rule is assumed. The background information can be found in (CHEN,

SALEEB 1982, Sec.5.4.2).

The Von Mises model could be used to model cyclic steel behavior including Bauschinger

effect. In this case the yield function is modified as:

 () () ()1
2 0: (1) 0p

eqk r k − − − − − =σ X σ X (2.104)

where σ is the deviatoric stress, 0k is an initial value of ()p

eqk  according to (2.102), X is the so

called back stress controlling the kinematic hardening:

 2
3 1 2

p p

eqk k  =  − X ε X (2.105)

In equations (2.104) and (2.105) quantities
1 2, ,r k k are material parameters for the cyclic

response. If r is non-zero, the cyclic model is activated, and it controls the radius of the Von

Mises surface. If 1r = the yielding will start exactly when y is reached. For lower values, the

non-linear behavior starts earlier, and the slope of the response is mainly affected by parameter

1k (larger value – higher slope). Parameter
2k on the other hand affects the memory of the cyclic

response. Some examples of various parameter combinations are shown at Fig. 2-36.

y

Drucker-Prager plasticity model is based on a general plasticity formulation that is described in

Section 2.2.4. The yield function is defined as:

 F I J kDP

p

ij() = + − =1 2 0 (2.106)

Where  and k are parameters defining the shape of the failure surface. They can be estimated

by matching with the Mohr-Coulomb surface. If the two surfaces are to agree along the

compressive meridian, i.e. 00 = , the formulas are:

() ()

2sin 6 cos
,

3 3 sin 3 3 sin

c
k

 


 
= =

− −
 (2.107)

This corresponds to a outer cone to the Mohr-Coulomb surface. The inner cone, which passes

through the tensile meridian where 060 = has the constants given by the following expressions:

() ()

2sin 6 cos
,

3 3 sin 3 3 sin

c
k

 


 
= =

+ +
 (2.108)

The position of failure surfaces is not fixed but it can move depending on the value of strain

hardening/softening parameter. The strain hardening is based on the equivalent plastic strain,

which is calculated according to the following formula.

)min(p

ij

p

eq  = (2.109)

Hardening/softening in the Drucker-Prager model is controlled by the parameter k . This

parameter is selected such that the surface at the peak passes through the uniaxial compressive

strength, and it changes according to the following expression.

c

p

eqc

f

f
kk




=

)(
'


 (2.110)

The symbol k’ in the above formula replaces k in (2.106). In the above two formulas the

expression)(p

eqcf  indicates the hardening/softening law, which is based on the uniaxial

compressive test. The law is shown in Fig. 2-37.

Return direction is given by the following plastic potential:

 21 2
3

1
)(JIG ij

p +=  (2.111)

where  determines the return direction. If   0 material is being compacted during crushing,

if  = 0 material volume is preserved, and if   0 material is dilating. In general, the plastic

model is non-associated, since the plastic flow is not perpendicular to the failure surface

The return mapping algorithm for the plastic model is based on predictor-corrector approach as

is shown in Fig. 2-22. During the corrector phase of the algorithm the failure surface moves

along the hydrostatic axis to simulate hardening and softening. The final failure surface has the

apex located at the origin of the Haigh-Vestergaard coordinate system. Secant method-based

Algorithm 1 is used to determine the stress on the surface, which satisfies the yield condition and

also the hardening/softening law.

In some situations, none of the standard material models available in ATENA can describe the

behavior sufficiently. Many such cases can be handled by defining user laws in the fracture-

plastic material model (see CC3DNonLinCementitious2User described in section 2.2.6), in the

others the user can provide a dynamic link library implementing his own material model. The

user material is based on the elastic isotropic material, adding new material parameters and state

variables (both limited to floating point values). See the User Material DLL Manual for

description and reference, and the CCUserMaterialExampleDLL directory in Atena Science

Examples for an example project including the source code in C and a window help file version

of the manual, AtenaV4_UserMaterialDLL.chm. Please note that the behavior of the user model

may have influence on convergence of the analysis.

The interface material model can be used to simulate contact between two materials such as for

instance a construction joint between two concrete segments or a contact between foundation

and concrete structure. The interface material is based on Mohr-Coulomb criterion with tension

cut off. The constitutive relation for a general three-dimensional case is given in terms of

tractions on interface planes and relative sliding and opening displacements.

1 1

2 2

0 0

0 0

0 0

tt

tt

nn

K v

K v

K u







     
    

=     
          

 (2.112)

For two-dimensional problems second row and column are omitted.

The initial failure surface corresponds to Mohr-Coulomb condition (2.113) with ellipsoid in

tension regime. After stresses violate this condition, this surface collapses to a residual surface

which corresponds to dry friction.

c   −  , 0  (2.113)

()

()

2

0 2
1

c

t cf

 
 



−
= −

−
,

()

0
2

2
1 c

t c

c

f






=

−
−

,
2

2

t
c

t

f

c f





= −

−
, 0 tf 

0 = , tf 

In tension the failure criterion is replaced by an ellipsoid, which intersect the normal stress axis

at the value of tf with the vertical tangent and the shear axis is intersected at the value of c (i.e.

cohesion) with the tangent equivalent to − .

The parameters for the interface model cannot be defined arbitrarily; there is certain dependence

of some parameters on the others. When defining the interface parameters, the following rules

should be observed:

,

0, 0, 0

t t

t

c
f f c

c f





 

  

 (2.114)

It is recommended that parameters , ,tc f  are always greater than zero. In cases when no

cohesion or no tensile strength is required, some very small values should be prescribed.





c1



Trial stress

Final stress

ft

Initial surface

Residual surface

In general three-dimensional case  in Fig. 2-38 and equation (2.113) is calculated as:

 2 2

1 2  = + (2.115)

(a)



v

c −  

−  

1

Ktt

1
Ktt

min

(b)



u

ft

1

Knn

1
Knn

min

The nnK , ttK denote the initial elastic normal and shear stiffness, respectively. Typically for

zero thickness interfaces, the value of these stiffnesses correspond to a high penalty number. It is

recommended not to use extremely high values as this may result in numerical instabilities. It is

recommended to estimate the stiffness value using the following formulas

 nn

E
K

t
= , tt

G
K

t
= (2.116)

where E and G is minimal elastic modulus and shear modulus respectively of the surrounding

material. t is the width of the interface zone. Its value can be selected either based on the reality.

For instance, for mortar between masonry bricks the value is typically 10-20 mm. Alternatively,

it can be estimated as a dimension, which can be considered negligible with respect to the

structural size. For instance, in case of a dam analysis, where the dam dimensions are typically in

the order of 100 meters, the width of the interface zone can be estimated to be 0.5 meters. It is

suitable due to numerical reasons if stiffness is about 10 times of the stiffness of adjacent finite

elements.

There are two additional stiffness values that need to be specified in the ATENA input. They are

denoted in Fig. 2-39 as min

nnK and min

ttK . They are used only for numerical purposes after the

failure of the element to preserve the positive definiteness of the global system of equations.

Theoretically, after the interface failure the interface stiffness should be zero, which would mean

that the global stiffness will become indefinite. These minimal stiffnesses should be about 0.001

times of the initial ones.

It is possible to define evolution laws for tensile as well as shear softening by arbitrary

multilinear laws. Examples of such laws are shown in Fig. 2-40. The figure describes bi-linear

softening laws. The break point of this law can be determined for instance by the formula

proposed by Bruehwiler and Wittman (1990).

 1 1, 0.75
4

t F

t

f G
s v

f
= = (2.117)

f

u

t

u

s1

1

GF

I

1c

II

c c

v

0

v

s
GF

1c

The evolution law depends on the equivalent nonlinear interface relative displacement

 2 2 2

1 2

f

eq f f fu u v v =  +  +  in 3D and 2 2f

eq f fu u v =  +  in 2D (2.118)

Where fu and fiv are the inelastic components of the relative interface displacement on the

basis of their decomposition into elastic and nonlinear, i.e. fracturing part.

e f

i i fi

u u u

v v v

 =  + 

 =  + 
 (2.119)

This approach ensures that the degradation in shear affects also tensile strength and vice versa.

For instance, when the interface is damaged in shear, the tensile strength is reduced as well. The

typical behavior of the interface model with the softening evolution laws is shown in Fig. 2-39

by the dotted lines. The default behavior when no softening law is given is brittle with

immediate drop to zero in tension and to the residual dry friction in shear. The behavior is shown

in Fig. 2-39 by the solid black line.

When user softening laws are defined for the interface material, it is recommended that the

softening law for cohesion is always more ductile then the one for tensile strength, i.e. the

cohesion should be higher than the tensile strength at any time during the softening process.

ueq

f ueq

f

Reinforcement can be modeled in two distinct forms: discrete and smeared. Discrete

reinforcement is in form of reinforcing bars and is modeled by truss elements. The smeared

reinforcement is a component of composite material and can be considered either as a single

(only one-constituent) material in the element under consideration or as one of the more such

constituents. The former case can be a special mesh element (layer), while the later can be an

element with concrete containing one or more reinforcements. In both cases the state of uniaxial

stress is assumed, and the same formulation of stress-strain law is used in all types of

reinforcement. More info about discrete reinforcement is available in Section 10.2.3 Discrete

Reinforcement Embedded in Solid Elements, located near the end of this manual.

The bilinear law, elastic-perfectly plastic, is assumed as shown in Fig. 2-42.

The initial elastic part has the elastic modulus of steel Es. The second line represents the

plasticity of the steel with hardening and its slope is the hardening modulus Esh. In case of

perfect plasticity Esh =0. Limit strain L represents limited ductility of steel.

The multi-linear law consists of four lines as shown in Fig. 2-43. This law allows to model all

four stages of steel behavior: elastic state, yield plateau, hardening and fracture. The multi-line is

defined by four points, which can be specified by input.

The above-described stress-strain laws can be used for the discrete as well as the smeared

reinforcement. The smeared reinforcement requires two additional parameters: the reinforcing

ratio p (see Section 2.1.1.1) and the direction angle  as shown in Fig. 2-44.

The spacing s of the smeared reinforcement is assumed infinitely small. The stress in the

smeared reinforcement is evaluated in the cracks, therefore it should also include a part of stress

due to tension stiffening (which is acting in concrete between the cracks, section 2.1.9).

' '

scr s ts  = + (2.120)

where
'

s is the steel stress between the cracks (the steel stress in smeared reinforcement),
'

scr

is the steel stress in a crack. If no tension stiffening is specified ts =0 and
' '

scr s = . In case of

the discrete reinforcement the steel stress is always
'

s .

Normally all reinforcement material models in ATENA exhibit the same behavior in tension as

well as in compression. The material types CCReinforcement and

CCSmearedReinforcement include the capability to deactivate the compressive response of

the reinforcement. This is sometimes useful, if this material model is used to simulate the

behavior of reinforcement elements that have a very low bending stiffness, so it can be assumed

that when the reinforcement is loaded by compressive forces, buckling occurs and the strength of

the elements in compression is negligible. This is controlled by the command COMPRESSION

0 or 1, which deactivates and activates the compressive response respectively (for more details

see ATENA Input File Format).

The reinforcing steel stress-strain behavior can be described by the nonlinear model of

Menegotto and Pinto (1973). In ATENA this model is extended to account of the isotropic

hardening due to an arbitrary hardening law that can be specified for reinforcement (see Sections

2.7.2, 2.7.3). The stress in the cyclic model is calculated according to the following expression.

 () *

0 r r    = − + (2.121)

where

()

()
1

*

* *

*

1

1
RR

b
b


 



−
= +

+

, * 1
0

0 2

,r

r

c
R R

c

  


  

−
= = −

− +
 (2.122)

where 0R ,
1c and

2c are experimentally determined parameters, and b the current hardening

modulus. The Fig. 2-45 shows the meaning of strain values
r , 0 ,  and stress values

r and

0 . These values changes for each cycle. The values with the subscript r indicate the point

where the cycle started, and the subscript 0 indicates the theoretical yield point that would be

reached during the unloading if the response would not have been modified by the hysteretic

behavior. During the calculation of this point the material stress-strain law is considered (see

Sections 2.7.2, 2.7.3)

 ()*

R eqf = ,
.

1

incrN
i

eq eq

i

 
=

=  (2.123)

Another nonlinear constitutive model for reinforcement which captures cyclic behavior and is

implemented in ATENA is described by Dodd and Restrepo (1995) and further improved by Se-

Hyung Kim (2015).



The basic property of the reinforcement bond model is the bond-slip relationship. This

relationship defines the bond strength (cohesion) b depending on the value of current slip

between reinforcement and surrounding concrete. ATENA contains three bond-slip models:

according to the CEB-FIB model code 1990, slip law by Bigaj and the user defined law. In the

first two models, the laws are generated based on the concrete compressive strength,

reinforcement diameter and reinforcement type. The important parameters are also the

confinement conditions and the quality of concrete casting.

max

1

b

s

s



 =

 
 
 
 

,
1

0 s s  (2.124)

maxb = ,

1 2
s s s  (2.125)

b

 () 2

max max

3 2

fb

s s

s s
   

−
= − −

−

 
 
 

 ,
2 3

s s s  (2.126)

fb = ,

3
s s (2.127)

 2 3 4 5

Value Unconfined concrete* Confined concrete**

 Bond conditions Bond conditions

 Good All other cases Good All other cases

S1 0.6 mm 0.6 mm 1.0 mm

S2 0.6 mm 0.6 mm 3.0 mm

S3 1.0 mm 2.5 mm clear rib spacing

 0.4 0.4

max

2.0
C

f 1.0
C

f 2.5
C

f 1.25
C

f

f

max0.15  max0.40 

* Failure by splitting of the concrete

**Failure by shearing of the concrete between the ribs

Values Cold drawn wire Hot rolled bars

 Bond conditions Bond conditions

 Good All other

cases

Good All other cases

1 2 3
s s s= =

0.01 mm 0.1 mm

 0.5 0.5

max f
 =

0.1
C

f 0.05
C

f 0.3
C

f 0.15
C

f

The second pre-defined bond model available in ATENA is based on the work by BIGAJ 1999.

This model depends on the bond quality, concrete cubic compressive strength '

cuf and

reinforcement bar radius D . The slip law for this model is shown in Fig. 2-49.

The ascending part of the stress-slip law i.e. part a is modeled by a bi-linear curve. The

coordinates of the four points defining this stress-slip relationship are listed in the table below.

Concrete

Type

Bond

quality

 Point 1 Point 2 Point 3 Point 4

'

cf < 60

Excelent /s D 0.000 0.020 0.044 0.480

'/ 0.8b cuf 0.500 3.000 0.700 0.000

Good /s D 0.000 0.030 0.047 0.480

'/ 0.8b cuf 0.500 2.000 0.700 0.000

Bad /s D 0.000 0.040 0.047 0.480

'/ 0.8b cuf 0.500 1.000 0.700 0.000

 Excelent /s D 0.000 0.012 0.030 0.340

'

cf > 60

'/ 0.88b cuf 0.600 2.500 0.900 0.000

Good /s D 0.000 0.020 0.030 0.340

'/ 0.88b cuf 0.600 1.900 0.900 0.000

Bad /s D 0.000 0.025 0.030 0.340

'/ 0.88b cuf 0.600 1.100 0.900 0.000

The Memory Bond material is an improvement to better capture the response during cyclic

loading and unloading in general. It can be used with any of the above-mentioned bond strength

– bond slip envelope functions. The response only differs after the bond stress sign changes.

Instead of following the same envelope as during loading, the maximum bond stress is

determined by the additional parameter 1 , see Fig. 2-50. Admissible values are res ≤ 1 ≤ max ,

where res is the residual bond stress (last value from the bond strength – bond slip function) and

max the maximum bond stress (max. value from the bond strength – bond slip function).

In the figure, s is the current slip value, smax the maximum of the absolute slip value ever reached

(damage variable), ()f s = is the bond strength function.

The response for a slip change 1i i is s s−= +  is defined separately for 2 cases:

(1) Loading range maxs s

 ()f s =

(2) Unloading range -smax < s < smax

10s    =

10s    = −

The basic idea of the microplane model is to abandon constitutive modelling in terms of tensors

and their invariants and formulate the stress-strain relation in terms of stress and strain vectors

on planes of various orientations in the material, now generally called the microplanes. This

idea arose in G.I. Taylor’s (TAYLOR 1938) pioneering study of hardening plasticity of

polycrystalline metals. Proposing the first version of the microplane model, BAZANT 1984, in

order to model strain softening, extended or modified Taylor’s model in several ways (in detail

see BAZANT et al. 2000), among which the main one was the kinematic constraint between the

strain tensor and the microplane strain vectors. Since 1984, there have been numerous

improvements and variations of the microplane approach. A detailed overview of the history of

the microplane model is included in BAZANT et al 2000 and CANER and BAZANT 2000. In

what follows, we briefly review the derivation of the microplane model that is used in this work.

 In the microplane model, the constitutive equations are formulated on a plane, called

microplane, having an arbitrary orientation characterized by its unit normal .in The kinematic

constraint means that the normal strain N and shear strains ,M L  on the microplane are

calculated as the projections of the macroscopic strain tensor ij :

 () ()
1 1

, ,
2 2

N i j ij M i j j i ij L i j j i ijn n m n m n l n l n     = = + = + (2.128)

where im and il are chosen orthogonal vectors lying in the microplane and defining the shear

strain components. The constitutive relations for the microplane strains and stresses can be

generally stated as:

 

 

 

0

0

0

() (), (), ()

() (), (), ()

() (), (), ()

t

N N L M

t

M N L M

t

L N L M

t F

t G

t G







      

      

      

=

=

=

=

=

=

 (2.129)

where F and G are functionals of the history of the microplane strains in time t. For a detailed

derivation of these functionals a reader is referred to BAZANT et al 2000 and CANER and

BAZANT 2000. The macroscopic stress tensor is obtained by the principle of virtual work that is

applied to a unit hemisphere . After the integration, the following expression for the

macroscopic stress tensor is recovered (BAZANT 1984):

() ()()

1

3
6 , where

2 2 2

mN

M L
ij ij ij ij N i j i j j i i j j is d w s s n n m n m n l n l n





 
 

 =

=   = + + + + (2.130)

where the integral is approximated by an optimal Gaussian integration formula for a spherical

surface; numbers  label the points of the integration formula and w are the corresponding

optimal weights.

The objective of the equivalent localization element is to achieve equivalence with the crack

band model. This basic idea is that the material properties and parameters of the softening

material model are not modified to account for the differences in the finite element size, but

rather the softening crack band is coupled in series with an elastically behaving layer, to obtain

equivalence. For brevity, this layer will henceforth be called the `spring’. For large finite

elements, the effective length of this added elastic spring, representing the thickness of the added

elastic layer having the elastic properties of the material, will be much larger than the size (or

thickness) of the localization zone (crack band). Thus, after the crack initiation, the energy stored

in the elastic spring can be readily transferred to the localization zone and dissipated in the

softening (i.e., fracturing) process.

Inside each finite element at each integration point, an equivalent localization element is

assumed. The localization element is a serial arrangement of the localization zone, which is

loading, and an elastic zone (spring), which is unloading. The total length of the element is

equivalent to the crack band size L (width), and can be determined using the same methods as

described in Section 2.1.3 (see Fig. 2-12). The width of the localization zone is given either by

the characteristic length of the material or by the size of the test specimen for which the adopted

material model has been calibrated.

The three-dimensional equivalent element is constructed by three serial arrangements of the

elastic zone (spring) and localization band. The spring-band systems are perpendicular to each

other, and they are arranged parallel to the principal strain directions (Fig. 2-51). The simplified

two-dimensional version is shown in Fig. 2-52. In this arrangement of spring-band systems it is

possible to identify the following unknown stresses and strains:

 1 2 3 1 2 3, , , and , , ,b u u u b u u u

ij ij ij ij ij ij ij ij       

where superscript b denotes the quantities in the localization band and the symbol m ux with

superscripts u and m defines the quantities in the elastic spring in the direction m .

2
L

1
L

3
L

h h

h

 ij ij

u u
,

 ij ij

b b
,

 

 ij ij

u u
,

 

 
 ij ij

u u
,

2
1

3

1
h

2

1

Finite element Localization
element





Elastic
springs

Localization
band

ij

b

2
L

1

2
ij

u

h
2
L



ij

u

Ideally, the chosen directions should be perpendicular to the planes of failure propagation. In

ATENA, it is assumed for them to be aligned with the principal axes of the total macroscopic

strain tensor, which in most cases should approximately correspond to the above requirement.

Altogether there are 48 unknown variables. In the subsequent derivations, it is assumed that

these stresses and strains are defined in the principal frame of the total macroscopic strain tensor.

The set of equations available for determining these variables starts with the constitutive

formulae for the band and the elastic springs:

 ()b b

ij ijF = (2.131)

 for 1...3m u m u

ij ijlk klD m = = (2.132)

The first formula (2.131) represents the evaluation of the non-linear material model, which in our

case is the microplane model for concrete. The second equation (2.132) is a set of three elastic

constitutive formulations for the three linear zones (springs) that are involved in the arrangement

at Fig. 2-51. This provides the first 24 equations, which can be used for the calculation of

unknown strains and stresses.

The second set of equations is provided by the kinematic constrains on the strain tensors.

()

()

()

() ()

() ()

1 1 1 1

11 11 111

2 2 2 2

22 22 222

3 3 3 3

33 33 333

1 1 1 1 2 2 2 2

12 12 12 12 121 2

2 2 2 2 3 3 3 3

23 23 23 23 232 3

1

1

1

1 1 1

2

1 1 1

2

b u

b u

b u

b u b u

b u b u

h L h
L

h L h
L

h L h
L

h L h h L h
L L

h L h h L h
L L

  

  

  

    

    

 = + −
 

 = + −
 

 = + −
 

    = + − + + −     

   = + − + + −
   

() ()1 1 1 1 3 3 3 3

13 13 13 13 131 3

1 1 1

2

b u b uh L h h L h
L L

    

 
 
 

    = + − + + −     

 (2.133)

These 6 additional equations can be written symbolically as:

 () ()
1 1 1

2

b i i u i i b j j u j j

ij ij ij ij iji j
h L h h L h

L L
    

    = + − + + −     
 (2.134)

The next set of equations is obtained by enforcing equilibrium in each direction between the

corresponding stress components in the elastic zone and in the localization band. For each

direction m , the following condition must be satisfied:

 for 1...3b m m u m

ij j ij je e m = = (2.135)

where
m

je denotes coordinates of a unit direction vector for principal strain direction m . Since

the principal frame of the total macroscopic strain tensor is used the unit vectors have the

following coordinates:

 () () ()1 2 31,0,0 , 0,1,0 , 0,0,1j j je e e= = = (2.136)

The remaining equations are obtained by enforcing equilibrium between tractions on the other

surfaces of the band and the elastic zone (layer) imagined as a spring:

 where 1..3, 1...3,b m n u m

ij j ij je e m n m n = = =  (2.137)

The equation (2.137) is equivalent to a static constraint on the remaining stress and strain

components of the elastic springs. Formulas (2.135) and (2.137) together with the assumption of

stress tensor symmetry represent the remaining 18 equations that are needed for the solution of

the three-dimensional equivalent localization element. These 18 equations can be written as:

 for 1...3b m u

ij ij m = = (2.138)

This means that the macroscopic stress must be equal to b

ij , i.e., the stress in the localization

element, and that the stresses in all the three elastic zones must be equal and to the microplane

stress b

ij . This also implies the equivalence of all the three elastic strain tensors.

Based on the foregoing derivations, it is possible to formulate an algorithm for the calculation of

unknown quantities in the three-dimensional equivalent localization element.

Input: , , ,b u

ij ij ij ij    (2.139)

Initialization:
b u

ij ij ij   =  =  (2.140)

Step 1:
() (1)

2

i j j i
iu i

ij ijkl kli j

L h L h
d C r

L L
 −+

= (2.141)

Step 2:
() (1) ()i i iu u u

ij ij ijd  
−

 =  + (2.142)

Step 3:
() 2 2i j i j i j j i
ib u

ij ij iji j j i i j j i

L L L L L h L h

L h L h L h L h
  

− −
 =  − 

+ +
 (2.143)

Step 4:
() ()() i ii b u

ij ij ijr  = − (2.144)

where ijlkC is the compliance tensor. The above iterative process is controlled by the following

convergence criteria;

() () () ()

, ,

u i i i u i

ij ij ij ij

b b

ij ij ij ij

d r r d
e e e

 

   
  

   

T

 (2.145)

The macroscopic stress is then equal to the stress in the localization band
b

ij . More details about

the derivations of the above algorithm as well as various examples of application can be obtained

from the original reference CERVENKA et al. 2004. It should be noted that the described

equivalent localization element is used only if the calculated crack band size L (see Section

2.1.3) in each principal strain direction is larger than the prescribed localization band size h . For

smaller element sizes the equivalent localization approach is not used and mesh-dependent

results may be obtained.

BASQUIN, H.O. (1910), The exponential law of endurance tests, Proc. ASTM, 10 (II).

BAZANT, Z.P, OH, B.H (1983) - Crack Band Theory for Fracture of Concrete, Materials and

Structures, RILEM, Vol. 16, 155-177.

BAŽANT, Z.P., (1984), ‘Microplane model for strain controlled inelastic behavior’, Chapter 3 in

Mechanics of Engineering Materials (Proc., Conf. held at U. of Arizona, Tucson, Jan. 1984),

C.S. Desai and R.H. Gallagher, eds., J. Willey, London, 45-59.

BAŽANT, Z.P., CANER, F.C., CAROL, I., ADLEY, M.D., AND AKERS, S.A., (2000),

‘Microplane Model M4 for Concrete: I. Formulation with Work-Conjugate Deviatoric Stress’, J.

of Engrg. Mechanics ASCE, 126 (9), 944-961.

BIGAJ, A.J (1999) - Structural Dependence of Rotation Capacity of Plastic Hinges in RC Beams

and Slabs, PhD Thesis, Delft University of Technogy, ISBN 90-407-1926-8.

BRUEHWILER, E., and WITTMAN, F.H. (1990), “The Wedge Splitting Test, A New Method

of Performing Stable Fracture-Mechanics Tests”, Engineering Fracture Mechanics, Vol. 35, No.

1-3, pp. 117-125.

CANER, F.C., AND BAŽANT, Z.P., (2000) ‘Microplane Model M4 for Concrete: II. algorithm

and calibration.", J. of Engrg. Mechanics ASCE, 129 (9), 954-961.

CEB-FIP Model Code 1990, First Draft, Comittee Euro-International du Beton, Bulletin

d'information No. 195,196, Mars.

CEB 1988, Bulletin D’Information No 188, Fatigue of concrete structures, State of the art report.

CERVENKA, V., GERSTLE, K. (1972) - Inelastic Analysis of Reinforced Concrete Panels: (1)

Theory, (2) Experimental Verification and application, Publications IABSE, Zürich, V.31-00,

1971, pp.32-45, and V.32-II,1972, pp.26-39.

CERVENKA, V. (1985) - Constitutive Model for Cracked Reinforced Concrete, Journal ACI,

Proc. V.82, Nov-Dec., No.6,pp.877-882.

CERVENKA, V., PUKL, R., ELIGEHAUSEN, R. (1991) - Fracture Analysis of Concrete Plane

Stress Pull-out Tests, Proceedings, Fracture process in Brittle Disordered Materials, Noordwijk,

Holland, June 19-21.

CERVENKA, V., PUKL, R., OZBOLT, J., ELIGEHAUSEN, R. (1995), Mesh Sensitivity

Effects in Smeared Finite Element Analysis of Concrete Structures, Proc. FRAMCOS 2, 1995,

pp 1387-1396.

CERVENKA, V., PUKL, R. (1992) - Computer Models of Concrete Structures, Structural

Engineering International, Vol.2, No.2, May 1992. IABSE Zürich, Switzerland, ISSN 1016-

8664, pp.103-107.

CERVENKA, V., PUKL, R., OZBOLT, J., ELIGEHAUSEN, R. (1995) - Mesh Sensitivity

Effects in Smeared Finite Element Analysis of Concrete Fracture, Proceedings of FRAMCOS2,

Zurich, Aedificatio.

CERVENKA, V., CERVENKA, J. (1996) - Computer Simulation as a Design Tool for Concrete

Structures, ICCE-96, proceedings of The second International Conference in Civil Engineering

on Computer Applications Research and Practice, 6-8 April, Bahrain.

CERVENKA, J, CERVENKA, V., ELIGEHAUSEN, R. (1998), Fracture-Plastic Material Model

for Concrete, Application to Analysis of Powder Actuated Anchors, Proc. FRAMCOS 3, 1998,

pp 1107-1116.

ČERVENKA, J., BAŽANT Z.P., WIERER, M., (2004), `Equivalent Localization Element for

Crack Band Approach to Mesh Sensitivity in Microplane Model’, submitted for publication, Int.

J. for Num. Methods in Engineering.

ČERVENKA, J., PRYL, D., (2007), `Fatigue Modelling of Crack Growth by Finite Element

Method and Smeared Crack Approach’, Internal Report 2007-08-03-2002-DP, Cervenka

Consulting.

CRISFIELD, M.A., WILLS, J. (1989)- The Analysis of Reinforced Concrete Panels Using

Different Concrete Models, Jour. of Engng. Mech., ASCE, Vol 115, No 3, March, pp.578-597.

CRISFIELD, M.A. (1983) - An Arc-Length Method Including Line Search and Accelerations,

International Journal for Numerical Methods in Engineering, Vol.19,pp.1269-1289.

CHEN, W.F, SALEEB, A.F. (1982) - Constitutive Equations For Engineering Materials, John

Willey \& Sons, ISBN 0-471-09149-9.

DARWIN, D., PECKNOLD, D.A.W. (1974) - Inelastic Model for Cyclic Biaxial Loading of

Reinforced Concrete, Civil Engineering Studies, University of Illinois, July.

DE BORST, R. (1986), Non-linear analysis of frictional materials, Ph.D. Thesis, Delft

University of Technology, 1986.

DRUCKER, D.C., PRAGER, W., Soil Mechanics and Plastic Analysis or Limit Design, Q.

Appl. Math., 1952, 10(2), pp 157-165.

DYNGELAND, T. (1989) - Behavior of Reinforced Concrete Panels, Dissertation, Trondheim

University, Norway, BK-report 1989:1

FEENSTRA, P.H., Computational Aspects of Bi-axial Stress in Plain and Reinforced Concrete.

Ph.D. Thesis, Delft University of Technology, 1993.

FEENSTRA, P.H., ROTS, J.G., AMESEN, A., TEIGEN, J.G., HOISETH, K.V., A 3D

Constitutive Model for Concrete Based on Co-rotational concept. Proc. EURO-C 1998, 1, pp.

13-22.

Taerwe, L., and Matthys, S. (2013), Fib model code for concrete structures 2010, Wilhelm Ernst

& Sohn, Berlin, Germany, ISBN 978-3-433-03061-5.

fib Model Code for Concrete Structures 2010, (2013), Wilhelm Ernst & Sohn, Berlin, Germany,

ISBN 978-3-433-03061-5.

ETSE, G., Theoretische und numerische Untersuchung zum diffusen und lokalisierten Versagen

in Beton, Ph.D. Thesis, University of Karlsruhe 1992.

FELIPPA, C. (1966) - Refined Finite Element Analysis of Linear and Nonlinear Two-

Dimensional Structures, Ph.D. Dissertation, University of California, Engineering, pp.41-50.

GRASSL, P., LUNDGREN, K., and GYLLTOFT, K. (2002) “Concrete in compression: A

plasticity theory with a novel hardening law”, International Journal of Solids and Structures,

39(20), 5205-5223.

VAN GYSEL, A., and TAERWE, L. (1996) “Analytical formulation of the complete stress-

strain curve for high strength concrete”, Materials and Structures, RILEM, 29(193), 529-533.

HARTL, G. (1977) “Die Arbeitlinie Eingebetete Staehle bei erst und kurz=Belastung”,

Dissrtation, Univbersitaet Innsbruck

HORDIJK, D.A. (1991) - Local Approach to Fatigue of Concrete, Doctor dissertation, Delft

University of Technology, The Netherlands, ISBN 90/9004519-8.

Juhász, K. P. (2013) “Modified fracture energy method for fibre reinforced concrete”, Fibre

Concrete 2013, Prague, Czech Republic, pp. 89-90, ISBN 978-80-01-05238-9.

KABELE, P. (2002) - Equivalent Continuum Model of Multiple Cracking, Engineering

Mechanics 2002, 9 (1/2), pp.75-90, Assoc.for Engineering Mechanics, Czech Republic

KESSLER-KRAMER, CH., (2002) “Zugverhalten von Beton unter Ermüdungsbeanspruchung”,

Schriftenreihe des Instituts für Massivbau und Baustofftechnologie, Heft 49, Karlsruhe.

KLAUSEN, D. (1978), Festigkeit und Schadigung von Beton bei haufig wiederholter

Beanschpruchung, PhD Thesis, University of Technology Darmstadt, 85 pp.

KOLLEGGER, J. - MEHLHORN, G. (1988) - Experimentelle und Analytische Untersuchungen

zur Aufstellung eines Materialmodels für Gerissene Stahbetonscheiben, Nr.6 Forschungsbericht,

Massivbau, Gesamthochschule Kassel.

KOLMAR, W. (1986) - Beschreibung der Kraftuebertragung über Risse in nichtlinearen Finite-

Element-Berechnungen von Stahlbetontragwerken", Dissertation, T.H. Darmstadt, p. 94.

KUPFER, H., HILSDORF, H.K., RÜSCH, H. (1969) - Behavior of Concrete under Biaxial

Stress, Journal ACI, Proc. V.66, No.8, Aug., pp.656-666.

MARGOLDOVA, J., CERVENKA V., PUKL R. (1998), Applied Brittle Analysis, Concrete

Eng. International, November/December 1998.

MENETREY, P., WILLAM, K.J. (1995), Triaxial failure criterion for concrete and its

generalization. ACI, Structural Journal, 1995, 92(3), pp 311-318.

MENETREY, Ph., WALTHER, R., ZIMMERMAN, Th., WILLAM, K.J., REGAN, P.E.

Simulation of punching failure in reinforced concrete structures. Journal of Structural

Engineering, 1997, 123(5), pp 652-659.

MIER J.G.M van (1986) - Multiaxial Strain-softening of Concrete, Part I: fracture, Materials

and Structures, RILEM, Vol. 19, No.111.

MINER M.A. (1945), Cumulative damage in fatigue. Transactions of the American Society of

Mechanical Engineering, 67:A159-A164.

OLIVIER, J., A Consistent Characteristic Length for Smeared Cracking Models, Int. J. Num.

Meth. Eng., 1989, 28, pp 461-474.

OWEN, J.M., FIGUEIRAS, J.A., DAMJANIC, F., Finite Element Analysis of Reinforced and

Pre-stressed concrete structures including thermal loading, Comp. Meth. Appl. Mech. Eng., 1983,

41, pp 323-366.

PALMGREN, A. (1924), Die Lebensdauer von Kugellagern. Zeitschrift Verein Deutscher

Ingenieure, 68(14):339-341.

PAPANIKOLAOU, V.K., and KAPPOS, A.J. (2007) “Confinement-sensitive plasticity

constitutive model for concrete in triaxial compression”, International Journal of Solids and

Structures, 44(21), 7021-7048.

PRAMONO, E, WILLAM, K.J., Fracture Energy-Based Plasticity Formulation of Plain

Concrete, ASCE-JEM, 1989, 115, pp 1183-1204.

PRYL, D., CERVENKA, J., and PUKL, R. (2010) “Material model for finite element modelling

of fatigue crack growth in concrete”, Procedia Engineering, 2 (2010) 203–212.

PRYL, D., PUKL, R., and CERVENKA, J. (2013) “Modelling high-cycle fatigue of concrete

specimens in three-point bending”, Life-Cycle and Sustainability of Civil Infrastructure Systems

(Eds. Strauss, Frangopol & Bergmeister) 1303–1306.

PRYL, D., MIKOLÁŠKOVÁ, J., PUKL, R. (2014) “Modeling Fatigue Damage of Concrete”,

Key Engineering Materials, 2014 Vols. 577-578, pp. 385-388, ISSN: 1662-9795

RAMM, E. (1981) - Strategies for Tracing Non- linear Responses Near Limit Points, Non- linear

Finite Element Analysis in Structural Mechanics, (Eds. W.Wunderlich, E.Stein, K.J.Bathe)

RASHID, Y.R. (1968), Ultimate Strength Analysis of Pre-stressed Concrete Pressure Vessels,

Nuclear Engineering and Design,1968, 7, pp 334-344.

ROTS, J.G., BLAAUWENDRAAD, J., Crack models for concrete: discrete or smeared? Fixed,

multi-directional or rotating? HERON 1989, 34(1).

SAE, AE-4, Fatigue Design Handbook

SIMO, J.C., JU, J.W., Strain and Stress-based Continuum Damage Models-I. Formulations, II-

Computational Aspects, Int. J. Solids Structures, 1987, 23(7), pp 821-869.

SIMO, J.C., KENNEDY, J.G., GOVINDJEE, S., (1988), Non-smooth Multi-surface Plasticity

and Visco-plasticity. Loading/unloading Conditions and Numerical Algorithms, Int. J. Num.

Meth. Eng., 26, pp 2161–2185.

TAYLOR, G.I., (1938), ‘Plastic strain in metal’, J. Inst. Metals, 62, 307-324.

UIJL, J. den, BIGAJ, A. J. (1996): A Bond Model for Ribbed Bars Based on Concrete

Confinement. Heron, Vol.41, No.3.

VECCHIO, F.J., COLLINS, M.P (1986)- Modified Compression-Field Theory for Reinforced

Concrete Beams Subjected to Shear, ACI Journal, Proc. V.83, No.2, Mar-Apr., pp 219-231.

VOS, E. (1983) - Influence of Loading Rate and Radial Pressure on Bond in Reinforced

Concrete, Dissertation, Delft University, pp.219-220.

WILKINS, M.L., Calculation of Elastic-Plastic Flow, Methods of Computational Physics, 3,

Academic Press, New York, 1964.

DODD, L. L., and J. I. RESTREPO-POSADA. "Model for predicting cyclic behavior of

reinforcing steel." Journal of structural engineering 121.3 (1995): 433-445.

KIM, SE-HYUNG. Cyclic uniaxial constitutive model for steel reinforcement. Diss. Virginia

Tech, 2015.

The preceding chapters dealt with the general formulation of the problem, geometric and

constitutive equations. All expressions were derived independently of the structural shape, the

finite elements used etc. Here, an information about finite elements currently implemented in

ATENA is given.

1

2

3

4

67

8
5

9

r

s

t

1

2

3

4

67

8
5

9

r

s

t

1

2

3

4

67

8
5

9

r

s

t

1

2

3

4

67

8
5

9

r

s

t

1

2

3

4

67

8
5

9

r

s

t

h
1

h
2

h
8

h
6

h
9

The available elements can be divided into three groups: plane elements for 2D, 3D and axi-

symmetric analysis, solid 3D elements and special elements, which comprises elements for

modeling external cable, springs, gaps etc.

With few exceptions all elements implemented in ATENA are constructed using isoparametric

formulation with linear and/or quadratic interpolation functions. The isoparametric formulation

of one-, two- and three-dimensional elements belong to the "classic" element formulations. This

is not because of its superior properties, but since it is a versatile and general approach with no

hidden difficulties and, also very important, these elements are easy to understand. This is very

important particularly in nonlinear analysis. For example, it is highly undesirable to add element-

related problems to problems related to e.g. material modeling.

Big advantage of ATENA isoparametric elements is that their interpolation functions (, ,)ih r s t

are constructed in hierarchical manner. Take an example of plane quadrilateral element. Some of

its interpolation functions are depicted in Fig. 3-1. The 1st four functions, i.e. functions 1(, ,)h r s t

to 4(, ,)h r s t has to be always present in the interpolation set, (to ensure bilinear approximation).

Then, any additional function 6(, ,)h r s t through 9(, ,)h r s t can be added independently. This

would involve adding the new function itself and amendments to the already present

interpolation functions. This approach (and use of C++ templates) makes possible that one

element formulation generates quadrilateral elements with nodes (1,2,3,4), (1,2,3,4,5),

(1,2,3,4,6), ... (1,2,3,4,8), (1,2,3,4,9), (1,2,3,4,5,6), (1,2,3,4,5, 7), ... (1,2,3,8,9), ...

(1,2,3,4,5,6,7,8,9). Additional mid-side points are particularly useful for changing mesh density,

(i.e. element size), see Fig. 3-2, as they allow change of mesh density without need triangular

elements.

Although the concept of hierarchical elements was described for plane quadrilateral elements, in

ATENA it applies for plane triangular elements, 3D bricks, tetrahedral and wedge elements, too.

Always there is a set of basic interpolation function that can be extended by any “higher”

interpolation function. This does not apply to pyramidal elements.

Apart of interpolation functions finite element properties depend strongly on numerical

integration scheme used to integrate element stiffness matrix, element nodal forces etc. In Atena,

majority of elements are integrated by Gauss integration scheme that ensure (1)n n − order

accuracy, where n is degree of the polynomial used to approximate the integrated function.

1 2

3 5

6

4

7 8

9 10 11

1 2

3 4 5

6

7

8

9 10 11

Solution with
hierarchical
elements

Standard

solution

2D and 3D truss elements in ATENA are coded in group of elements CCIsoTruss<xx> ...

CCIsoTruss<xxx>. The string in < > describes present element nodes, (see Atena Input File

Format document for more information). These are isoparametric elements integrated by Gauss

integration at 1 or 2 integration points for the case of linear or quadratic interpolation, i.e. for

elements with 2 or 3 element nodes, respectively. They are suitable for plane 2D as well as 3D

analysis problems. Geometry, interpolation functions and integration points of the elements are

given in Fig. 3-3, Table 3.2-1 to Table 3.2-3.

1

2
3 CCIsoTruss<xx>

CCIsoTruxx<xxx>

r

s
y

x

Node

i

Function

 hi

Include only if node 3 is

defined

1 1
(1)

2
r− 3

1

2
h−

2 1
(1)

2
r+ 3

1

2
h−

3 2(1)r−

Integration point

Coordinate r

Weight

1 0. 2.

Integrati

on point

Coordinate r

Weight

1 0.577350269189626 1.

2 -0.577350269189626 1.

The element vectors and matrices for Total Lagrangian formulation, configuration at time t and

iteration (i) are as follows. Note that they are equally applicable for Updated Lagrangian

formulation upon applying changes related to the element reference coordinate system

(undeformed vs. deformed element axis.). The formulation is present for 3-nodes element option.

The 2-nodes variant is obtained by simply neglecting the terms for the element mid-point.

An arbitrary point on the truss element has at reference time t coordinates 1 1 1[, ,]t t t tX x x x= :

1 2 3

1 1 1 1 2 1 3

1 2 3

2 2 1 2 2 2 3

1 2 3

3 3 1 3 2 3 3

t t t t

t t t t

t t t t

x x h x h x h

x x h x h x h

x x h x h x h

= + +

= + +

= + +

 (3.1)

At time (1)it t −+  the same point has coordinates (1)t t iX+ − :

(1) 1 1(1) 2 2(1) 3 3(1)

1 1 1 1 1 1 2 1 1 3

(1) 1 1(1) 2 2(1) 3 3(1)

2 2 2 1 2 2 2 2 2 3

(1) 1 1(1) 2 2(1) 3 3(1

3 3 3 1 3 3 2 3 3

() () ()

() () ()

() () (

t t i t t i t t i t t i

t t i t t i t t i t t i

t t i t t i t t i t t i

x x u h x u h x u h

x x u h x u h x u h

x x u h x u h x u

+ − − − −

+ − − − −

+ − − − −

= + + + + +

= + + + + +

= + + + + +)

3)h

 (3.2)

and at time
()it t+  coordinates ()t t iX+

() 1 1() 2 2() 3 3()

1 1 1 1 1 1 2 1 1 3

() 1 1() 2 2() 3 3()

2 2 2 1 2 2 2 2 2 3

() 1 1() 2 2() 3 3()

3 3 3 1 3 3 2 3 3 3

() () ()

() () ()

() () ()

t t i t t i t t i t t i

t t i t t i t t i t t i

t t i t t i t t i t t i

x x u h x u h x u h

x x u h x u h x u h

x x u h x u h x u h

+

+

+

= + + + + +

= + + + + +

= + + + + +

 (3.3)

Increment of Green Lagrange strain
() () (1)

11 11 11

i t t i t t t t i

t t t  + + + −= − (at time t t+  , iteration ()i with

to configuration at time t) is calculated:

2 2() (1)

()

11 2

1

2

it t t t i

i

t
t

l l

r r

l

r



+ + −      −        =  
   

  
  

 

 (3.4)

where truss length differentials are

2 2 2 2

1 2 3

2 2 2 2
(1) (1) (1) (1)

1 2 3

2 2 2
() () ()

1 2

t t t t

t t i t t i t t i t t i

t t i t t i t t i

l x x x

r r r r

l x x x

r r r r

l x x

r r r

+ − + − + − + −

+ + +

          
= + +       

          

          
= + +       

          

        
= + +     

       

2
()

3

t t ix

r

+ 
 

 

 (3.5)

Substituting (3.5), (3.3) into (3.4) after some math manipulation it can be derived:

1 2 31 1 1 2 1 3
1 1 1

1 2 32 1 2 2 2 3
1 1 1

1 2 33 1 3 2 3 3
1 1 1

1 2 31 1 1 2 1 3
2 2 2

0 2

1

t t t

t t t

t t t

t t t

t t

t L
t

h h h h h h
x x x

r r r r r r

h h h h h h
x x x

r r r r r r

h h h h h h
x x x

r r r r r r

h h h h h h
x x x

r r r r r r

h

l

r

+

     
+ +

     

     
+ +

     

     
+ +

     

     
+ +

     


=

 
 

 

B 1 2 32 1 2 2 2 3
2 2 2

1 2 33 1 3 2 3 3
2 2 2

1 2 31 1 1 2 1 3
3 3 3

1 2 32 1 2 2 2 3
3 3 3

13 1 3 2
3

t t t

t t t

t t t

t t t

t t

h h h h h
x x x

r r r r r r

h h h h h h
x x x

r r r r r r

h h h h h h
x x x

r r r r r r

h h h h h h
x x x

r r r r r r

h h h h
x

r r r r

    
+ +

     

     
+ +

     

     
+ +

     

     
+ +

     

   
+

   

2 33 3
3 3

th h
x x

r r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  +
   

 (3.6)

1(1) 2(1) 3(1)1 1 1 2 1 3
1 1 1

1(1) 2(1) 3(1)2 1 2 2 2 3
1 1 1

1(1)3 1 3 2
1

(1)

1 2

1

t t i t t i t t i

t t i t t i t t i

t t i t t

t t i

t L
t

h h h h h h
u u u

r r r r r r

h h h h h h
u u u

r r r r r r

h h h h
u

r r r r

l

r

+ − + − + −

+ − + − + −

+ − +

+ −

     
+ +

     

     
+ +

     

   
+

   

=
 
 

 

B

2(1) 3(1)3 3
1 1

1(1) 2(1) 3(1)1 1 1 2 1 3
2 2 2

1(1) 2(1) 3(1)2 1 2 2 2 3
2 2 2

1(1)3 1 3 2
2

i t t i

t t i t t i t t i

t t i t t i t t i

t t i

h h
u u

r r

h h h h h h
u u u

r r r r r r

h h h h h h
u u u

r r r r r r

h h h h
u

r r r r

− + −

+ − + − + −

+ − + − + −

+ −

 
+

 

     
+ +

     

     
+ +

     

   
+

   

2(1) 3(1)3 3
2 2

1(1) 2(1) 3(1)1 1 1 2 1 3
3 3 3

1(1) 2(1) 3(1)2 1 2 2 2 3
3 3 3

1(1)3 1 3
3

t t i t t i

t t i t t i t t i

t t i t t i t t i

t t i

h h
u u

r r

h h h h h h
u u u

r r r r r r

h h h h h h
u u u

r r r r r r

h h h
u

r r r

+ − + −

+ − + − + −

+ − + − + −

+ −

 
+

 

     
+ +

     

     
+ +

     

   
+

  

2(1) 3(1)2 3 3
3 3

t t i t t ih h h
u u

r r r

+ − + −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  +
    

 (3.7)

 and

1 2 3

(1) 1 2 3

1 2 3

0 0 0 0 0 0

1
0 0 0 0 0 0

0 0 0 0 0 0

t t n

t NL t

h h h

r r r

h h h

r r rl

h h hr

r r r

+ −

   
   
 

   =
    
        
    

B (3.8)

The 2nd Piola-Kirchhoff stress matrix and tensor are:

(1)

11

(1) (1) (1) (1)

11 11

(1)

11

0 0

0 0 , []

0 0

t t i

t

t t i t t i t t i t t i

t t t t

t t i

t

S

S S S S

S

+ −

+ − + − + − + −

+ −

 
 

= = 
 
 

 (3.9)

The formulation is completed by relationship for element deformation gradient ()

1,1

t t i

t X+ , which

yields:

()

()

1,1

t t i

t t i

t t

l

r
X

l

r

+

+

 
 

 =
 
 

 

 (3.10)

Note that 2-nodes truss element has constant strains along its length and thus the increment of

Green Lagrange strain can be calculated directly, (i.e. not using differentials truss length as it

was the case of (3.4)):

() ()

2 2
() (1)

()

11 2

1

2

t t i t t i

i

t t

l l

l


+ + − −
 =
 
 

 (3.11)

This yields a bit simpler element formulation (with the same results). However, for the sake of

preserving unified approach to all truss elements, ATENA uses even in this case the equation

(3.4).

Plane quadrilateral elements in ATENA are coded in group of elements CCIsoQuad<xxxx> ...

CCIsoQuad<xxxxxxxxx>. The string in < > describes present element nodes (see Atena Input

File Format document for more information). These are isoparametric elements integrated by

Gauss integration at 4 or 9 integration points for the case of bilinear or bi-quadratic interpolation,

i.e. for elements with 4 or 5 and more element nodes, respectively. They are suitable for plane

2D, axisymmetric and 3D problems.

CCIsoQuad2_5<...> elements present a simplified 3D formulation of the CCIsoQuad<...>

elements. Their higher execution performance is achieved at cost of omitting some nonlinear

terms, see below.

Geometry, interpolation functions and integration points of the elements are given in Fig. 3-4

and in the subsequent tables.

3

4

1

2

7

8

5

6

9

CCIsoQuad<xxxx>
CCIsoQuad<xxxxx>
CCIsoQuad<xxxx_x>

....
CCIsoQuad<xxxx_x_x_>
....
CCIsoQuad<xxxxxxxxx>

r

s

x

y

Node

i

Function hi

Include only if node i is defined

i = 5 I = 6 i = 7 i = 8 i = 9

1 1
(1)(1)

4
r s+ + 5

1

2
h−

8

1

2
h− 9

1

4
h

2 1
(1)(1)

4
r s− + 5

1

2
h− 6

1

2
h−

9

1

4
h

3 1
(1)(1)

4
r s− −

6

1

2
h− 7

1

2
h−

9

1

4
h

4 1
(1)(1)

4
r s+ −

7

1

2
h− 8

1

2
h− 9

1

4
h

5 21
(1)(1)

2
r s− +

9

1

2
h−

6 21
(1)(1)

2
s r− −

9

1

2
h−

7 21
(1)(1)

2
r s− −

9

1

2
h−

8 21
(1)(1)

2
r s+ −

9

1

2
h−

9 2 21
(1)(1)

2
r s− −

Integration

point

Coordinate r Coordinate s Weight

1 0.577350269189626 0.577350269189626 1.

2 0.577350269189626 -0.577350269189626 1.

3 -0.577350269189626 0.577350269189626 1.

4 -0.577350269189626 -0.577350269189626 1.

Integrati

on point

Coordinate r

Coordinate s

Weight

1 0.774596669241483 0.774596669241483 0.3086419753

2 0.774596669241483 0. 0.4938271605

3 0.774596669241483 -0.774596669241483 0.3086419753

4 0. 0.774596669241483 0.4938271605

5 0. 0. 0.7901234568

6 0. -0.774596669241483 0.4938271605

7 -0.774596669241483 0.774596669241483 0.3086419753

8 -0.774596669241483 0. 0.4938271605

9 -0.774596669241483 -0.774596669241483 0.3086419753

Equations (3.12) through (3.21) present CCIsoQuad<...> axisymmetric element formulation. 2D

element formulation is simply obtained by removing terms associated with circumferential

strains and stresses () ()

33 33,t t i t t i

t t S+ + .

Incremental strains:

() ()()

() ()()

()

2 2
() () (1) () (1) () () ()

11 1,1 1,1 1,1 2,1 2,1 1,1 2,1

2 2
() () (1) () (1) () () ()

22 2,2 1,2 1,2 2,2 2,2 1,2 2,2

() () ()

12 1,2 2,1

1

2

1

2

1

2

1

2

i i t t i i t t i i i i

t t t t t t t t

i i t t i i t t i i i i

t t t t t t t t

i i i

t t t

t

t

u u u u u u u

u u u u u u u

u u







+ − + −

+ − + −

= + + + +

= + + + +

+= +

()

()

()

(1) () (1) () (1) () (1) ()

1,1 1,2 2,1 2,2 1,2 1,1 2,2 2,1

() () () ()

1,1 1,2 2,1 2,2

2
() () () ()

() 1 1 1 1
33 2

1 11

1

2

1

2

t i i t t i i t t i i t t i i

t t t t t t t

i i i i

t t t t

i t t i i i
i

t t tt

u u u u u u u u

u u u u

u u u u

x xx


+ − + − + − + −

+

+ + + +

+

 
= + +  

  (3.12)

Displacement derivatives:

()() (1)

()

,

(1)
(1)

,

t t i t t i

i ii

t i j t

j

t t i
t t i i

t i j t

j

u u
u

x

u
u

x

+ + −

+ −
+ −

 −
=




=



 (3.13)

Strains and matrices to calculate them:

() (1) ()

() () () () ()

11 22 12 33

() () (1) 1() 1() 2() 2() () ()

1 2 1 2 1 2

, , 2 ,

, , , ,..... ,

i t t i i

t t L

i i i i i

t t t t t

i t t i t t i i i i i n i n i

U

U U U u u u u u u



    

+ −

+ + −

= 

 =  

  = − =  

B

 (3.14)

Linear strain-displacement matrix:

 (1) (1)

0 1

t t i t t t t i

t L t L t L

+ − + + −= +B B B (3.15)

Linear strain-displacement matrix – constant part:

1,1 2,1

1,2 2,2 ,2

0 1,2 1,1 2,2 2,1 ,2 ,1

1 2

1 1 1

0 0 ... 0 0

0 0 ... 0

...

0 0 ... 0

t t

t t t n

t t

t L t t t t t n t n

n

t t t

h h

h h h

h h h h h h

h h h

x x x

+

 
 
 
 =
 
 
  

B (3.16)

where

,

() () (1)

1 1

1

i
t i j t

j

i t t i t t i

i i i

n
t t k

k

k

h
h

x

u u u

x h x

+ + −

=


=



= −

= 

 (3.17)

Linear strain-displacement matrix – non-constant part:

(1) (1) (1) (1)

11 1,1 21 1,1 11 2,1 21 2,1

(1) (1) (1) (1)

11 1,2 21 1,2 11 2,2 21 2,2

(1) (1) (1) (1)
1 11 1,2 11 1,1 21 1

t t i t t i t t i t t i

t t t t

t t i t t i t t i t t i

t t t t

t t i t t i t t i t t i
t L t t t

l h l h l h l h

l h l h l h l h

l h l h l h

+ − + − + − + −

+ − + − + − + −

+ − + − + − + −= +B (1) (1) (1) (1) (1)

,2 21 1,1 11 2,2 11 2,1 21 2,2 21 2,1

(1) (1)1 2
33 33

1 1

0 0

t t i t t i t t i t t i t t i

t t t t t

t t i t t i

t t

l h l h l h l h l h

h h
l l

x x

+ − + − + − + − + −

+ − + −




 + + +





(1) (1)

11 ,1 21 ,1

(1) (1)

11 ,2 21 ,2

(1) (1) (1) (1)

11 ,2 11 ,1 21 ,2 21 ,1

(1)

33

1

...

...

...

... 0

t t i t t i

t n t n

t t i t t i

t n t n

t t i t t i t t i t t i

t n t n t n t n

t t i n

t

l h l h

l h l h

l h l h l h l h

h
l

x

+ − + −

+ − + −

+ − + − + − + −

+ −




+ +





 (3.18)

where

(1) (1)

11 ,1 1

1

(1) (1)

12 ,2 1

1

(1) (1)

21 ,1 2

1

(1) (1)

22 ,2 2

1

(1) (1)

33 1

11

1

n
t t i t t k i

t k t

k

n
t t i t t k i

t k t

k

n
t t i t t k i

t k t

k

n
t t i t t k i

t k t

k

n
t t i t t k i

k tt
k

l h u

l h u

l h u

l h u

l h u
x

+ − + −

=

+ − + −

=

+ − + −

=

+ − + −

=

+ − + −

=

=

=

=

=

=











 (3.19)

Nonlinear strain-displacement matrix

1,1 2,1 ,1

1,2 2,2 ,2

1,1 2,1 ,1(1)

1,2 2,2 ,2

1 2

1 1 1

0 0 ... 0

0 0 ... 0

0 0 ... 0

0 0 ... 0

0 0 ... 0

t t t n

t t t n

t t t nt t i

t NL

t t t n

n

t t t

h h h

h h h

h h h

h h h

h h h

x x x

+ −

 
 
 
 

=  
 
 
 
 

B (3.20)

2nd Piola-Kirchhoff stress tensor and vector

(1) (1)

11 12

(1) (1)

21 22

(1) (1) (1)

11 12

(1) (1)

21 22

(1)

33

() (1) (1) (

11 22 21

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

t t i t t i

t t

t t i t t i

t t

i t t i t t i
t t t

t t i t t i

t t

t t i

t

i t t i t t i t t i

t t t t

S S

S S

S S

S S

S

S S S S

+ − + −

+ − + −

− + − + −

+ − + −

+ −

+ − + − + −

 
 
 
 =
 
 
 
 

=

S

1) (1)

33

t t i

t S
+ −  

 (3.21)

In case of the simplified 3D analysis, i.e. elements CCIsoQuad2_5<...>, the equations are further

extended as follows:

All element matrices and vectors are computed with respect to element local coordinate

system
,1 ,2,local localx x using equations in (3.12) through (3.21). They are transformed into

3D global coordinate system by means of simple transformation:

 ,T

global local global localv v= =M T M T T (3.22)

where

, , ,global local global localv vM M are global and local finite element matrices and vectors,

T is transformation matrix from local to global coordinate system:

,1 ,1 ,2 ,1

,1 ,2 ,2 ,2

.1 ,3 ,2 ,3

cos(,), cos(,)

cos(,), cos(,)

cos(,), cos(,)

local global local global

local global local global

local global local global

x x x x

x x x x

x x x x

 
 

=  
 
 

T (3.23)

where:

, ,,local i global ix x are local and global coordinates (in 2D and 3D space).

The local element coordinate system (see Fig. 3-5) is defined by local ,1 ,2 ,3, ,local local localx x x

coordinates. All of them pass through origin of the global (reference) coordinate system. The

axes ,1localx and ,2localx constitute a local coordinates element plane that is parallel to the element.

The axis ,3localx is perpendicular to the element and the axis ,1localx is defined as a projection of

global 1x axis to the local coordinate element plane. An exception to that is, when the element is

normal to the global 1x . In this case the local ,1localx coincides with the global 2x axis.

The present definition of local element coordinate system depends on plane of the finite element,

but it does not depend on its shape itself. This is very important property, as ATENA supports

use of local (instead of global) nodal degrees of freedom and, (of course) these degrees of

freedom must refer to a coordinate system common to all elements of the plane, in which they

lie.

O

x
1

x
2

x
3

1

2

3

4

x
l o c a l , 1

x
l o c a l , 2

x
l o c a l , 3

X
X’

Full 3D formulation of the CCIsoQuad<...> elements is much the same as that for simplified 3D

elements CCIsoQuad2_5<...>. The only difference is that the matrix 0

t

NLB will include also terms

related to the „out-of-element-plane“ direction:

1,1 2,1 3,1 ,1

1,2 2,2 3,2 ,2

1,1 2,1 3,1 ,1(1)

1,2 2,2 3,2 ,2

1,1 2,1 3,1 ,1

1,2 2,2 3,2 ,2

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0
......

0 0 0 00 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

t t t t N

t t t t N

t t t t Nt t i

t NL

t t t t N

t t t t N

t t t t N

h h h h

h h h h

h h h h

h h h h

h h h h

h h h h

+ −

 




= 



 

B










 (3.24)

Plane triangular elements in ATENA are coded in group of elements CCIsoTriangle<xxx> ...

CCIsoTriangle<xxxxxx>. The string in < > describes present element nodes (see Atena Input

File Format document for more information). These are isoparametric elements integrated by

Gauss integration at 1 or 3 integration points for the case of bilinear or bi-quadratic interpolation,

i.e. for elements with 3 or 4 and more element nodes, respectively. They are suitable for plane

2D, axisymmetric and 3D problems. Geometry, interpolation functions and integration points of

the elements are given in

1

2

3

4

5

6

CCIsoTriangle<xxx>
...
CCIsoTriangle<xxxxxx>

r

s

y

x

Fig. 3-6, Table 3-1, Table 3-2, and Table 3-3.

1

2

3

4

5

6

CCIsoTriangle<xxx>
...
CCIsoTriangle<xxxxxx>

r

s

y

x

Node

i

Function hi Include only if node i is

defined

i = 4 i = 5 i = 6

1 1 r s− −
4

1

2
h−

6

1

2
h−

2 r
4

1

2
h− 5

1

2
h−

3 s
5

1

2
h− 6

1

2
h−

4 4 (1)r r s− −

5 4rs

6 4 (1)s r s− −

Integration point Coordinate r Coordinate s Weight

1 1/3 1/3 1/2

Integration

point

Coordinate r

Coordinate s

Weight

1 1/6 1/6 1/6

2 2/3 1/6 1/6

3 1/6 2/3 1/6

All the above expressions for the formulation for plane quadrilateral elements remain valid also

for the triangular elements, including the extension from 2D to simplified and full 3D analysis.

The expressions only use different approximation functions (, ,)ih r s t and different integration

points [, ,]r s t , see Table 3-1, Table 3-2, and Table 3-3.

ATENA finite element library includes the following group of 3D solid elements:

tetrahedral elements CCIsoTetra<xxxx> ... CCIsoTetra<xxxxxxxxxx> with 4 to 10 nodes,

see Fig. 3-7,

pyramidal elements CCIsoPyramid<xxxxx>, CCIsoPyramid<xxxxxxxxxxxxx>

brick elements CCIsoBrick<xxxxxxxx> ... CCIsoBrick<xxxxxxxxxxxxxxxxxxxx> with 8 up

to 20 nodes see Fig. 3-8 and

wedge elements CCIsoWedge<xxxxxx> ... CCIsoWedge<xxxxxxxxxxxxxxx> with 6 to 15

nodes, see Fig. 3-9.

The string in < > describes present element nodes (see Atena Input File Format document for

more information). These are isoparametric elements integrated by Gauss integration at

integration points given in the following tables. Interpolation functions for all variants of the

elements are also given in the tables below.

1

2

4

3

5

8

10

7 6

9
CCIsoTetra<xxxx>
.............

CCIsoTetra<xxxxxxxxxx>

r

s

t

x
y

z

y

t

4
1

2

3

8

5

6

7

12 9

1011

20

17

18
19

16
13

14

15

CCIsoBrick<xxxxxxxx>
..................
CCIsoBrick<xxxxxxxxx...x>

x
y

z

r

s

t

8

9

10

4

5

6

10

12 11

CCIso <xxx >Wedge xxx
.............
CCIso <xxxxxxxxxx >Wedge xxxxx

r

s

t

x
y

z

y

8

39

7

1

2

13 14

15

Node

i

Function hi Include only if node i is defined

i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

1 1 r s t− − −
5

1

2
h−

7

1

2
h−

10

1

2
h−

2 r
5

1

2
h− 6

1

2
h−

8

1

2
h−

3 s
6

1

2
h− 7

1

2
h−

9

1

2
h−

4 t
8

1

2
h− 9

1

2
h− 10

1

2
h−

5 4 (1)r r s t− − −

6 4 (1)rs t−

7 4 (1)s r s t− − −

8 4 (1)rt s−

9 4 (1-)st r

10 4 (1- - -)t r s t

Integration point

Coordinate r

Coordinate s

Coordinate t

Weight

1 1/4 1/4 1/4 1/6

Integration point

Coordinate r

Coordinate s

Coordinate t

Weight

1 0.13819660 0.13819660 0.13819660 1/24

2 0.13819660 0.13819660 0.58541020 1/24

3 0.58541020 0.13819660 0.13819660 1/24

4 0.13819660 0.58541020 0.13819660 1/24

Interpolation functions for CCIsoPyram<xxxxx> and their derivatives:

() () ()

() () ()

() () ()

() () ()

1

2

3

4

5

1
1 1 1

8

1
1 1 1

8

1
1 1 1

8

1
1 1 1

8

1 1

2 2

h r s t

h r s t

h r s t

h r s t

h t

= − − −

= + − −

= + + −

= − + −

= +

 (3.25)

()() ()() ()()

() () () () () ()

()() () () ()()

()() ()() ()()

1 1 1

2 2 2

3 32

4 4 4

5 5

1 1 1
1 1 1 1 1 1

8 8 8

1 1 1
2 _ : 1 1 1 1 1 1

8 8 8

1 1 1
1 1 1 1 1 1

8 8 8

1 1 1
1 1 1 1 1 1

8 8 8

0 0

h h h
s t r t r s

r s t

h h h
dv dr s t r t r s

r s t

h hh
s t r t r s

r s t

h h h
s t r t r s

r s t

h h

r s

  
= − − − = − − − = − − −

  

  
= − − = − + − = − + −

  

 
= + − = + − = − + +

  

  
= − + − == − − = − − +

  

  
= ==

 

5 1

2

h

t
=



 (3.26)

Interpolation functions for CCIsoPyram<xxxxxxxxxxxxx> and their derivatives:

2

2

5

2

6

2

7

1

2

8

3

4

1
h = (1-r)(1-s)(1-t)(-r-s-t-2)

8

1
h = (1+r)(1-s)(1-t)(r-s-t-2)

8

1
h = (1+r)(1+s)(1-t)(r+s-t-2)

8

1
h = (1-r)

(1)(1)(1)

: (1)(1)(1)

(1)(1

(1+s)(1-t)(-r+s-t-2)

)(1

8

1 1

2 2

1

4

1
)

1

4

4

h t t

h r s t

h r s t

h r s t

h

= +

= − + − −

= + − + −

= − + + −

2

9

2

10

2

11

2

12

2

13

(1)(1)(1)

(1)(1)(1)

(1)(1)(1)

((1))(1)(1)

((1))(1)(1)

1

4

1

4

1

4

1

4

1

4

r s t

h r s t

h r s t

h r s t

h r s t

= − − + −

= − − − +

= + − − +

= + + − +

= − + − +

 (3.27)

()()() ()()()

()()() ()()()

()()() ()()()

()()() ()()()

()()() ()()()

()()() ()

1

1

1

2

2

2

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1

8 8

h
s t r s t r s t

r

h
r t r s t r s t

s

h
r s r s t r s t

t

h
s t r s t r s t

r

h
r t r s t r s t

s

h
r s r s t r

t


= − − − − − − − − − − −




= − − − − − − − − − − −




= − − − − − − − − − − −




= − − − − − + + − −




= − + − − − − − + − −




= − + − − − − − +


()()

()()() ()()()

()()() ()()()

()()() ()()()

()()() ()()()

()()() ()()()

()()()

3

3

3

4

4

4

1 1

1 1
1 1 2 1 1 1

8 8

1 1
: 1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1 1
1 1 2 1 1 1

8 8

1
1 1 2

8

s t

h
s t r s t r s t

r

h
r t r s t r s t

s

h
r s r s t r s t

t

h
s t r s t r s t

r

h
r t r s t r s t

s

h
r s r s t

t

− −


= + − + − − + + + −




= + − + − − + + + −




= − + + + − − − + + −




= − + − − + − − − − + −




= − − − + − − + − + −




= − − + − + − −



 5

5

5

0

0

1

2

h

r

h

s

h
t

t

=



=




= +



 (3.28)

()() ()() ()()

()() () () ()()

()() ()() ()()

()() () () ()()

2 26 6 6

2 27 7 7

2 28 8 8

2 29 9 9

1 1 1
1 1 1 1 1 1

2 4 4

1 1 1
1 1 1 1 1 1

4 2 4

1 1 1
1 1 1 1 1 1

2 4 4

1 1 1
1 1 1 1 1 1

4 2 4

h h h
r s t r t r s

r s t

h h h
s t r s t r s

r s t

h h h
r s t r t r s

r s t

h h h
s t r s t r s

r s t

h

  
= − − − = − − + − = − − + −

  

  
= − + − = − + − = − + − +

  

  
= − + − = − + − = − − + +

  

  
= − − + − = − − − = − − − +

  


()() ()() ()()

()() ()() ()()

()() ()() ()()

()() ()()

2 210 10 10

2 211 11 11

2 212 12 12

2 213 13 13

1 1 1
1 1 1 1 1 1

4 4 2

1 1 1
1 1 1 1 1 1

4 4 2

1 1 1
1 1 1 1 1 1

4 4 2

1 1 1
1 1 1 1 1

4 4 2

h h
s t r t r s t

r s t

h h h
s t r t r s t

r s t

h h h
s t r t r s t

r s t

h h h
s t r t

r s t

 
= − − − + = − − − + = − − −

  

  
= − − + = − + − + = − + −

  

  
= + − + = + − + = − + +

  

  
= − + − + = − − + = −

  
()()1r s t− +

 (3.29)

The pyramidal elements are integrated at the material points for the corresponding

brick(hexahedral) elements, because they use the same isoparametric space r,s,t.

N
o
d
e

i

Function hi

Include only if node i is defined

i = 9 i = 10 i = 11 i = 12 i = 13

i = 14 i = 15 i = 16 i = 17 i = 18 i = 19 i = 20

1 1
(1)(1)(1)

8
r s t+ + +

9

1

2
h−

12

1

2
h−

17

1

2
h−

2 1
(1)(1)(1)

8
r s t− + +

9

1

2
h−

10

1

2
h−

18

1

2
h−

3 1
(1)(1)(1)

8
r s t− − +

10

1

2
h−

11

1

2
h−

19

1

2
h−

4 1
(1)(1)(1)

8
r s t+ − +

11

1

2
h−

12

1

2
h−

20

1

2
h−

5 1
(1)(1)(1)

8
r s t+ + −

13

1

2
h−

16

1

2
h−

17

1

2
h−

6 1
(1)(1)(1)

8
r s t− + −

13

1

2
h−

14

1

2
h−

18

1

2
h−

7 1
(1)(1)(1)

8
r s t− − −

14

1

2
h−

15

1

2
h−

19

1

2
h−

8 1
(1)(1)(1)

8
r s t+ − −

15

1

2
h−

16

1

2
h−

20

1

2
h−

9 21
(1)(1)(1)

4
r s t− + +

10 21
(1)(1)(1)

4
r s t− − +

11 21
(1)(1)(1)

4
r s t− − +

12 21
(1)(1)(1)

4
r s t+ − +

13 21
(1)(1)(1)

4
r s t− + −

14 21
(1)(1)(1)

4
r s t− − −

15 21
(1)(1)(1)

4
r s t− − −

16 21
(1)(1)(1)

4
r s t+ − −

17 21
(1)(1)(1)

4
r s t+ + −

18 21
(1)(1)(1)

8
r s t− + −

19 21
(1)(1)(1)

4
r s t− − −

20 21
(1)(1)(1)

4
r s t+ − −

Inte-

gration

point

Coordinate r Coordinate s Coordinate t Weight

1 0.5773502691896

26

0.5773502691896

26

0.577350269189626 1.

2 0.5773502691896

26

0.5773502691896

26

-

0.577350269189626

1.

3 0.5773502691896

26

-

0.5773502691896

26

0.577350269189626 1.

4 0.5773502691896

26

-

0.5773502691896

26

-

0.577350269189626

1.

5 -

0.5773502691896

26

0.5773502691896

26

0.577350269189626 1.

6 -

0.5773502691896

26

0.5773502691896

26

-

0.577350269189626

1.

7 -

0.5773502691896

26

-

0.5773502691896

26

0.577350269189626 1.

8 -

0.5773502691896

26

-

0.5773502691896

26

-

0.577350269189626

1.

Inte-

gration

point

Coordinate r Coordinate s

Coordinate t Weight

1 0.7745966692414

83

0.7745966692414

83

0.774596669241483 0.1714677641

2 0.7745966692414

83

0.7745966692414

83

0. 0.2743484225

3 0.7745966692414

83

0.7745966692414

83

-

0.774596669241483

0.1714677641

4 0.7745966692414

83

0. 0.774596669241483 0.2743484225

5 0.7745966692414

83

0. 0. 0.4389574760

6 0.7745966692414

83

0. -

0.774596669241483

0.2743484225

7 0.7745966692414

83

-

0.7745966692414

83

0.774596669241483 0.1714677641

8 0.7745966692414

83

-

0.7745966692414

83

0. 0.2743484225

10 0. 0.7745966692414

83

0.774596669241483 0.2743484225

11 0. 0.7745966692414

83

0. 0.4389574760

12 0. 0.7745966692414

83

-

0.774596669241483

0.2743484225

13 0. 0. 0.774596669241483 0.4389574760

14 0. 0. 0. 0.7023319616

15 0. 0. -

0.774596669241483

0.4389574760

16 0. -

0.7745966692414

83

0.774596669241483 0.2743484225

17 0. -

0.7745966692414

83

0. 0.4389574760

18 0. -

0.7745966692414

83

-

0.774596669241483

0.2743484225

19 -

0.7745966692414

83

0.7745966692414

83

0.774596669241483 0.1714677641

20 -

0.7745966692414

83

0.7745966692414

83

0. 0.2743484225

21 -

0.7745966692414

83

0.7745966692414

83

-

0.774596669241483

0.1714677641

22 -

0.7745966692414

83

0. 0.774596669241483 0.2743484225

23 -

0.7745966692414

83

0. 0. 0.4389574760

24 -

0.7745966692414

83

0. -

0.774596669241483

0.2743484225

25 -

0.7745966692414

83

-

0.7745966692414

83

0.774596669241483 0.1714677641

26 -

0.7745966692414

83

-

0.7745966692414

83

0. 0.2743484225

27 -

0.7745966692414

83

-

0.7745966692414

83

-

0.774596669241483

0.1714677641

1

2

3

4

5

6

1

2

2

3

(1)

4 (1)

4

4 (1)

1

2

1

2

(1)

hh r s

hh r

hh s

hh r r s

hh rs

hh s r s

t
hv

t
hv

hv t

= − −

=

=

= − −

=

= − −

+
=

−
=

= −

N

o
d
e

I Function

hi

Include only if node i is defined

i = 7 i = 8 i = 9 i = 10 i = 11

i = 12 i = 13 i = 14 i = 15

1
1 1hh hv

7

1

2
h−

9

1

2
h−

13

1

2
h−

2
2 1hh hv

7

1

2
h− 8

1

2
h−

14

1

2
h−

3
3 1hh hv

8

1

2
h− 9

1

2
h−

15

1

2
h−

4
1 2hh hv

10

1

2
h−

12

1

2
h− 13

1

2
h−

5
2 2hh hv

10

1

2
h− 11

1

2
h−

14

1

2
h−

6
3 2hh hv

11

1

2
h− 12

1

2
h−

15

1

2
h−

7
4 1hh hv

8
5 1hh hv

9
6 1hh hv

10
4 2hh hv

11
5 2hh hv

12
6 2hh hv

13
1 3hh hv

14
2 3hh hv

15
3 3hh hv

Integration point

Coordinate r

Coordinate s

Coordinate t

Weight

1 1/6 1/6 0.577350269189626 1/6

2 2/3 1/6 0.577350269189626 1/6

3 1/6 2/3 0.577350269189626 1/6

4 1/6 1/6 -0.577350269189626 1/6

5 2/3 1/6 -0.577350269189626 1/6

6 1/6 2/3 -0.577350269189626 1/6

Integration point

Coordinate r

Coordinate s

Coordinate t

Weight

1 1/6 1/6 0.774596669241483 0.0925925926

2 2/3 1/6 0.774596669241483 0.0925925926

3 1/6 2/3 0.774596669241483 0.0925925926

4 1/6 1/6 0. 0.1481448148

5 2/3 1/6 0. 0.1481448148

6 1/6 2/3 0. 0.1481448148

7 1/6 1/6 -0.774596669241483 0.0925925926

8 2/3 1/6 -0.774596669241483 0.0925925926

9 1/6 2/3 -0.774596669241483 0.0925925926

Formulation of 3D solid elements is given in the following equations:

Incremental strains:

 () () ()() () () (1) () (1) () () ()

, , , , , , , ,

1 11

2 2 2

i i i t t i i t t i i i i

t ij t i j t j i t k i t k j t k j t k i t k i t k ju u u u u u u u + − + −+= + + + (3.30)

where indices , , 1...3i j k  

Displacement derivatives:

()() (1)

()

,

(1)
(1)

,

t t i t t i

i ii

t i j t

j

t t i
t t i i

t i j t

j

u u
u

x

u
u

x

+ + −

+ −
+ −

 −
=




=



 (3.31)

Strains and matrices to calculate them:

() (1) ()

() () () () () () ()

11 22 33 12 23 13

() () (1)

1() 1() 1() 2() 2() 2() () () ()

1 2 3 1 2 3 1 2 3

2 2 2

...

i t t i i

t t L

i i i i i i i

t t t t t t t

i t t i t t i

i i i i i i n i n i n i

U

U U U

u u u u u u u u u



      

+ −

+ + −

= 

 =  

 = − =

  

B

 (3.32)

Linear strain-displacement matrix:

 (1) (1)

0 1

t t i t t t t i

t L t L t L

+ − + + −= +B B B (3.33)

Linear strain-displacement matrix – constant part:

1,1 2,1 ,1

1,2 2,2 ,2

1,3 2,3 ,3

0

1,2 1,1 2,2 2,1 ,2 ,1

1,3 1,2 2,3 2,2 ,3 ,2

1,3 1,1 2,3 2,1 ,3 ,1

0 0 0 0 ... 0 0

0 0 0 0 ... 0 0

0 0 0 0 ... 0 0

0 0 ... 0

0 0 ... 0

0 0 ... 0

t t t n

t t t n

t t t nt t

t L

t t t t t n t n

t t t t t n t n

t t t t t n t n

h h h

h h h

h h h

h h h h h h

h h h h h h

h h h h h h

+

 




= 





B










 (3.34)

where

,

() () (1)

i
t i j t

j

i t t i t t i

i i i

h
h

x

u u u+ + −


=



= −

 (3.35)

Linear strain-displacement matrix – non-constant part:

(1) (1) (1) (1)

11 1,1 21 1,1 31 1,1 11 2,1

(1) (1) (1) (1)

12 1,2 22 1,2 32 1,2 12 2,2

(1) (1) (1)

13 1,3 23 1,3 33 1,(1)

1

t t i t t i t t i t t i

t t t t

t t i t t i t t i t t i

t t t t

t t i t t i t t i

t t tt t i

t L

l h l h l h l h

l h l h l h l h

l h l h l h

+ − + − + − + −

+ − + − + − + −

+ − + − + −

+ − =B

(1)

3 13 2,3

(1) (1) (1) (1) (1) (1) (1) (1)

11 1,2 11 1,1 21 1,2 21 1,1 31 1,2 31 1,1 11 2,2 12 2,1

(1) (1)

12 1,3 13 1,2 22

t t i

t

t t i t t i t t i t t i t t i t t i t t i t t i

t t t t t t t t

t t i t t i t t

t t

l h

l h l h l h l h l h l h l h l h

l h l h l

+ −

+ − + − + − + − + − + − + − + −

+ − + − +

+ + + +

+ (1) (1) (1) (1) (1) (1)

1,3 23 1,2 32 1,3 33 1,2 12 2,3 13 2,2

(1) (1) (1) (1) (1) (1)

11 1,3 13 1,1 21 1,3 23 1,1 31 1,3 33

i t t i t t i t t i t t i t t i

t t t t t t

t t i t t i t t i t t i t t i t t i

t t t t t t

h l h l h l h l h l h

l h l h l h l h l h l h

− + − + − + − + − + −

+ − + − + − + − + − + −

+ + +

+ + + (1) (1)

1,1 11 2,3 13 2,1

t t i t t i

t tl h l h+ − + −










+

(1)

31 ,1

(1)

31 ,2

(1)

33 ,3

(1) (1)

31 ,2 32 ,1

(1) (1)

32 ,3 33 ,2

(1) (1)

31 ,3 33 ,1

...

...

...

...

...

...

t t i

t n

t t i

t n

t t i

t n

t t i t t i

t n t n

t t i t t i

t n t n

t t i t t i

t n t n

l h

l h

l h

l h l h

l h l h

l h l h

+ −

+ −

+ −

+ − + −

+ − + −

+ − + −







+ 
+


+ 

 (3.36)

where

 (1) (1)

,

1

n
t t i t t k i

ij t k j t i

k

l h u+ − + −

=

=  (3.37)

Nonlinear strain-displacement matrix

1,1 2,1 ,1

1,2 2,2 ,2

1,3 2,3 ,3

1,1 ,1

(1)

1,2 ,2

1,3 ,3

1,1 ,1

1,2 ,2

1,3 ,3

0 0 ... 0 0

0 0 ... 0 0

0 0 ... 0 0

0 0 0 ... 0 0

0 0 0 ... 0 0

0 0 0 ... 0 0

0 0 0 ... 0 0

0 0 0 ... 0 0

0 0 0 ... 0 0

t t t n

t t t n

t t t n

t t n

t t i

t t nt NL

t t n

t t n

t t n

t t n

h h h

h h h

h h h

h h

h h

h h

h h

h h

h h

+ −







=







B













 
 



 (3.38)

2nd Piola-Kirchhoff stress tensor and vector

(1) (1) (1)

11 12 13

(1) (1) (1)

21 22 23

(1) (1) (1)

31 32 33

(1) (1) (1)

11 12 13

(1) (

21

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

t t i t t i t t i

t t t

t t i t t i t t i

t t t

t t i t t i t t i

t t t

t t i t t i t t i

t t t

i t t
t t

S S S

S S S

S S S

S S S

S

+ − + − + −

+ − + − + −

+ − + − + −

+ − + − + −

− +=S 1) (1) (1)

22 23

(1) (1) (1)

31 32 33

(1) (1) (1)

11 12 13

(1) (1) (1)

21 22 23

(1) (1)

31 32

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i t t i t t i

t t

t t i t t i t t i

t t t

t t i t t i t t i

t t t

t t i t t i t t i

t t t

t t i t t i

t t

S S

S S S

S S S

S S S

S S

− + − + −

+ − + − + −

+ − + − + −

+ − + − + −

+ − + − (1)

33

() (1) (1) (1) (1) (1) (1)

11 22 33 12 23 13

t t i

t

i t t i t t i t t i t t i t t i t t i

t t t t t t

S

S S S S S S S

+ −

+ − + − + − + − + − + −

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 =  

 (3.39)

Spring elements in ATENA are used to model spring-like boundary conditions, i.e. situation

where external forces acting on boundary of the structure are linearly proportional to the

associated displacements. Three elements of this type are available, see also Fig. 3-10, Fig. 3-11:

CCSpring – 2D and 3D element to model spring-like boundary conditions at a point,

CCLineSpring – 2D element to model spring-like boundary conditions along a line

CCPlaneSpring – 3D element to model spring-like boundary conditions along a triangular area.

All these elements are derived from 2D or 3D formulation of the CCIsoTruss<xx> element

described earlier in this chapter. For example, CCSpring element consists of one

CCIsoTruss<xx> element. The 1st node of each CCIsoTruss<xx> coincides with one node of the

CCSpring element, whereas the 2nd node of the CCIsoTruss<xx> is set by direction vector, see

Fig. 4-4. Note that as the analysis is nonlinear, length of the direction does matter. This vector is

specified in ATENA &SPRING_GEOMETRY_SPEC command and is common for all spring

elements that use this geometry.

CCLineSpring and CCPlaneSpring elements were created to enable convenient definition of

„uniform“ spring-like conditions along the boundaries. The boundary force at a node i of the

spring element is calculated:

 i
i

u kA
R

n direction
= (3.40)

where

k is spring material stiffness parameter set by &MATERIAL SPRING command,

(parameter k has character of multi-linear Young modulus),

iu is displacement at spring element node i ,

A is the area of CCPlaneSpring element or length of CCLineSpring multiplied by

thickness (which defaults to 1 if not specified in element geometry) or the area defined in

element geometry for CCSpring (similarly, with a default of 1 if not specified) for the

respective element,

n is number element nodes, i.e. 1, 2 or 3 for CCSpring, CCLineSpring or CCPlaneSpring

element respectively,

direction is Euclidean norm (i.e., length) of the direction vector, see above.

Note that the original CCPlaneSpring element has been recently added by

CCPlaneSpringTriangle<xxx>, CCPlaneSpringTriangle<xxxxxx>,

CCPlaneSpringQuad<xxxx> and

CCPlaneSpringQuad<xxxxxxxx> elements to support linear/nonlinear plane springs of

triangular and quadrilateral shape.

y

x

CCSpring CCLineSpring

y

x

CCSpring

CCPlaneSpring

z

area A

The quadrilateral finite element Q-10 is derived from a six-node triangle (CCQ10<xxxx>,

CCQ10Sbeta<xxxx>). The derivation of the stiffness matrix is taken from FELIPPA 1966. The

position of any internal point P in the element is defined by the triangular coordinates (called

also natural coordinates). These coordinates are expressed by means of areas within the triangle

as shown in Fig. 3-12. Sub-areas Ai are subtended by the point P and two corners. A is the area

of triangular element.

 1 2 3
1 2 3, ,

A A A

A A A
  = = = (3.41)

 1 2 3 1  + + =

Using the quadratic interpolation function, the displacement components u(i), v(i) is written

in the terms of triangular coordinates i and nodal displacement vectors :

 () () , () ()T T

i i i iu v   = =F u F v (3.42)

The displacement vectors u, v contain six components of the nodal displacements and the vector

F ()i contains the quadratic interpolation functions in triangular coordinates:

    1 2 3 4 5 6 1 2 3 4 5 6,
T T

u u u u u u v v v v v v= =u v (3.43)

  1 1 2 2 3 3 1 2 2 3 3 1() (2 1) (2 1) (2 1) 4 4 4
T

i            = − − −F (3.44)

A general procedure to construct the element stiffness matrix is described by the set of following

equations:

(a) The constitutive equation:

 =s D e (3.45)

(b) The strain-displacement equations in the Cartesian coordinates:

() () () (), , , ,

, ,x y

u x y v x y u x y v x y

x y y x
  

   
= = = +

   
 (3.46)

which is written in terms of the natural coordinates i and the nodal displacements vectors u, v:

 () T

i  
 

=  
 

u
F

v
 (3.47)

The stiffness matrix:

 T

V

dV = K F D F (3.48)

The matrix F contains partial derivatives of the interpolation function F and the integral in the

last equation is made over the element volume V. The details of the derivation can be found in

FELIPPA 1966 and here only the final matrix equations are presented.

The quadrilateral finite element is composed from two 4-node triangular elements, as shown in

Fig. 3-13. Two degrees of freedom in a node are the horizontal and vertical displacements. The

triangular element is derived from the 6-node triangle by imposing kinematic constraints on two

mid-side nodes. The resulting strain-displacement matrix relation for the 4-node triangle is:

 =e Bd

x

y

   
    

=    
       

e U O
u

e O V
v

g V U

 (3.49)

where ex, ey are the normal strain vectors, g is the shear strain vector (engineering type) and O is

the null matrix. The strain and displacement vectors contain nodal components:

      1 2 3 1 2 3 1 2 3, ,
T T T

x x x x y y y y x x xg        = = =e e (3.50)

    1 2 3 4 1 2 3 4,
T T

u u u u v v v v= =u v (3.51)

The strain interpolation function in the element is linear and is uniquely specified by three nodal

values in the corners of the triangular element, while the displacement interpolation function is

quadratic and is specified by three corners and one mid-side nodal displacement. The

components ui, vi are the horizontal and vertical displacements, respectively, in the node i. The

indexes 1, 2 and 3 denote the corner nodes of a sub-triangle and the index 4 is for the mid-side

node, see Fig. 3-13 (a). The strain-displacement sub-matrices in (3.49) are

1 3 2 3 2

1 2 3 3 1

1 2 3

3 2 4
1

3 4
2

.

b b b b b

b b b b b
S

b b b

+ − 
 

= − +
 
  

U

1 3 2 3 2

1 2 3 3 1

1 2 3

3 2 4
1

3 4
2

.

a a a a a

a a a a a
S

a a a

+ − 
 

= − +
 
  

V (3.52)

1 3 2 1 2 3

2 1 3 2 3 1

3 2 1 3 1 2

a x x b y y

a x x b y y

a x x b y y

= − = −

= − = −

= − = −

 3 2 2 32S a b a b= −

where xi, yi are the global Cartesian coordinates of the node i in a sub-triangle, S is the area of the

sub-triangle.

The element stiffness matrix for the 4-node sub-triangle is

uu uv

vu vv

K K

K K

 
=  

 
K (3.53)

The stiffness matrix K has an order 8 and is so partitioned that the upper four rows correspond to

the horizontal displacement components (index u) and the lower four rows correspond to the

vertical displacement components (index v). The integration of the stiffness coefficients is made

exactly, and the resulting sub-matrices are:

 11 13 33()T

uu St d d d = + + + K A H H C

 22 23 33()T

vv St d d d = + + + K C H H A

 12 13 23 33

T

uv St d d d d = + + + K H A C H (3.54)

where t is the thickness of the element, dij are the coefficients of the material stiffness matrix D,

(3.45). The integration in (3.48) is done explicitly by the following matrix multiplication:

 , ,T T T= = =A U QU H U QV C V QV (3.55)

Where the area integration matrix Q is:

2 1 1
1

1 2 1
12

1 1 2

 
 

=
 
  

Q (3.56)

The element stiffness matrix of the 5-node quadrilateral, Fig. 3-13(b), is composed of the two 4-

node sub-triangles by summing the stiffness coefficients of the appropriate nodes. The resulting

matrix of the 5-node quadrilateral K10 has the order 10. The coefficients of the matrix can be

rearranged according to the external (index e) and internal (index i) degrees of freedom:

10

ee ei

ie ii

 
=  

 

K K
K

K K
 (3.57)

The sub-matrices corresponding to two internal degrees of freedom are eliminated by

condensation procedure and the final element stiffness matrix K of the order 8 is obtained:

 1

ee ei ii ie

−= −K K K K K (3.58)

The subdivision of the quadrilateral element into the triangular elements must be done in an

optimal way and it is preformed automatically by the program. The examples of the subdivisions

are illustrated by Fig. 3-14. Due to this method of the subdivision, a concave form of the

quadrilateral element is acceptable. This element form could not be achieved by an isoparametric

element.

For the given displacement field, the strains and stresses are evaluated in the center of the

quadrilateral element. The stresses at this point are obtained from material laws as functions of

strains according to Section 2.1.12. Also, the constitutive law for the element and the matrix D

are calculated from the stresses and strains at the center of the element. These stresses and strains

are written in the output file as a part of the results.

The calculation of resisting nodal forces of the sub-triangle for a current displacement field and a

constitutive law is done by the following equation:

 9 9

Tt=R B Q s (3.59)

where R is the vector of nodal forces (same arrangement and numbering as in the vector d in

(3.49)). The matrix Q9 contains three integration matrices Q in the diagonal. The stress vector s9

(same numbering as the vector e, (3.45), is calculated from the current strains and secant material

matrix, Section 2.1.12.

There are two variations of this element in program ATENA: CCQ10<xxxx> and

CCQ10Sbeta<xxxx>. The main difference between these two elements lies in the way how the

resisting forces are calculated. In case CCQ10<xxxx>, they are computed as described by

Equation (3.59). In the second case, however, the material law is evaluated only at the element

centroid. Based on the current state of damage a secant constitutive matrix is calculated and it is

used to determine the integration point stresses and resulting resisting forces. This element type

is almost identical to the element that was implemented in the program SBETA, i.e. the former

version of this program. Due to this approach, there are some limitations for usage of this

element with respect to some material models. It can be only used with material models that are

able to calculate and exact secant constitutive matrix. This means that only the following

material models can be used with the element CCQ10Sbeta<xxxx>: CCElastIsotropic and

CCSbetaMaterial.

External pre-stressing cables are reinforcing bars, which are not connected with the most of the

concrete body, except of limited number of points, so called deviators, as shown in Fig. 3-15.

This element type is denoted in ATENA as CCExternalCable.

Each cable has two ends provided with anchors. The anchor, where the pre-stressing force is

applied is denoted as the active anchor, the anchor on the other side is the passive anchor. The

points between the anchors are called deviators (or links). After applying pre-stressing the cable

is fixed at anchors. In the deviators, cable can slide while its movements and the forces are

governed by the law of dry friction. The slips of the cable in the deviators (the relative

displacement of the cable ends with respect to the deviators) are denoted as 1 2, ...  They are

introduced as variables to be determined by the analysis.

The forces, F1 and F2 acting on a deviator i are the cable forces at the adjacent cable sections,

Fig. 3-16. Their difference Pi = F1 -F2, (F1> F2) is the loss of the pre-stressing force due to

friction in the deviator i. The relation between these forces according to the law of friction is

expressed as:

 ()2 1 () ()i p

rF F e Q f f r
 

 −
= − (3.60)

The term 1
i p

F e
 −

 reflects dependence of
2F on the angular change

i of the cable direction at

the deviator I, [deg], R is the radius of the deviator, [L], (i.e. the product
iR is the length the

contact between the cable and the deviator.).  is the friction coefficient, [1/(deg L)]. The

constant part of the friction is i f iQ pc R= , where fc is the cohesion (a constant part of the

friction) of the cable per unit length and unit perimeter, [(F/L2)/(L L deg)] = [(F/L4deg)]. p stands

for reinforcement bar perimeter, [L]. If the constant part of friction is neglected, the term Q is

zero. () , ()rf f r  are user defined function that enable change of deviator's properties

depending on value of slip  and deviator position coordinate r (measured from its starting

point), [-]. By default, these functions are set to one.

Introducing

() ()

() ()

i pa

i r

b

i f i r

d e f f r

d pc R f f r

 







 

−
=

=
 (3.61)

we can simplify (3.60) to

 2 1 1 1

a bF F d d= − (3.62)

A section of the cable between the deviators is considered as the uniaxial bar element, Fig. 3-17.

The force F , [F], in the cable element depends on the pre-stressing force P, the displacements of

ends u1, u2 , [L], due to structural deformation and the cable slips 1 2,  in the deviators. The

slips  , [L] are introduced as an additional variable for the external cables. The equilibrium

equation of the cable section is:

 2 1 2 1()F P K u u  = + − + − (3.63)

The element stiffness K = Es A/L, where A, L are the cable’s cross section area , [L2], and length,

[L], respectively, and Es is the actual secant or tangent modulus derived in the same way as in

case of other reinforcement using bilinear or multi-linear law, [F/L2].

The cable forces F1, F2, … are determined by applying the above equations for all cable

deviators, i.e. an iterative solution is executed for displacements u, (outer iterations loop), and on

slips i , (inner iteration loop).

Introduction of pre-stressing is accomplished by applying an initial slip (cable pull-out) at the

anchor end until a prescribed pre-stressing force is reached. This procedure reflects a real

process of pre-stressing and considers the loss of pre-stressing due to friction deviators and

deformation of the structure.

Reinforcement bars with prescribed bonds are an extension of the external cables described in

the previous section. The main difference is that they can also account for a bond between the

bar and the surrounding concrete body. This connection need not be perfect, because the

cohesion strength has a limited value. It is inputted in form of a “bond” cohesion stress.

This type of element is denoted as CCBarWithBond in ATENA. A typical reinforcement bar of

this type is depicted in the figure below. The detail shows undeformed and deformed shape of a

segment of the bar. The original length 0l will change to l due to displacement u of the

surrounding body and bar slips  .

1 2 i m

1 2 i

i+1

i-1 m+1

i-1
c  c



m+1

undeformed truss i

deformed truss i

l

l

o

u

u



i i

i+1

i+1

Normal stress at element i is calculated by:

 1()i i i i i
i

i

u u
E

l

 
 + ++ − −

= (3.64)

Its derivative is compared with the total cohesion stress c , i.e. x
c

x








. If the cohesion stress

between the bar and the surrounding concrete is to be exceeded, the bar will slip to reduce this

stress. Otherwise, the slips  will remain unchanged (or initially equal to zero), which

corresponds to the case of perfect bond.

The total cohesion stress consists of two parts: base cohesion stress and so-called wobble

cohesion stress, i.e. an extra cohesion dependent on axial stress in the bar, (see the term
x wf

below). The wobble cohesion is derived as follows: Prestress losses are calculated by:

, , 1

, , 1 , , 1 , 1

, 1 , 1 , 1 , 1

, 1 ,

, 1 ,

(1)

(1)

()

r

r i r i

r

r i r i r i r i r i

r r

r i r i r i r i

rr
r i r i

rr
r i w r i

e

e

e e

e
r

e f
r





 





 

    

   


   


  

−

−

−

− − −

− −

− − − −

−

−

−

−

 = −

= −  = − −

= − + =


= − = −




= − =



 (3.65)

,r i is stress at the bar at (slip) iteration , [F/L2]. The wobble related cohesion stress is thus

r w rf  − = .

Realizing that the cohesion stress can be constant, or it can be defined as a function of  and r ,

we can calculate the total cohesion stress c as follows:

 ()0() () () () ()
corrc r T c corr t c x wf r f T f c f t f f   = + (3.66)

() , ()rf f r  are the same as those described for external cables near (3.60), 0c is reference

base cohesion stress due to slipping (to be inputted), c is total cohesion stress due to slipping

and wobble cohesion, p is perimeter of the reinforcement bar, r is location at the bar. x is

normal stress in the bar and wf states for wobble coefficient, [((F/L2)/(L L)) (L2/F)] = [(1/L2)].

The remaining parameters are: r is axial normal stress in the bar in direction of local

coordinate axis r (in direction of the bar) and ,p A means perimeter and cross-sectional area of

the bar, (again similar to r in the case of external cable). Function ()
corrc corrf c , ()Tf T and ()tf t ,

[-], expresses, how the cable’s cohesion depends on current temperature, corrosion ratio

/curr origA A and time at a point of the cable. ,curr origA A is current and original (i.e. before

corrosion started) area of cross section of the cable.

Examples of c are given in the section Reinforcement Bond Model, e.g. CEB-FIP 1990 Model

Code, Bond Model by Bigaj etc.

The discretized solution equation for node i, (considering elements 1,i i−), reads (the bars are of

constant strain type):

1 1

1

1

BAR WITH PRESCRIBED BOND:

for () :
2

for () :
2

i

i

L

i i i

R

i i i

R L R L i i c
i i i i c

i

R L R L i i c
i i i i c

i

F A

F A

l l
F F F F p

l l
F F F F p






 




 



− −

−

−

=

=

 + 
 −  +  

 

  + 
 −  − +      

 (3.67)

If this element acts as the external cable, see the previous section, then

 ()()

()()

,

,

EXTERNAL CABLE WITH DEVIATORS:

for () :

1)

for () :

1

R L L R a b

i i i i i i

R L R R a b

i i i i i i

R L R a b

i i i loss i i i

R L R L a b

i i i i i i

R L L a b L

i i i i i i

R L L a b

i i i loss i i i

F F F F d d

F F F F d d

F F F F d d

F F F F d d

F F F d d F

F F F F d d

 = −

−  − +

− −  = − +

 = −

−  − −

− −   − − +

 (3.68)

,i lossF stands for the cable prestress loss at node i. It is calculated as a product of the original

cable prestressing force, (positive), and coefficient ()lossf s . s is longitudinal coordinate of the

node i. Note that
a

id and
b

id are defined earlier in (3.61).

 , () min((), ())R L R L

i loss i i i i prestress lossF sign F F abs F F F f s = − − (3.69)

Assembling (3.67) and (3.68) yields final (in)equations for force difference at node i:

()

()

1 1
,

1 1
,

EXTERNAL CABLE WITH DEVIATORS AND PRESCRIBED BOND:

for () : 1
2 2

for () : 1
2 2

i

i

R L R L R a b ki i i i c
i i i i i loss i i i c

i

R L R L L a b ki i i i c
i i i i i loss i i i c

i

l l l l
F F F F F F d d p p

l l l l
F F F F F F d d p p


 




 



− −

− −

+ + 
 − −   − + + + 



 + + 
 − −   − − + + +  

 

 (3.70)

Note that at this stage we solve for slips  , (while keeping constant cable displacements u). As

the reference cohesion stress is a function of  , i.e.
0 (...)c co  = , in the above equations we

use its Taylor approximation
i

c
c

i


 




+ 



The above set of (in)equations is calculated in iterative manner. Assume we know the forces at

iteration (1)k − , then the forces at iteration k are:

1 1

1 1

1

1

1 1 1

1 1 1

, 1 1 1

, 1 1 11

1

, , 1

, , 1 1

1

1

1

1

()

()

()

()

i i i i

i i i i

i i

i i

i i i

i i i

i i i

R k k ki
i

i

L k k ki
i

i

R k R k k ki
i i

i

L k L k k ki
i i

i

k k k

k k k

k k k

EA
F u u

l

EA
F u u

l

EA
F F

l

EA
F F

l

 

 

 

 

  

  

  

+ +

− −

+

−

− − −

+ + +

− − −

− − −−

−

−

− −

−

−

−

−

= − + −

= − + −

= +  − 

= +  − 

= + 

= + 

= + 

 (3.71)

and

()

1 1

1 1

1 1
,

1

1

1 1 1

1 1

for () :

() ()
2

1
2

2

i i i i i

i i i

R L

i i

R k k L k k ki i i i c
i i i loss

i i i

R a b i i
i i i c

k k ki i i i i i c

i i i i i

F F

EA EA l l
F F F p

l l

l l
F d d p

EA EA EA EA l l
p

l l l l


    






  



+ −

− +

− −

−

−

− − −

− −



+ 
+  −  − −  −  −  −  



+
− + +

      + 
−  + +  + −  +      

     

() ()

()

1 1

1

1
,

1 1
,

1

1

1

1

1
2

for () :

() ()
2

1
2

i

i i i i i

i

k

R L R a a i i
i i i i i c i loss

R L

i i

R k k L k k ki i i i c
i i i loss

i i i

L a b i i
i i i c

ki i

i

l l
F F F d d p F

F F

EA EA l l
F F F p

l l

l l
F d d p

EA EA

l






    







+ −

−

−

− −

−

−

−

−



+ 
− − − + + −  

 



+ 
+  −  − −  −  −  +  



+ 
− − + + 

 

 
−  + 

 

() ()

1

1 1

1

1
,

2

1
2

i i i

k k ki i i i c

i i i i

R L L a b i i
i i i i i c i loss

EA EA l l
p

l l l

l l
F F F d d p F


  





+

− −

−

−

    + 
+  + −  +     

   

+ 
− + − + + −  

 

 (3.72)

If the above equation is written for all nodes on the bar, we obtain a set of inequalities. These

have to be solved in iterative manner (within each iteration of the main solution loop).

Atena also support so called CCBarWithMemoryBond 2D and 3D elements. They differ from

their original formulation, (i.e. elements CCBarWithBond), in that they have different function

()f  for "loading“ and , ()unloadf  for "unloading" regime. This means min max(,)   in the

former and min max(,)   in the latter case.

To obtain more realistic shape, the resulting cohesion stresses are prior their output smoothed.

The smoothing operation for node i is expressed as follows:

1 1

1

1 1

1

()

i i i i
right

i i

i i i i
left

i i

right left

c

i

l l

l l

l l

l l

A

pl

 


 


 


+ +

+

− −

−

+
=

+

+
=

+

−
=

 (3.73)

The equation (3.64) together with (3.67) completes the element description. The element can be

used to realistically model cohesion between reinforcement bar and concrete. Such a model is

needed for analysis of pullout tests etc. Although the adopted solution is simple, it provides

reasonable results accuracy at low computation cost. A more elaborate model of cohesion

between reinforcement bar and surrounding concrete can be achieved by using special interface

elements that is described in the next section.

The interface elements are used to model a contact between two surfaces. Currently, the

following element types are available: CCIsoCCIsoGap<xxxx> and CCIsoGap<xxxxxx>,

CCIsoGap<xxxxxxxx> for 2D and 3D analysis, respectively. These elements use linear

approximation of geometry. For the case of nonlinear geometry, use element type

CCIsoGap<xxxxxx> for 2D and CCIsoGap<xxxxxxxxxxxx> or

CCIsoGap<xxxxxxxxxxxxxxxx> for 3D. The string in < > describes present element nodes, (see

Atena Input File Format document for more information). The elements are derived from the

corresponding isoparametric elements (described in sections 3.3 and 3.4), i.e. they use the same

geometry and nodal ids etc. Geometry of the supported gap elements is depicted in Fig. 3-21.

3

4

1

2 r,u(r)
v

3

4

1

2

v

5

6

1
2

3 4
5

6

u(r)

r,u(r,s)

r,

s,v(r,s)

w

1
2

3 4

5

6

r,u(r,s)

s,v(r,s)

w

7

8
9

11
12

10

1
2

3

4
5

6r,u(r,s)

s,v(r,s)

w

7

8

1
2

3
4

5
6r,u(r,s)

s,v(r,s)

w

7

8

9

10
11

12

13

14

15

16

CCIsoGap<xxxx> CCIsoGap<xxxxx_x>

CCIsoGap<xxxxxx>

CCIsoGap<xxxxxxxx>
CCIsoGap<xxxxxxxxxxxxxxxx>

CCIsoGap<xxxxxxxxxxxx>

2D

3D

Linear geometry Nonlinear geometry

The interface is defined by a pair of lines, (or surfaces in 3D) each located on the opposite side

of interface. In the original (i.e. undeformed) geometry, the interface lines/surfaces can share the

same position, or they can be separated by a small distance. In this case we speak about the

interface with nonzero thickness.

In the following, the interface behavior is explained on a simple 2-dimensional case, see section

2.6 for a full description of the interface material.

The interface element has two states:

• Open state: There is no interaction of the contact sides.

• Closed state: There is full interaction of the contact sides. In addition, friction sliding of

the interface is possible in case of interface element with a friction model.

Penalty method is employed to model the above behavior of the interface. For this purpose, we

define a constitutive matrix of the interface in the form:

0

0

tt

nn

F K u
F u

F K v





     
= = =    

    
D (3.74)

in which ,u v  are the relative displacements of the interface sides (sliding and opening

displacements of the interface) in the local coordinate system ,r s and ,tt nnK K are the shear and

normal stiffness, respectively. This coefficient can be regarded as stiffness of one material layer

(real, or fictious) having a finite thickness. The layer is only a numerical tool to handle the gap

opening and closing. F , F are forces at the interface, (again at the local coordinate system).

The actual derivation of gap elements is now demonstrated for the case of linear 2D gap element

CCIsoGap<xxxx>, see Fig. 3-21. The other elements are constructed in a similar way.

The element has two degrees of freedom defined in the local coordinate system, which is aligned

with the gap direction. They are relative displacements ,v u  and are defined as follows:

1 2

1 1,4 2 2,3

1 1,4 2 2,3

1

1

2

1 2 2 1 2

1 2 2 1 3

3

4

4

1 1
(1), (1)

2 2

0 0 0 0

0 0 0 0

h r h r

h u h uu
u

h v h vv

u

v

u

h h h h v
u u

h h h h u

v

u

v

= + = −

 +    
 = =     +    

 
 
 
 
 

− −    = =   − − 
 
 
 
 
  

B

 (3.75)

The rest of the element derivation is the same as in case of any other elements, i.e. the stiffness

matrix T dV= K Β DB , vector of internal forces TQ FdV= Β etc. A numerical integration in

two Gauss points is used to integrate the interface element stiffness matrix. The matrix K and the

vector Q are in local coordinate system and therefore before they are assembled in the problem

governing equations, they must be transformer in global coordinates.

The stiffness coefficients depend on the gap state. The interface is considered open, if the normal

force F >Rti (Rti is the interface tensile strength force) and the corresponding constitutive law is

(stress free interface):

0

0

F

F





   
=   

  
 (3.76)

The stiffness coefficients are set to small, but nonzero values ,op op

tt nnK K .

The interface element is considered closed if F  Rti. The stiffness coefficients are set to large

values ,cl cl

tt nnK K . It should be noted that the stiffness coefficients are defined only for the purpose

of the numerical iterative solution. (Hint: The values of coefficients in the closed state (the large

values) are based on thickness comparable to the size of neighbor quadrilateral elements. The

minimum values in the open state can be about 1000 times smaller.)

The interface thickness in the out-of plane direction is normally provided as an input parameter.

In the case of axi-symmetric analysis it is however calculated using the formula:

 2t x= (3.77)

where x is the distance from the axis of symmetry.

There are two special options for processing the gap elements:

Initial gap opening

It is possible to "open" gap at a particular load step, typically the first step of the analysis, i.e. we

can introduce to the gaps something like initial element strains in case of ordinary finite

elements. This is achieved by LOAD INITIAL GAP ... INIT_STEP_ID step_id command. Upon

that, during calculation of the (gap) element at the step step_id an artificial opening of the

interface is introduced. Its value is the distance between upper and lower element surfaces/lines

(with reference to undeformed structural shape).

The GAP element load is typically used as follows: we have a structure with a base and upper

block. The upper block falls towards the base block that is typically fixed. The structure is solved

by introducing a layer of gap elements between the base and upper blocks and applying the GAP

element load (for these gaps elements) in the 1st step. As a result, in the first steps the gaps will

open to the distance between the blocks. It involves some tensional forces, but as the interface

material usually sustains only compression forces, they can be neglected. In next steps the upper

block gradually is falling to the base block until it hits it. At this moment interface gaps get fully

closed, they change their regime form tension to compression and the upper block gets fully

supported by the base block.

Moving gaps3

Suppose we have a structure has a base block and an upper block sitting on the base block. The

base block is fixed, the upper block is dragged on the upper surface of the base block. The blocks

are not mutually interconnected, only some friction and cohesion forces exist between them.

Such problems can be modelled by the RESET_DISPLS n flag for the CC2DInterface /

CC3DInterface. If this flag is input, then the upper and bottom surface/lines for all corresponding

elements are realigned at the end of each step as shown for 2D elements in the following picture.

The 3D gaps element is realigned in the same way.

Of course, the boundary surface/lines projection of the gap interface (and thus its "moving" can

be used in more complex situation, but the essence of the described technique remains the same.

The layer of interface elements is typically connected to the bottom/ upper block of structure by

MASTER SLAVE NODAL LISTS boundary conditions, where we must not forget to use the

flag PROCESS_FLAG USE_CURRENT_COORDS. It will assure that after realigning the

interface gets properly connected to the rest of the (deformed) structure.

3 Available starting from ATENA version 4.3.1.

Note that the option of the gap's initial opening and the reset displacements flag can be

combined. Both these special processing options are possible, because the ATENA software uses

incremental approach to solve the structure. Thus, changing shape of the gap (at the end of the

steps) will not harm governing equilibrium equations.

In the following a circumferential truss element for axisymmetric analysis are described. The

elements call CCCircumferentialTruss and CCCircumferentialTruss2 and they are aimed mainly

for modeling structural circumferential reinforcement. For radial reinforcement refer to

CCIsoTruss<xx> and CCIsoTruss<xxx> elements.

The CCCircumferentialTruss has one node only, whereas the CCCircumferentialTruss2 has

nodes two. They behave much the same, the difference being only in calculation of their “cross-

sectional area”. In case of the CCCircumferentialTruss element the area is entered directly from

input data. The CCCircumferentialTruss2 element calculate the area as its thickness (defined in

its geometry data) multiplied by its length. Unlike isoparametric elements thses elements are

derived and computed analytically.

Geometry, interpolation functions and integration points of the elements are given in

Fig. 3-23.

1

CCCircumferentialTruss

y

x

1

CCCircumferentialTruss2

y

x

2

In the following structural vectors and matrices for the CCIsoTruss element are derived.

Development of the CCIsoTruss2 is much the same. In fact, it is CCIsoTruss acting at the centre-

point of the CCIsoTruss2 element with its cross-sectional area calculated as explained above.

The element vectors and matrices for Total Lagrangian formulation (TL), configuration at time t

and iteration (i) are as follows. Note that they are equally applicable for Updated Lagrangian

formulation (UL) upon applying changes related to the element reference co-ordinate system

(undeformed vs. deformed element axis.).

The truss element center has at reference time t and (1)it t −+  co-ordinates 1 1[,]t t tX x x= and
(1) (1) (1)

1 1[,]
i i it t t t t tX x x
− − −+ + += , respectively. The element length (at respective time) is its length is

12t tl x= and (1) 1 1(1)

1 12 ()t t i t t t il x u+ − −= + .

Increment of Green Lagrange strain () () (1)

11 11 11

i t t i t t t t i

t t t  + + + −= − (at time t t+  , iteration ()i with

to configuration at time t) is calculated:

() ()

()

2 2
() (1)

()

11 2

1

2

t t i t t i

i

t
t

l l

l


+ + − −
 =
 
 

 (3.78)

where truss length () 1 1(1) 1()

1 1 12 ()t t i t t t i i

tl x u u+ −= + + . Note that 1()

1

i

t u is co-ordinate increment
() (1)

1 1()
i it t t tx x

−+ +− . Substituting expressions for element length into (3.78) yields:

() ()()
()

()

2 2
2 1 1(1) 1() 1 1(1)

1 1 1 1 1
()

11 2
1

1

2
1() 1(1) 1() 1()

1 1 1 1

21 11
1 11

4

1

2

t t i i t t i

t
i

t
t

i t i i i

t t t

t tt

x u u x u

x

u u u u

x xx




− −

−

+ + − +
= =

 
+ +  

 

 (3.79)

Separating 1()

1

i

t u from (3.79) and rearranging in matrix form we obtain:

 0 1

1

1t t

t L t x

+ =B (3.80)

()

1(1)
(1) 1
1 2

1

1

t i
t t i

t L
t

u

x

−
+ − =B (3.81)

 and

()
(1)

2
1

1

1t t n

t NL
t x

+ − =B (3.82)

The 2nd Piola-Kirchhoff stress matrix and tensor are:

(1) (1) (1)

11[]t t i t t i t t i

t t tS S S+ − + − + −= = (3.83)

The formulation is completed by relationship for element deformation gradient ()

1,1

t t i

t X+ , which

yields:

()

2
1 1()

1 1() ()

1,1 11 1

1

1

t t i

t t i i

t t t

x u
X e

x

+
+

= + = (3.84)

where engineering strain ()

11

i

t e is calculated by

() ()

()

()
2 2 2

2 1 1() 2 1 1 1() 1

() 1 1 1 1 1 1
()

11 12
2 1 1

1

4 4

4

t t i t t t i t

t t i
i

t t t
t

x u x x u x
l

e
l x

x

 



+

   
+ − + −   

   = = = (3.85)

This section describes Ahmad shell element implemented in ATENA, see Fig. 3-27. It can be

used to model thin as well as thick shell or plate structures. It accounts for both plane and

bending structural stiffness. The element features quadratic geometry and displacement

approximation and therefore, the element’s shape can be non-planar. It is possible to account for

structural curvatures. Big advantage of this element is that it is seamlessly connectible to true 3D

ATENA elements.

Three modifications of this element are supported, and these are characterized by Lagrangian,

Serendipity and Heterosis variant of geometry and displacement field approximation. To avoid

or minimize membrane and shear locking of shell element it is further possible to use full

integration scheme, as well as reduced and/or selective integration. The problems concerned with

combination of displacement approximation and integration scheme with respect to locking

phenomena are discussed.

The element is derived in a way similar as the other finite elements, which are described in this

manual. Hence, in the present description will concentrate mainly on features that are specific for

this element. Following Total Lagrangian formulation of the problem, the principle of virtual

displacement is used to assemble incremental form of governing equations of structure.

The present Ahmad element belongs to group of shell element formulation that is based on 3D

elements’ concept. Nevertheless, it uses some assumptions and restrictions, so that the originally

3D element is transformed into 2D space only. It saves computational time and it also avoids

some formulation difficulties pertaining to 3D elements.

The element’s in-plane integration is carried out in usual way by Gauss integration scheme,

whilst in the 3rd dimension (i.e. perpendicular to mid surface of element) the integration can be

done in closed (analytical) form. However, in order to enable accounting for nonlinearity of

constitutive equations, the so-called layer concept is used instead. Hence, in the 3rd dimension

simple quadrilateral integration is employed.

The present degenerate continuum element was originally proposed by Ahmad et al. (Ahmad,

Irons et al. 1970). Following general shell element theory concept, every node of element has

five degree of freedom, e.g. three displacements and two rotations in planes normal to mid-

surface of element. In order to facilitate a simple connection of this element with other true 3D

elements, the (original) five degrees of freedom are transformed into x,y,z displacement of a top

node and x,y displacement of a bottom node degrees of freedom. The two nodes are located on

the normal to mid-surface passing thru the original mid-surface element’s node, see Fig. 3-28.

The essential point in the element’s derivation is that displacements and rotations fields are

approximated "independently", (see e.g. (Jendele 1981), where similar approach is used for

plates). This means that they are handled separately. Unlike in true Mindlin theory our

formulation matches geometric equations automatically. However, a special technique is used to

improve the element’s shear behavior (Hinton and Owen 1984).

The first formulation of this element proposed by Ahmad was linear but since that time many

improvements have been achieved. The most important is the application of reduced or selective

integration scheme that reduces or totally removes locking of the element. Also, many authors

extended the original formulation to geometrically and later also materially nonlinear analysis.

One such an advanced form of the element is the formulation implemented in ATENA.

On input, the Ahmad element uses the same geometry as 20 nodes isoparametric brick element,

i.e. CCIsoBrick<xxxxxxxxxxxxxxxxxxxx>, see Fig. 3-27. This is needed, in order to be able to

use the same pre- and postprocessors’ support for the shell and native 3D brick (i.e. hexahedron)

elements. After the 1st step of the analysis, the input geometry will automatically change to the

external geometry from Fig. 3-27. As nodes 17 and 18 contain only so-called bubble function,

the element is post-processed in the same way is it would be the element

CCIsoBrick<xxxxxxxxxxxxxxxx>. Internally, all element’s vectors and matrices are derived

based on the internal geometry as depicted also in Fig. 3-27.

With shell elements, the best connection at edges is to cut both at 45 degrees, or a different

corresponding angle if the thicknesses are not the same, or if connected at other than right angle,

see Fig. 3-24 (a). Another option is to use a volume brick element at the corner, which is the only

feasible way when more than two shells are connected, see Fig. 3-24 (b). The nodes on the

surface connected to the volume element have to be listed in the INTERFACE subcommand in

the shell geometry definition for correct behavior. Connecting like in Fig. 3-25 is not

recommended, as the master-slave relations induced by the fixed thickness of the shell may

cause numerical problems.

The essential point in the element’s derivation is to understand coordinate systems that are used

within the derivation. These are as follows. Note that all vectors indicating coordinate systems’

axes are normalized. Thus, any directional cosines are simply computed as scalar products that

need not be divided by the vectors’ norm.

Global coordinate system.

It is used to define the whole FE model. Global coordinates are denoted by 1 2 3, ,t t tx x x , where

the index t referrers to time. Note that we are using Modified Lagrangian formulation, in which

model configuration is updated after each time step, while within one step (for iterating) the

configuration from the step beginning is employed. Thus, 0 0 0

1 2 3, ,x x x are a point global

coordinates prior any load has been applied.

Nodal coordinate system

This coordinate system is defined at each point of element mid-plane surface, i.e. mid-nodes 1-9.

At a node k it is specified by vectors 1 2 3, ,
t t tk k kV V V , see Fig. 3-26.

The vectors
1 2 3, ,

t t tk k kV V V are defined as follows: Firstly, two auxiliary vectors
1 3,

t t

V V are

calculated. Vector
3

t

V at a point is defined as a line joining bottom and top coordinates at the

node k (prior any deformations, i.e. at reference configuration). The second vector
1

t

V is normal

to
3

t

V and is parallel to plane of global
0

1

GX and
0

3

GX . Hence:

3 3 3 31 2 3

1 1 1 1 3 31 2 3 3 1

, ,

, , ,0,

t t t t

t t t t t t

V V V V

V V V V V V

 =
 

   = = −
   

 (3.86)

If
3

t

V is parallel to
0

2

GX (i.e. 3 31 3
0

t t
V V= =),

1

t

V is defined by

1 3 2

,0,0
t t
V V = −

 
 (3.87)

After that, the coordinate system 1 2 3, ,
t t tk k kV V V itself is defined. The vector 3

t kV is constructed in

the same way as was the vector 3

t

V , however, current, i.e. deformed configuration is used. The

remaining two vectors are defined as vector product:

 2 3 1

tt tk kV V V=  (3.88)

 1 2 3

t t tk k t kV V V=  (3.89)

The vectors
1 2 3, ,

t t tk k kV V V define local nodal shell coordinate system in which the shell rotations

are specified. As already mention, the original formulation of the element has 5 DOFs per nodes.

These are 3 displacements, expressed in the global coordinate systems and two rotations ,  .

They are rotations along the vectors
1 2,

t tk kV V . It comes from definition that 3

t
V need not be

normal to the element surface. It must only connect the top and bottom nodes of the shell.

Sometimes, it is advantageous to modify the nodal coordinate system so that
3

t kV remains

unchanged but
1

t kV and
2

t kV are rotated (along
3

t kV) to a certain direction. Note however, that

mutual orthogonality of
1 2 3, ,

t t tk k kV V V must not be damaged.

Local coordinate system

Local coordinates are denoted by 1 2 3, ,t L t L t Lx x x . The system refers to coordinate axes

1 2 3, ,
t t tL L LX X X . It is used mainly at sampling (integration) points to calculate strains and

stresses. The vector axes
1 2 3, ,

t t tL L LX X X are defined by:

1 1

2 2
3

3 3

t t

t t
t L

t t

x x

r s

x x
X

r s

x x

r s

    
   

    
    

=    
 

   
    

       

 (3.90)

2 3 1

1 2 3

t t tL L k

t t tL L L

X X V

X X X

= 

=  (3.91)

As the nodal coordinate system 1 2 3, ,
t t tk k kV V V can rotate along 3

t kV , the local coordinate system

would
1 2 3, ,

t t tL L LX X X rotate simultaneously along
3

t LX . This definition allows for user defined

shell local coordinate system that is common for all shell elements, irrespective of their

incidences. Note that unlike 3

t kV the vector 3

t LX is always normal to the element mid-plane

surface.

Curvilinear coordinate system

This system is used to calculate derivatives and integration in element integration points. Its

coordinates are ,r s for in-plane direction and t in direction of element thickness, see Fig. 3-26.

The in-plane displacements are approximated by Lagrange, Hetherosis or Serendipity

approximation similar 2D isoparametric elements. For the 3rd direction, i.e. through the depth of

the element. linear approximation is used within the frame of the shell layer concept.

4

1

2

3

8

5

6

7

12 9

1011

20

17

18
19

16
13

14

15

r

s

1

r

s

t

t

3
2

4
5

6

7
8

9

4

1

2

3

8

5

6

7

12 9

1011

17

18

16
13

14

15

r

s

t

Input geometry

External geometry

Internal geometry

The coordinates of the top and bottom element surface are used to define the element geometry:

, ,

1 1 1

, ,

2 2 2

1 , ,

3 3 3

1 1

2 2

t t k top t k bot

N
t t t k top t k bot

k

kt t k top t k bot

x x x
t t

x x h x x

x x x
=

      
 + −     

= = +      
      

      

 (3.92)

where N=8 is number of nodes per element, (geometry is always interpolated by 8-nodes

Serendipity interpolation, irrespective of displacement interpolation), h(r,s) is k-th interpolation

function, r,s,t are isoparametric coordinates (see Fig. 3-27),

,

1

,

2

,

3

t k top

t k top

t k top

x

x

x

 
 
 
 
 

and

,

1

,

2

,

3

t k bot

t k bot

t k bot

x

x

x

 
 
 
 
 

 are vector of

top and bottom coordinates of point k, see Fig. 3-29.

node k

, , , ,

1 2 3[, ,]
t k top t k top t k top t k topX x x x=

, , , ,

1 2 3
[, ,]

t k bot t k bot t k bot t k botX x x x=

, , , ,

1 2 3[, ,]
t k mid t k mid t k mid t k midX x x x=

Using the above the equation (3.92) can be rewritten in the following form:

  

, 3 1
1 1

,

2 2 3 2
1 ,

3 3
3 3

2

t k
t t k mid

N
tt t t k mid k

k k
kt t k mid

t k

V
x x

t
x x h x V thick

x x
V

=

  
     
     = = +     
            

 (3.93)

where  
k

thick is element thickness in node k (i.e. distance between top and bottom points) and

1 1 1

2 2 2

3 3 3

1

2

t mid t top t bot

t mid t top t bot

t mid t top t bot

k k k

x x x

x x x

x x x

      
      

= +      
      

      

 (3.94)

are coordinates of mid surface.

The general concept of displacement approximation is very similar, (although not identical) to

geometry approximation. As already mentioned, the original version of Ahmad element uses 5

degrees of freedom per node, see Fig. 3-28. These are
1 2 3, , , ,

T
t mid t mid t mid t tu u u     , where

1 2 3, ,t mid t mid t midu u u are displacements of the element’s node at the mid-surface and ,t t  are

rotations with respect to vectors 1
k

v and 2
k

v respectively. These degrees of freedoms (DOFs)

are used throughout the whole element’s development. However, in order to improve

compatibility of the present shell element with other 3D elements implemented in ATENA,

externally the element uses
1 2 3 1 2, , , ,

T
t top t top t top t bot t botu u u u u   DOFs, i.e. displacements at the top and

bottom of the element. The 6th displacement, i.e. 3

botu is eliminated due to application of shell

theory that assumes 33 0 = .

Approximation of the original three "displacement" and two rotation degrees of freedom is

independent. Nevertheless, the curvatures used in governing element equations use all of them in

the sense dictated by geometric equations. This approach enables to satisfy not only equilibrium

equations for membrane stresses and in-plane shear (in mid-surface) as it is the case of popular

Kirchhoff hypothesis, but also to satisfy equilibrium condition for transversal shears (normal to

mid-surface).

Note that in the following derivation of the element we will deal with the original set of

element’s DOFs , see (10). Every point thus has five degree of freedom,

1 2 3, , , ,
T

t mid t mid t mid t tu u u     . Displacement vector is calculated by:

  

, 2 11 1
1 1

,

2 2 2 12 2
1 ,

3 3
2 13 3

2

t tk k
t k t k mid

t kN
t tt k t t k mid k k

k t kk
kt k t k mid

t tk k

V V
u u

t
u u h u thick V V

u u
V V



=

  −
     

      = = + −       
          −    

 (3.95)

The original displacement vector at point k has the form 1 2 3, , , ,
T

t mid t mid t mid t tu u u     . Unlike in the

case of geometry approximation, were N=8, displacements approximation accounts also for

displacement in the element mid-point, i.e. N=9. The ninth function h is so called bubble

function.

node k

, , , ,

1 2 3[, ,]
k mid t k mid t k mid t k midu u u u=

1

t kV

2

t kV

3

t kV

t k


t k

The 2nd Piolla Kirchhoff tensor and Green Lagrange strain tensor is used. They are calculated

and printed in the local coordinate system '1t x , '2t x and '3t x .

Green - Lagrange tensor.

The general definition for Green-Lagrange strain tensor has the form (see eq. (1.8)):

 ()0 0 , 0 , 0 , 0 ,

1

2

t t t t t

ij i j j i k i k ju u u u = + + (3.96)

Using the above equation and applying the Von-Karman assumption, Eqn. (3.96) can be written

as:

1
2

1 3

12

0 11 2
2

3
0 22

1 2 2
0 12

2 1
3 30 13

1 3
2 1

0 23

3 1

2 3

3 2

1

2

1

2
2

2

2

0

0

t

t t

tt

t
t

t
t

t t t
t

t t
t tt

t t
t t

t

t t

t t

t t

u

x u

xu

x u

u u x

x x
u u

u u x x
x x

u u

x x











 
     

 
    
  

    
          += +
     

   +
      +    

 
   +   

0 0

t t

L NL 


 
 
 
 
 

= + 
 
 
 
 
 
 

 (3.97)

The Von-Karman assumptions simplify the calculation of strain by accepting that:

 All strains are relatively small,

 The deflection normal to mid surface of shell is of order of thickness,

 The both curvatures are much smaller than 1.,

 The in-plane displacements are much smaller than transverse displacement and thus their

derivatives in 2nd order terms can be neglected.

0

t

L and 0

t

NL represents linear and nonlinear part of strain vector, respectively. More

information about their calculation is beyond the scope of this publication. It is available e.g. in

(Jendele 1992).

2nd Piolla Kirchhoff tensor.

Energetically conjugated with Green - Lagrange tensor is 2nd Piolla Kirchhoff tensor, and this

tensor is used by the present shell element. Remind that we account for all stresses with

exclusion of normal stress which is perpendicular to shell mid surface (as it is usual practice in

shell analysis). This is the reason, why we introduced local coordinate system and all expression

are derived with respect to it.

Obviously, the local coordinate system varies depending on element deformation and thus it is

necessary to re-compute (each iteration) the transformation matrix T (that relates local and

global coordinate systems).

To compute internal forces, we will use 2nd Piolla Kirchhoff tensor in vector form (in a node k):

0 0 11 0 22 0 12 0 13 0 23

t t t t t t

k k
S S S S S S   =    (3.98)

Note that that it is possible to abbreviate full 3 by 3 element tensor to the above vector, because

of adopting Von Karmann simplifying assumption.

 Until now no information about interpolation function h and number of integration points were

given. The present shell element analysis uses Serendipity interpolation functions. Note that

bubble function 9h (used in displacement approximation only) represents relative departure of

approximated function with respect to the function value calculated by previous eight

approximation functions.

The interpolation functions ih read:

1

2

2

3

2

4

5

2

6

7

2

8

9

1
(,) (1-)(1-)(- - -1)

4

1
(,) (1-)(1-)

2

1
(,) (1)(1-)(- -1)

4

1
(,) (1)(1-)

2

1
(,) (1)(1)(-1)

4

1
(,) (1)(1-)

2

1
(,) (1)(1-)(- -1)

4

1
(,) (1-)(1-)

2

(

h r s r s r s

h r s s r

h r s r s r s

h r s r s

h r s r s r s

h r s s r

h r s r s r s

h r s r s

h

=

=

= +

= +

= + + +

= +

= +

=

2 21
,) (1-)(1-)

2
r s r s= (3.99)

 The actual values in center point can be calculated by:

8

9 9

1

(0, 0)i i

i

a a h r s a
=

= = = +  (3.100)

where ih are values of interpolation function at point (0,0), ia are corresponding node values,

9a is departure in the center (i.e. computed value corresponding to degree of freedom at center)

and 9a is total value in center.

Depending on combination how many nodes and integration points are used, we distinguish the

Serendipity, Lagrange and Heterosis degenerated element variants, see Fig. 3-31.

Serendipity element.

This element was used in the original Ahmad work. It comprises eight nodal points (center point

corresponding to bubble function is omitted).

Gauss integration scheme is used for integration. It can be integrated by full, reduced, or

selective integration procedure. Using full integration, i.e. at three by three sample points,

element exhibits shear locking for thin and even moderately thick element. If reduced integration

is used. the problem of locking is significantly improved without creating spurious energy modes

on structure level. However, in case of thin element there are two non communicable spurious

energy mode on element level.

It should be noted that there were reported some difficulties if some unfavorable constraints are

applied. Nevertheless, the element is popular. If reduced integration is used the provided results

are relatively good.

Nine node Lagrangian element.

The nine-point Lagrangian element is still considered to be the best variant of the degenerated

element. This is especially because of its versatility. For full integration scheme there is no

problem with membrane and shear locking in very thin plate and shell application. If element is

moderately thick, shear locking can be improved by reduced integration scheme. However, in

that case the element exhibits rank deficiency.

Heterosis element.

The Heterosis element is very similar to Lagrangian element. The difference is that it assumes

first three DOFs at the element centre to be constrained, (i.e. only the rotations are retained)

The element exhibits better behavior compared with previous quadratic elements and especially

in combination with selective integration scheme no locking is produced. With reduced

integration the element provides results better than Lagrangian element. In that case there are

some spurious mechanisms, but for practical solution there are not probable.

Problem of membrane and shear locking in linear analysis are summarized in Fig. 3-32. In the

case of nonlinearity, the situation is much more complicated and depends primarily on the

material state at the sampling points. For more information refer to (Jendele, Chan et al. 1992)

Element’s integration

In previous paragraphs we mentioned many time full, reduced, and selective integration scheme.

The sense of these procedures is best to demonstrate in Fig. 3-33.

The steps during selective integration of shear can been explained on example of integration

arbitrary function (,)f r s :

1/ First we calculate the value of f at sampling points that corresponds to two-by-two integration

rule, i.e

 (-0.5773,-0.5773), (-0.5773,0.5773), (0.5773,-0.5773), (0.5773,0.5773)f f f f

2/ Using bilinear approximation we calculate the values of f at points that correspond to three-

by-three integration rule. There are two possibility to that.

The first one is based on original approximation area and the main idea is that we calculate the

value of function f at "corners" of isoparametric element (i.e. 1., 1.r s=  = ):

4
'

1

4
'

1

4
'

1

4
'

1

(0.5773, 0.5773) (0.5773, 0.5773)

(0.5773,0.5773) (0.5773,0.5773)

(0.5773, 0.5773) (0.5773, 0.5773)

(0.5773,0.5773) (0.5773,0.5773)

i i

k

i i

k

i i

k

i i

k

f f h

f f h

f f h

f f h

=

=

=

=

− − = − −

− = −

− = −

=









 (3.101)

where
if are element nodal values of function f and '

ih are interpolation functions corresponding

to two-by-two interpolation and a node i.

The set of equation (3.101) can be solved for if . Having these value, we can bi-linearly

approximate function f and compute function value at any point, i.e. also at sampling points

corresponding to three by three integration rule.

The second and more elegant solution is direct approximation. The interpolation function ih are

presented for a square area of the size 2x2 units, but they can be extended to a rectangular of any

size, as shown in Fig. 3-34.

Since the functional values for the 2x2 sampling points in the corner of the square

2 0.5775r sl l x= = are available, the approximation functions '

ih can be used directly to calculate

the values of the function f at sampling points corresponding to the 3x3 integration rule.

For integration in direction perpendicular to r - s plane, that is in t coordinate it is also possible to

use Gauss integration, but due to material nonlinearity there is more advantages to use direct

rectangular integration. This concept is called the Layered model, see Fig. 3-35.

The main idea of it is to divide the element along the thickness to layers whereby in particular

layer the values of strain and stresses are expected to be constant and equal to their value at

weight point of layer. Hence the integration in t direction is computed as a sum of integrated

expressions multiplicated by adequate area of layer for all layers from bottom to top of element.

It was found that to achieve good accuracy it is necessary to about six to ten layers.

This concept. i.e. layer model is advantageous because it enables us to create for example

reinforcing layers in element and also we can use finer division near top and bottom of shell,

where higher stress level can be expected.

The ATENA implementation of the Ahmad shell element supports embedding of smeared

reinforcement layers. In this concept, reinforcement bars with the same coordinate z, (see Fig.

3-35), material and the same directions are replaced by a layer of smeared reinforcement. Such a

layer is placed at the same elevation z as the original reinforcement bars and its thickness is

calculated so that sum of cross-sectional area of the bars and the replacing smeared

reinforcement layer is the same. The layer is usually superimposed over existing concrete layers

and it employs CCSmeardReinforcement material law, which makes possible to account for the

original reinforcement bars’ direction.

Because each layer of the Ahmad shell can use a distinct material model, concrete and smeared

reinforcement layers are treated in similar way. (Constitutive equations, i.e. material law are

placed outside of ATENA finite elements’ code). Description of syntax of related input

commands is beyond scope of this document, but it can be found in the “ATENA Input File

Format” document.

Note that the support for smeared reinforcement does not exclude use of structural discrete

reinforcement. Both the type of reinforcement can be combined in one model to achieve the best

likeness of the the real structure with its numerical model.

This section describes in detail the whole procedure of transforming Ahmad elements from its

original formulation to the new one used by ATENA SW. Just to remind you: The original

formulation (described in the previous sections) differs from the new one in selection of element

degree of freedom, see Section 3.12.3.

Let us start to work in nodal coordinate system first. The following equation states

transformation rules for transforming three global displacements and two nodal rotations at the

element mid-plane, (i.e. the original DOFs at a node k), to 6 displacements at nodal coordinate

system, three at the top and three at the bottom surface of the shell. Note the right superscripts

“N” that indicate nodal coordinate system.

1 1 11 2 3

, ,

1
2 2 21 2 3, ,

2

, ,
3 3 31 2 33

, ,

1
1 1 1, , 1 2 3

2

, ,

3
2 2 21 2 3

3 31

1
0

2

1
0

2

0 0

1
0

2

1
0

2

t t tk k k

t k N top t t tk k k

t k N top

t t tk k k
t k N top

t k N bot
t t tk k k

t k N bot

t k N bot t t tk k k

t tk

V V V thick

u V V V thick

u

V V Vu

u
V V V thick

u

u V V V thick

V V

  −
 
 
 

= 
  −
 
 
  

, ,

1 1

, ,

2 2

, ,

3 3

32 3
0 0

t k mid t k mid

t k mid t k mid

t k mid t k mid

t k t k

t k t k

tk k

u u

u u

u u

V

 

 

 
 
 
 

    
    
    
   = 
    
    
        

 
 
 
  

1T (3.102)

Transformation from nodal to global coordinated system

The next step in the element’s derivation is to write transformation of the left-hand side vector of

(3.102) from nodal to global coordinate system. It reads:

1 2 31 1 1
,

1
1 2 3, 2 2 2

2

,
1 2 33 3 33

,

1
1 2 31 1 1,

2

, 1 2 32 2 2
3

1 2 33 3 3

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

t t tk k k

t k top
t t tk k k

t k top

t tk k k
t k top

t k bot t t tk k k

t k bot

t t tk k k
t k bot

t tk k k

V V V

u
V V V

u

V V Vu

u V V V

u
V V V

u

V V V

 
 

   
   
   
   

=   
   
   
   
    


 

, , , ,

1 1

, , , ,

2 2

, , , ,

3 3

, , , ,

1 1

, , , ,

2 2

, , , ,

3 3

t k N top t k N top

t k N top t k N top

t k N top t k N top

t k N bot t k N bot

t k N bot t k N bot

t k N bot t k N bot

u u

u u

u u

u u

u u

u u

   
   
   
   

=   
   
   
   
      



2T (3.103)

Complete transformation of the original DOFs to the new element formulation DOFs

The final transformation from the original to the new element DOFs at a node k is obtain by

substituting (3.102) into (3.103). Thus, we can write

,

1 , ,

1 1,

2 , ,

2 2,

3 , ,

3 3,

1

,

2

,

3

t k top

t k mid t k mid

t k top

t k mid t k mid

t k top

t k mid t k mid

t k bot

t k t k

t k bot

t k t k

t k bot

u
u u

u
u u

u
u u

u

u

u

 

 

 
    
    
    
   = = 
    
    
        

  

2 1
T T T (3.104)

where T

In a very similar way, we can define inverse transformation, i.e. from the new DOFs to original

one. Without any derivation the matrix reads:

,

1,

1 ,

2,

2 ,

3,

3 ,

1

,

2

,

3

t k top

t k mid

t k top

t k mid

t k top

t k mid

t k bot

t k

t k bot

t k

t k bot

u
u

u
u

u
u

u

u

u





 
   
   
   
  =  
   
   
    

  

T' (3.105)

where

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 11 1 1 13 31 2 1 2

22 2 2 231 2 1 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2
t tt t t tk kk k k k

k k k k k k

tt t t tkk k k k

k k k k

T T T T T T

T T T T T T

T T T T T T

V VV V V V

thick thick thick thick thick thick

VV V V V

thick thick thick thick thic

=

−− −

−− −

T'

2 3

t k

k k

V

k thick

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Constraining the redundant DOF to comply with shell theory

As noted earlier, the original set of DOFs at a node comprises 5 DOFs, whilst the new one has

six DOFs. Consequently, one DOF from , , , , , ,

1 2 3 1 2 3, , , , ,
T

t k top t k top t k top t k bot t k bot t k botu u u u u u   must be

fixed. The presented work prefers to constrain ,

3

t k botu but ,

1

k botu or ,

2

k botu are also good

candidates, if ,

3

t k botu can not be fixed due some numerical problems, usually due to a special

position of the element with respect to global coordinate system.

Derivation of the constrain is now demonstrated on the case of ,

3

t k botu . Using (3.104)

 () () ()()

, , , ,

3 3 3 3

, , ,

3 16 13 1 26 23 2 56 53

,

3 1 23 3

()

....

t k bot t k top t k bot t k top

t t tt k top k mid k mid k

t t t tt k top k k k k k k

u u u u

u T T u T T u T T

u thick V thick V



 

= + − =

+ − + − + − =

− +

 (3.106)

Now in (3.106) eliminate
k and t k using (3.105). Thus, we obtain one equation relating

, , , , , ,

1 2 3 1 2 3, , , , ,
T

t k top t k top t k top t k bot t k bot t k botu u u u u u   , which is then used to constrain
,

3

t k botu as a linear

combination of
, , , , ,

1 2 3 1 2, , , ,t k top t k top t k top t k bot t k botu u u u u :

, , , , , ,

3 1 1 2 2 3 3 1 1 2 2

k bot top t k top top t k top top t k top bot t k bot bot t k botu c u c u c u c u c u= + + + + (3.107)

where:

() ()

() ()

() ()
() ()

() ()

1 1 2 23 1 3 1
1

1 23 3

1 1 2 23 2 3 2
2

1 23 3

1 23 3

3

1 23 3

1 1 2 23 1 2 1
1

1 23 3

1 1 2 23 2 3 2
2

2 2

2 2

2 2
2

2 2

2 2

1

+

+

+

 +

1

1

1

1

t t t tk k k k

top

t tk k

t t t tk k k k

top

t tk k

t tk k

top

t tk k

t t t tk k k k

bot

t tk k

t t t tk k k k

bot

t

z

V V V V
c

V V

V V V V
c

V V

V V
c

V V

V V V V
c

V V

V

y

V V V
c

V

y

+ −

+ −

− −

+ −

+ −

=

=

= −

= −

= −

() ()1

2

3

2

2 3
1

tk kV+ −
 (3.108)

The DOFs ,

1

k botu or ,

2

k botu can be eliminated in the same way. During the execution of the

element, it is recommended to constrain one of , , ,

1 2 3, ,t k bot t k bot t k botu u u based on which solution is

the most stable, (i.e. maximum denominator in (3.108)).

Constraining DOFs at the centre of Hetherosis element

A special attention needs to be paid to the 9th mid-plane node of Hetherosis element when we

have to additionally constrain
, , ,

1 2 3, ,t k mid t k mid t k midu u u . Thus, of the 6 DOFs we need to constrain 4

of them.

For example, suppose we want to keep free ,

2

t k topu and ,

3

t k topu and we need to

fix , , , ,

1 1 2 3, , ,t k top t k bot t k bot t k botu u u u . Equation (3.106) from the previous paragraph needs to be added

by three more equations. These are:

,

1

,

, ' ' ' ' ' ' 2

1 11 12 13 14 15 16 ,

, ' ' ' ' ' ' 3

2 21 22 23 24 25 26 ,

, ' ' ' ' ' ' 1

3 31 32 33 34 35 36 ,

2

,

3

0

0

0

t k top

t k top

t k mid

t k top

t k mid

t k bot

t k mid

t k bot

t k bot

u

u
u T T T T T T

u
u T T T T T T

u
u T T T T T T

u

u

 
 
      
      

= =      
            
 
  

 (3.109)

Equations (3.106) and (3.109) are then solved for
, , , ,

1 1 2 3, , ,t k top t k bot t k bot t k botu u u u as a linear

combination of
,

2

t k topu and
,

3

t k topu .

1
, ' , ' ,' ' ' '

1 12 2 13 311 14 15 16

, ' , ' ,' ' ' '

1 22 2 23 321 24 25 26

, ' , ' ,' ' ' '

2 32 2 33 331 34 35 35

,

3 1 1 21

t k top t k top t k top

k bot t k top t k top

k bot t k top t k t

t k bot top bot bot

u T u T uT T T T

u T u T uT T T T

u T u T uT T T T

u c c c

−

    +
   

+   = −
    +
   

−     
, ,

2 2 3 3

op

top t k top top t k topc u c u

 
 
 
 
 

+  

 (3.110)

Again, there are several alternatives regarding of which of the 6 DOFs to keep and which to

eliminate. The best option is chosen the same way as described in Section 0.

Several modifications the Ahmad shell elements are implemented in ATENA. They are listed

in the following table:

Element name Type of

approximation

Number of

in-plane

integration

points per

axis direction

for bending

Number of

in-plane

integration

points per

axis direction

for shear

Comment

CCAhmadElement33L9 Lagrange 3 3 No spurious

modes, locking

in this shells

CCAhmadElement32L9 Lagrange 3 2

CCAhmadElement33H9 Heterosis 3 3

CCAhmadElement32H9 Heterosis 3 2 Good

compromise

between locking

and spurious

energy modes

CCAhmadElement22S8 Serendipity 2 2 Fast, but

spurious modes

This section describes shell elements that model a structure by a curvilinear 2D surface. The

element uses hierarchical geometry and displacement interpolation. It can have from 4 to 9

nodes, each of them having 5 DOFs: 3 displacements in direction of global X,Y,Z axis and 2

rotations along user defined vectors 1 2,V V . If the shell is in the XY plane, then typically

1 2,V X V Y= = .

The element uses linear geometry and displacement interpolation in the direction of its thickness

and quadratic or linear approximation in the element's plane. If quadratic approximation is used,

behavior of the element resembles behavior of Ahmad shell element described in the previous

section. 4 nodes version of this element, i.e. the element with linear approximation, does not

perform well, (the element is too stiff), and thus it is recommended only for some local links etc.

On the other hand, both bending and membrane behavior of 8-9 nodes version of the elements is

great.

The elements are derived based on the Shell theory, (similarly to Ahmad element). As a result, it

is assumed 0,t t = is negligible and the element cannot change its thickness. (t indicates local

axis in the shell's thickness).

Depending on number of element nodes these finite elements call CCIsoShellQuad<xxxx> ...

CCIsoShellQuad<xxxxxxxxx>

The shell’s geometry at the configuration t and t dt+ is defined by:

,(1)(1) ,(1)

,()() ,()

2

2

2

k

k

k

nt t k t

i k i k i

n it t i t t k i t t

i k i k i

n it t i t t k i t t

i k i k i

t
x h X a V

t
x h X a V

t
x h X a V

−+ − + − +

+ + +

 
= + 

 

 
= + 

 

 
= + 

 

 (3.111)

where i=1,2,3 is index relating to global axes 1 2 3, ,x x x , (i.e. x,y,z), 1... Gk n= , Gn = number of

the element's nodes used to approximate geometry, typically 8 or 9. Note that due to Shell

theory the shell thickness at node k 0 (1) ()t t t i t t i

k k k k ka a a a a+ − += = = = . The symbol
,()kn it t

iV+ is

ith coordinate, (1,2,3i = for coordinate , ,x y z), of the vector nV at node k at time t t+  ,

iteration ()i . The vector nV is normal to the shell. Later we will also use vectors 1 2,V V ,

1 2()nV V V⊥ ⊥ . They will constitute base vectors for shell's bending rotations ,  .

Similarly, displacements at time t t+  , iteration (i-1):

 (1) (1)t t i t t i t

i i iu x x+ − + −= − (3.112)

Substituting (3.111) into (3.112)

() ()

,(1)(1) ,(1)

,(1),(1)

2 2

2

k k

k k

n i nt t i t t k i t t t k t

i k i k i i k i

n i nt t k i t k t t t

k i i k i i

t t
u h X a V X a V

t
h X X a V V

−+ − + − +

−+ − +

    
= + − +    

    

 
= − + − 

 

 (3.113)

Note that in this case 1...k n= , n is number of nodes to approximate displacements. Current

implementation of the shell elements assumes gn n= , (which differs for Ahmads elements).

Displacement increments within an iteration (at time t t+ ) are:

() ()

()

,() ,(1),() ,(1)

,() ,(1)

2

2

k k

k k

n i n it t k i t t k i t t t t

i k i i k i i

n i n ik t t t t

k i k i i

t
u h X X a V V

t
h U a V V

−+ + − + +

−+ +

 
= − + − 

 

 
= + − 

 

 (3.114)

At each node, the element has 5 DOFs: 3 displacements
k

iU and two rotations ,k k  described

below:

Let us define at each node of the shell a local coordinate system specified by three vectors
1 ,(1) 2 ,(1) ,(1)

, ,k k ki i n it t t t t t

i i iV V V
− − −+ + +

 , see Fig. 3-36. The last vector is vector normal to surface of

the shell at node k and the first and second vectors are calculated as follows:

()1 ,(1) ,(1) ,(1)

2 2

2 ,(1) ,(1) 1 ,(1)

/k k k

k k k

i n i n it t t t t t

i i i

i n i it t t t t t

i i i

V e V e V

V V V

− − −+ + +

− − −+ + +

=  

= 
 (3.115)

For the next derivation let us assume a general vector
1 2 3, ,

T

L L L Lv v v v =   with unit length that is

subject to rotations

[, ,]T

L L L   , (where the subscript L indicates that both the vector and the rotations are defined

with respect to the local coordinate system (defined by
1 ,(1) 2 ,(1) ,(1)

, ,k k ki i n it t t t t t

i i iV V V
− − −+ + +). The

rotations of the vector will produce displacements, (all in the local CS)

1 3 2 3 2

2 3 1 3 1

3 2 1 2 1

0

0

0

L L L L L L L L

L L L L L L L L

L L L L L L L L

u v v v v

u v v v v

u v v v v

  

  

  

   − −   
      

= − = − +      
      − −      

 (3.116)

Transforming the displacements from local to global coordinate system

1 ,(1) 2 ,(1) ,(1)

1 1 1 1 1 1

1 ,(1) 2 ,(1) ,(1)

2 2 2 2 2 2 2

1 ,(1) 2 ,(1) ,(1)

3 3 3 3 3 3

k k k

k k k

k k k

i i n it t t t t t

L L

i i n it t t t t t

L G L L

i i n it t t t t t

L L

t

u u V V V u

u u V V V u

u u V V V u

− − −+ + +

− − −+ + +

− − −+ + +

+

      
      

= = =      
            

T

1 ,(1) 2 ,(1) ,(1)

1 1 1 3 2

1 ,(1) 2 ,(1) ,(1)

2 2 2 3 1

1 ,(1) 2 ,(1) ,(1)

3 3 3 2 1

1 ,(1)

1 3 2

k k k

k k k

k k k

k

i i n it t t t t

L L L L

i i n it t t t t t

L L L L

i i n it t t t t t

L L L L

it t

L L

V V V v v

V V V v v

V V V v v

V v v

 

 

 



− − −+ +

− − −+ + +

− − −+ + +

−+

   −
   

− + =   
   −  

−() () ()

() () ()

() ()

2 ,(1) ,(1)

1 3 1 1 2 1

1 ,(1) 2 ,(1) ,(1)

2 3 2 2 3 1 2 2 1

1 ,(1) 2 ,(1) ,(1

3 3 2 3 3 1 3

k k

k k k

k k k

i n it t t t

L L L L L L L L L L

i i n it t t t t t

L L L L L L L L L L L L

i i n it t t t t t

L L L L L L L L

V v v V v v

V v v V v v V v v

V v v V v v V

    

     

   

− −+ +

− − −+ + +

− − −+ + +

+ − + + −

− + − + + −

− + − + + ())

2 1L L L Lv v 

 
 
 
 
 −
 

 (3.117)

 Now assume the same behavior for a vector normal to the shell's surface (again in the local CS

and unit length), i.e.  ,(1)
0,0,1kn it t

L iLv V
−+= = . When this vector gets rotated, it produces

displacements, (see (3.117):

() ()

() ()

() ()

1 ,(1) 2 ,(1)

1 1 1

1 ,(1) 2 ,(1)

2 2 2

1 ,(1) 2 ,(1)

3 3 3

k k

k k

k k

i it t t t

L L

i it t t t

L L

i it t t t

L L

u V V

u V V

u V V

 

 

 

− −+ +

− −+ +

− −+ +

 + − 
  

= + −  
   + −   

 (3.118)

Substituting now
,(1) ,(1),t t k i t t k i

L L   + − + −= = and
,(1)

, 1..3kn it t

k iu V k
−+= = we can write

final equations for displacements due to rotations, (for iteration (i-1) and (i) and the difference):

()

,(1) 2 ,(1) 1 ,(1),(1) ,(1)

,() 2 ,(1) 1 ,(1),() ,()

,() ,(1) 2 ,(1),() ,(1)

k k k

k k k

k k k

n i i it t t t k i t t t t k i t t

i i i

n i i it t t t k i t t t t k i t t

i i i

t t
n i n i it t t t t t k i t t k i t

i i i

V V V

V V V

V V V

 

 

 

− − −+ + − + + − +

− −+ + + + +

+
− −+ + + + −

= − +

= − +

− = − − + () 1 ,(1),() ,(1)

2 ,(1) 1 ,(1)

k

k k

t t
it k i t t k i

i

i ik t t k t t

i i

V

V V

 

 

+
−+ + −

− −+ +

−

= − +

 (3.119)

Hence, they represent rotation along two user defined vectors
,(1)kn it t

iV
−+ . It is important to note

that the vectors
,(1)kn it t

iV
−+ moves as the structure deforms.

Using (3.119) in (3.114) yields (and assuming shell thickness at a node k)

 ()2 ,(1) 1 ,(1)

2
k ki ik k t t k t t

i k i k i i

t
u h U a V V − −+ + 

= + − + 
 

 (3.120)

Note that the vectors
1 ,(1) 2 ,(1) ,(1)

, ,k k ki i n it t t t t t

i i iV V V
− − −+ + + must be normalized. Also note that

(3.118) should be used to connect dofs of shell and solid elements.

Connection of the shell2D element to an ambient structure consists of two part:

1. fix a FE node with [, ,]u v w displacement within the shell2D element,

2. fix two rotation dofs of the shell2D element within ambient elements.

 [, ,]u v w

Using the shell2D approximation the shell's displacement at the bottom bot

iu and at the top top

iu

are:

()

()

()

2 ,(1) 1 ,(1)

2 ,(1) 1 ,(1)

2 ,(1) 1 ,(1)

2

2

k k

k k

k k

i ibot k k t t k t tk
i k i i i

i itop k k t t k t tk
i k i i i

i itop bot k t t k t t

i k k i i

a
u h U V V

a
u h U V V

u h a V V

 

 

 

− −+ +

− −+ +

− −− + +

 
= − − + 

 

 
= + − + 

 

= − +

 (3.121)

The index i is 1..3 for x..z displacements. Using the shell3D approximation displacement at the

same locations can be calculated by:

,

,

bot bot bot l

i l i

top top top l

i l i

top bot top bot

i i i

uu hh UU

uu hh UU

uu uu uu−

=

=

= −

 (3.122)

where bot

lhh and top

lhh are the solid's shell3D interpolation functions at location top and bottom

of the shells at node i, , ,,bot l top l

i iUU UU are corresponding nodal displacements of the solid

element. Comparing (3.122) and (3.121) it can be shown that

top bot

k k k

top bot

k k k

h hh hh

t h hh hh

= +

= +
 (3.123)

Thus, to fix [, ,]u v w doffs of a node with shell2D elements we first calculate ihh values for the

case of shell3D approximation. Then, these are used to get ih , (see (3.122), comprised in the

shell2D approximation. It remains to compute shell2D rotation ,i i  and this is (again) done by

comparing 2D and 3D approximation in (3.121) and (3.122). After some mathematical

manipulation we will arrive to the final expressions:

() ()

() ()

() ()

2 1

1

2 1

2

3
2 1

0 0
2 2

0 0
2 2

0 0
2 2

k k

k k

k k

top bot top bot top botk k
k k x k k x k k

top bot top bot top botk k
k k y k k y k k

top bot top bot top botk k
k k z k k z k k

a a
hh hh V hh hh V hh hh

u
a a

u hh hh V hh hh V hh hh

u
a a

hh hh V hh hh V hh hh

 
+ − − − 

   
   = + − − −
   
   

 + − − −
 

k

k

k

k

k

k

u

v

w





 
 
 
 
 

  
   



(3.124)

Derivation of expressions to fix shell2D rotations in ambient elements is based (similarly to the

previous section) on comparing the shell2D and shell3D approximation of top and bottom nodes.

What we do is we first we fix the top and bottom in the ambient element using (solid) 3D

approximation. It yields expression something like:

,

,

......

......

top top top l

i l i

bot top bot l

i l i

uu hh UU

uu hh UU

= +

= +
 (3.125)

Note that rhs of (3.125) may also include rotations. The resulting equations for shell2D rotation

,  are:

2 2 2 2 2 2

, , , , , , , , , ,

2

, , , , , , , , , , ,

2 2 2 2

, , , , , , , , , , , ,

,

1 2 2 1 2 1 2 1 1 2

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2

(

)2 1 2 1 2

k k x k x k y k x k y k x k z k x k y k x

k x k y k x k y k x k y k z k x k z k x k z

k x k z k y k z k y k z k y k z k z k x k z k y

k

a V V V VD V V V V V V

V V V V V V V V V V V

V V V V V V V V V V V V

cf

− − + + + −

+ − −

−

=

+ +

2 2

1 , , , , , , , , , ,

2 2

,2 , , , , , , , , , ,

2

,3 , , , , , , , , , ,

(1 2 1 1 2 1 1 2 1 2

(1 2 1 1 2 1 1 2 1 2

(1 2 1 1 2 1 1 2 1 1

) /

) /

top

k x k y k x k y k x k x k z k z k z k x

top

k k x k y k x k y k x k y k z k z k z k y

top

k k x k z k x k y k z k x k z k x k x k z

V V V V V V V V V V

cf V V V V V V V V V V

cf V V V V V V V V V V V

D

D



= − + − +

= − − +

= + − − ,

2 2

,1 , , , , , , , , , ,

2 2

,2 , , , , , , , , , ,

2

,3 , , , , , , , ,

2

(1 2 1 1 2 1 1 2 1 2

(1 2 1 1 2 1 1 2 1 2

(1 2 1 1 2 1 1

)

) /

) /

2

/k y

bot

k k x k y k x k y k x k x k z k z k z k x

bot

k k x k y k x k y k x k y k z k z k z k y

bot

k k x k z k x k y k z k x k z k

cf V V V V V V V V V V

cf V V V V V V V V V V

cf V V

D

V V

D

D

V V V V







= − + −

= − + + −

= − − + , , ,

2 2

,1 , , , , , , , , , ,

2 2

,2 , , , , , , , , , ,

,3 , , , , , ,

1 1 2

(1 2 1 2 1 2 2 1 2 2

(1 2 2 1 2 1 2 1 2 2

(

/

1 2 2 1 2

)

2

/

/

x k x k z k y

top

k k x k y k x k z k y k x k y k z k x k z

top

k k x k x k y k y k x k y k z k z k y k z

top

k k x k x k z k y k y k z

V V V

cf V V V V V V V V V V

cf V V V V V V V V V V

cf

D

V V V V V V

D

D







+

= − − + +

= − − +

= + − 2 2

, , , ,

2 2

,1 , , , , , , , , , ,

2 2

,2 , , , , , , , , , ,

,3 , , , , ,

1 2 1 2

(1 2 1 2 1 2 2 1 2 2

(1 2 2 1 2 1 2 1 2 2

(

/

1 2 2 1 2

/

/

k z k x k z k y

bot

k k x k y k x k z k y k x k y k z k x k z

bot

k k x k x k y k y k x k y k z k z k y k z

bot

k k x k x k z k y k y

V V V V

cf V V V V V V V V V V

cf V V V V V V V V V V

cf V V V V V

D

D

D







−

= + − −

= − + + −

= − − 2 2

, , , , ,2 1 2 1 2 /k z k z k x k z k y DV V V V V+ +

 (3.126)

, ,

, ,

, ,

, ,

...) ...)

...) ...)

1.. 2

1..3, (..)

1.

(

(

.

(

(

top bot

k l i l i

top bot

k l i l i

top top l bot bot l

l i k i

top top l bot bot l

l i k i

hh UU hh UU

hh UU hh UU

k number of approximation shell D nodes

i x z

l number of approximati

cf cf

cf cf

  

  

= +

=

+ +

+ ++

=

= =

= 3on solid D nodes

 (3.127)

where
,

1 2

,1 2k k

k i k ii iV VV V= = .

Note that displacement dofs are fixed by (3.124).

If either bottom or top node gets outside the ambient element, the middle point is used instead.

Equation (3.127) is still valid but it is necessary to use
1

2
D D= that replaces D to calculate the

,1 ,3...top bot

k kcf cf  coefficients.

The elements are derived using Green-Lagrange strains and 2nd Piola Kirchhoff stresses. Green-

Lagrange strains at (i-th iteration), i,j-axis x,y,z are calculated as follows :

()

()

() () ()

(1)

() () () ()

, , , ,

(1) (1) (1) (1)

, , , , , , , ,

1

2

1
() () ()()

2

i i i

i

t t t t i t t i t t i t t i

t ij t i j t j i t m i t m j

t t i t t i t t i t t i

t i j t i j t j i t j i t m i t m i t m j t m j

t t

t ij t ij t ij

u u u u

u u u u u u u u

e



 
−

+ + + + +

+ − + − + − + −

+

= + +

= + + + + + +

= + +

 (3.128)

where:

()

()

()

(1) (1) (1) (1) (1)

, , , ,

(1) (1)

, , , , , ,

0 1

0

, ,

1 (1)

, , ,

1

2

1

2

1

2

1

2

t t i t t i t t i t t i t t i

t ij t i j t j i t k i t k j

t t i t t i

t ij t i j t j i t m i t m j t m j t m i

t ij t ij

t ij t i j t j i

t t i t t

t ij t m i t m j t m j

u u u u

e u u u u u u

e e

e u u

e u u u

+ − + − + − + − + −

+ − + −

+ − +

= + +

= + + +

= +

= +

= +()

()

(1)

,

, ,

1

2

i

t m i

t ij t m i t m j

u

u u

−

=

 (3.129)

Element's displacements u are approximated by isoparametric interpolation. Hence, it is simple

to calculate their derivatives with respect to local coordinate r,s,t. Using an arbitrary function

f(x,y,z) Eqn. (3.130) to (3.132) show, how to compute its derivatives with respect to global x,y,z

axis.

Calculation of derivatives:

f x y z f f

r r r r x x

f x y z f f

s s s s y y

f x y z f f

t t t t z z

           
           
      

           = =           
      

           
                 

J (3.130)

 1

f f

x r

f f

y s

ff

tz

−

   
    
   
    =    

   
   

     

J (3.131)

Derivatives of coordinates at t with respect to r,s,t to calculate J:

2

2

1

2

i

i

i

t
t k t t ki k

i i n

t
t k t t ki i

i i n

t
t t ki

i i n

x h t
X a V

r r

x h t
X a V

s s

x
h a V

t

   
= + 

   

   
= + 

   

  
=  

  

 (3.132)

Derivatives of displacement increments at time (1)... it t t −+  with respect to r,s,t:

() ()

() ()

()

(1)
,(1),(1)

(1)
,(1),(1)

(1)
,(1)

2

2

1

2

k k

k k

k k

t t i
n i nt t k i t k t t ti k

i i k i i

t t i
n i nt t k i t k t t ti k

i i k i i

t t i
n i nt t ti

k k i i

u h t
X X a V V

r r

u h t
X X a V V

s s

u
h a V V

t

+ −
−+ − +

+ −
−+ − +

+ −
−+

   
= − + − 

   

   
= − + − 

   

  
= − 

  

 (3.133)

(1)
,(1),(1)

(1)
,(1),(1)

(1)
,(1)

,(1) ,(1)

2

2

1

2

k

k

k

t t i
n it t k i t ti k

i k i

t t i
n it t k i t ti k

i k i

t t i
n it ti

k k i

t t k i t t k i t k

i i i

nt t

i

u h t
U a dV

r r

u h t
U a dV

s s

u
h a dV

t

U X X

dV

+ −
−+ − +

+ −
−+ − +

+ −
−+

+ − + −

+

   
= + 

   

   
= + 

   

  
=  

  

= −

,(1) ,(1)k k ki n i nt t t

i iV V
− −+= −

 (3.134)

Derivatives of displacement increments at time t t+  within iteration i with respect to r,s,t:

()

()

()

2 ,(1) 1 ,(1)

2 ,(1) 1 ,(1)

2 ,(1) 1 ,(1)

,() ,(1)

2

2

1

2

k k

k k

k k

i ik k t t k t ti k
i k i i

i ik k t t k t ti k
i k i i

i ik t t k t ti
k k i i

k t t k i t t k i

i i i

u h t
U a V V

r r

u h t
U a V V

s s

u
h a V V

t

U U U

 

 

 

− −+ +

− −+ +

− −+ +

+ + −

   
= + − + 

   

   
= + − + 

   

  
= − + 

  

= −

 (3.135)

To proceed further in the derivation of the 3D isoparametric element, we need to calculate

derivatives of the displacement increments with respect to ()1 2 3, ,t t t tx x x x= . This is achieved

using (3.131) thru (3.135).

Derivatives of displacement increments at time (1)... it t t −+  with respect 1 2 3, ,x x x :

(1) (1) (1) (1)

, , ,

1 2 3

t t i t t i t t i t t i
t inv k t inv k t inv ki i i i

j j jt

j

u u u u
J J J

x r s t

+ − + − + − + −   
= + +

   
 (3.136)

(1)
,(1), ,(1)

1

,(1), ,(1)

2

,(1),

3

,(1)

1 2

2

2

1

2

k

k

k

t t i
n it inv k t t k i t ti k

j i k it

j

n it inv k t t k i t tk
j i k i

n it inv k t t

j k k i

t t k i t inv t invk k
i j j

u h t
J U a dV

x r

h t
J U a dV

s

J h a dV

h h
U J J

r s

+ −
−+ − +

−+ − +

−+

+ −

   
= + 

   

  
+ + 

  

 
+  

 

 
= +

 

()

,(1)

1 2 3

,(1),(1)

, ,

1 2

,

3

2

2

k

k

n it t t inv t inv t invk k k
i j j j k

t

n it t k i t k t t kk
i j i j

t k t inv k t inv kk k
j j j

t k t k t inv k

j j j k

a h h
dV t J J J h

r s

a
U h dV G

h h
h J J

r s

G t h J h

−+

−+ − +

 
 
 

    
+ + +  

   

= +

 
= +

 

= +

 (3.137)

Derivatives of displacement increments at time t t+  within iteration i with respect to 1 2 3, ,x x x :

 , , ,

1 2 3

t inv k t inv k t inv ki i i i
j j jt

j

u u u u
J J J

x r s t

   
= + +

   
 (3.138)

()

()

()

2 ,(1) 1 ,(1),

1

2 ,(1) 1 ,(1),

2

2 ,(1) 1 ,(1),

3

2

2

1

2

k k

k k

k k

i it inv k k k t t k t ti k
j i k i it

j

i it inv k k k t t k t tk
j i k i i

i it inv k k t t k t t

j k k i i

u h t
J U a V V

x r

h t
J U a V V

s

J h a V V

 

 

 

− −+ +

− −+ +

− −+ +

   
= + − + 

   

  
+ + − + 

  

 
+ − + 

 

 (3.139)

After some rearrangement Eqn. (3.162) yields:

, ,

1 2

2 ,(1) , , ,

1 2 3

1 ,(1) , , ,

1 2 3

2

2

k

k

k t inv k t inv ki k k
i j jt

j

ik t t t inv k t inv k t inv kk k k
i j j j k

ik t t t inv k t inv k t inv kk k k
i j j j k

k t

i

u h h
U J J

x r s

a h h
V t J J J h

r s

a h h
V t J J J h

r s

U h





−+

−+

   
= + 

   

    
− + +  

   

    
+ + +  

   

=
1 ,(1) 2 ,(1)

1 ,(1) 2 ,(1)

2 ,(1) 1 ,(1)

2

2

k k

k k

k k

i ik k t t t k k t t t k

j i j i j

i it t t tk
i i

i it t t tk
i i

g G g G

a
g V

a
g V

 − −+ +

− −+ +

− −+ +

+ +

=−

=

 (3.140)

At this place, we can derive final expression to compute linear and nonlinear strains increments.

Linear strains ()i

t ije are calculated as follows:

 0 0 01 1 1

()

11 ()

11()

22

()

() 33 ()
1 1()

12

()

23 ()

()

13

...

... ...
2

...
2

2

i

t i

i

t

i

L L LL L Li t i
t k k n n ki

t

i

t i

ni

t

e

e

e
e

e

e

e

 
  
  
  
  = = + + +      
  
    

  

u

B B B B B B u

u

 (3.141)

 0

1 ,(1) 2 ,(1)

1 1 1 1 1

1 ,(1) 2 ,(1)

2 2 2 2 2

1 ,(1) 2 ,(1)

3 3 3 3 3

1 ,(1) 1 ,(1) 2 ,(1)

2 1 1 2 2 1 1 2

0 0

0 0

0 0

0

k k

k k

k k

k k k

i it k t t t k t t t k

i it k t t t k t t t k

i it k t t t k t t t k

L

k i i it k t k t t t k t t t k t t t k t t

h g G g G

h g G g G

h g G g G

h h g G g G g G

− −+ +

− −+ +

− −+ +

− − −+ + + +
=

+ +
B

2 ,(1)

2 1

1 ,(1) 1 ,(1) 2 ,(1) 2 ,(1)

3 2 2 3 3 2 2 3 3 2

1 ,(1) 1 ,(1) 2 ,(1) 2 ,(1)

3 1 1 3 3 1 1 3 3 1

0

0

k

k k k k

k k k k

i t k

i i i it k t k t t t k t t t k t t t k t t t k

i i i it k t k t t t k t t t k t t t k t t t k

g G

h h g G g G g G g G

h h g G g G g G g G

−

− − − −+ + + +

− − − −+ + + +

 
 
 
 
 
 
 + +
 

+ +  

 (3.142)

where

 () ,() ,() ,() ,() ,()

1 2 3, , , ,
T

i k i k i k i k i k i

k U U U   =  u at node k.

The second part of
L

kB , i.e. 1L

kB , is derived from 11 ()2
L i

t ij k ke = B u , at node k:

()

()

()

1 (1) (1)

, , , ,

1 ,(1) 2 ,(1)(1)

,

1 ,(1) 2 ,(1)(1)

,

(1)

,

1

2

1

2

1

2

1

2

k k

k k

t t i t t i

t ij t m i t m j t m j t m i

i it t i k t k k t t t k k t t t k

t m i m j m j m j

i it t i k t k k t t t k k t t t k

t m j m i m i m i

k t t i t

m t m i

e u u u u

u U h g G g G

u U h g G g G

U u

 

 

+ − + −

− −+ − + +

− −+ − + +

+ −

= +

= + +

+ + +

= ()

()

1 ,(1) 2 ,(1)(1) (1)

, ,

1 ,(1) 2 ,(1)(1) (1) (1)

, , ,

1

2

k k

k k

i ik k t t i t t t k k t t i t t t k

j t m i m j t m i m j

i ik t t i t k k t t i t t t k k t t i t t t k

m t m j i t m j m i t m j m i

h u g G u g G

U u h u g G u g G

 

 

− −+ − + + − +

− −+ − + − + + − +

+ +

+ + +

Introducing

(1)
(1) (1)

,

1 ,(1),(1) (1)

1

2 ,(1),(1) (1)

2

k

k

t t i
i t t im

mj t m jt

j

ik i t t i

j m mj

m

ik i t t i

j m mj

m

u
l u

x

g l

g l

+ −
− + −

−− + −

−− + −


= =



 =

 =





 (3.143)

we can write

()

()

1 (1) ,(1) ,(1)

1 2

(1) ,(1) ,(1)

1 2

1

2

1

2

k i t k k k i t k k k i t k

t ij m mi j i j i j

k i t k k k i t k k k i t k

m mj i j i j i

e U l h G G

U l h G G

 

 

− − −

− − −

= +  + 

+ +  + 

 (3.144)

1

(1) (1) (1)

11 1 21 1 31 1

(1) (1) (1)

12 2 22 2 32 2

(1) (1) (1)

13 3 23 3 33 3

(1) (1) (1) (1) (1) (1)

11 2 12 1 21 2 22 1 31 2 32 1

(1)

12 3

i t k i t k i t k

i t k i t k i t k

i t k i t k i t k

L

k i t k i t k i t k i t k i t k i t k

i t k

l h l h l h

l h l h l h

l h l h l h

l h l h l h l h l h l h

l h

− − −

− − −

− − −

− − − − − −

−

=
+ + +

B

(1) (1) (1) (1) (1)

13 2 22 3 23 2 32 3 33 2

(1) (1) (1) (1) (1) (1)

11 3 13 1 21 3 23 1 31 3 33 1

i t k i t k i t k i t k i t k

i t k i t k i t k i t k i t k i t k

l h l h l h l h l h

l h l h l h l h l h l h

− − − − −

− − − − − −







 + + +


+ + +

,(1) ,(1)

11 1 21 1

,(1) ,(1)

12 2 22 2

,(1) ,(1)

13 3 23 3

,(1) ,(1) ,(1) ,(1)

11 2 12 1 21 2 22 1

,(1) ,(1) ,(1)

12 3 13 2 22 3

...

...

...

...

...

k i t k k i t k

k i t k k i t k

k i t k k i t k

k i t k k i t k k i t k k i t k

k i t k k i t k k i t k

G G

G G

G G

G G G G

G G G

− −

− −

− −

− − − −

− − −

 

 

 

 +   + 

 +   ,(1)

23 2

,(1) ,(1) ,(1) ,(1)

11 3 13 1 21 3 23 1...

k i t k

k i t k k i t k k i t k k i t k

G

G G G G

−

− − − −







+ 


 +   +  

 (3.145)

The energy of nonlinear strains:

Let (1)t t i

t S
+ − is a matrix storing stresses ijs at time t t+  , iteration (i-1):

11

11

11

12 22

(1)

12 22

12 22

13 23 33

13 23 33

13 23 33

0

0 0

0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

t t i

t

S

S

S SYM

S S

S S S

S S

S S S

S S S

S S S

+ −

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 (3.146)

Then matrix 1NL NL NL NL

k n
 =  B B B B is composed so that (at a node k)

 () ()() (1) ()
T T

i NL t t i NL i

ij ij ij k k t k ks S   + −= u B B u (3.147)

where  states for variation of the following entity. It can be shown that the matrix NL
B can be

set in the following shape:

1 ,(1) 2 ,(1)

1 1 1 1 1

1 ,(1) 2 ,(1)

1 2 1 2 1

1 ,(1) 2 ,(1)

1 3 1 3 1

1 ,(1) 2 ,(1)

2 1 2 1 2

1 ,(1)

2 2 2

0 0

0 0

0 0

0 0

0 0

k k

k k

k k

k k

k

i it k t t t k t t t k

i it k t t t k t t t k

i it k t t t k t t t k

i it k t t t k t t t k

NL it k t t t k t
k

h g G g G

h g G g G

h g G g G

h g G g G

h g G

− −+ +

− −+ +

− −+ +

− −+ +

−+ +=B 2 ,(1)

2 2

1 ,(1) 2 ,(1)

2 3 2 3 2

1 ,(1) 2 ,(1)

3 1 3 1 3

1 ,(1) 2 ,(1)

3 2 3 2 3

1 ,(1) 2 ,(1)

3 3 3 3 3

0 0

0 0

0 0

0 0

k

k k

k k

k k

k k

it t k

i it k t t t k t t t k

i it k t t t k t t t k

i it k t t t k t t t k

i it k t t t k t t t k

g G

h g G g G

h g G g G

h g G g G

h g G g G

−

− −+ +

− −+ +

− −+ +

− −+ +

 
 











 













 (3.148)

Having the matrices (3.142), (3.145), (3.146) and (3.148) these are used to compute the element's

stiffness matrix, mass matrix, element loads etc. in exactly the same way as it is done for other

ATENA's element.

This section describes triangular shell finite elements. Their properties and their derivation are

much the same as that for quadrilateral shell finite elements CCIsoShellQuad<xxxx> ...

CCIsoShellQuad<xxxxxxxxx> described in the previous chapter. The only difference in that

they feature triangular shape. Their geometry is depicted in the figure below

Depending on number of element nodes these finite elements call CCIsoShellTriangle<xxx> ...

CCIsoShellTriangle<xxxxxx>.

A family of 3D isoparametric shell elements is presented, see the figure below. Their properties

lie between degenerated Ahmad shell elements from Section 3.12 and full 3D brick elements

from Section 3.5.

Shape and kinematic behaviour resembles that of the shell's element. All points through the

shell's thickness remain located on a line passing thru the corresponding top and bottom nodes of

the shell, however unlike in the classical shell theory, their distance can change. As for degrees

of freedom, (DOFS), a typical 3D isoparametric shell element has 9 nodes at the top and nine

nodes at the botom surface, each of them having 3 DOFS, (i.e. 3 displacements). A similar 2D

shell element would feature 9 nodes located at the shell's midplane, each of them having 5

DOFS, (3 displacements plus 2 rotations).

The new elements use full 3D static equations. i.e. the elements consider all 6 components of 3D

stress and strain vector. Geometrical and material nonlinearity is supported. The governing

equations are calculated and integrated in material points. Gauss integration is used in shell's

plane direction, whilst layered concept is employed throughout the thickness of the shells, (i.e.

rectangur quadrature). As each layer can use different material model, some layers can be

employed for modelling of embedded reinforcement. The elements typically use 3 x 3 x

number_of_layers integration (i.e. material) points.

The elements are suitable for both shallow and deep shells and are extremely simple for use,

because they can be input and output as usual 3D solid hexahedral elements with 8, 20 or 27

nodes. Hence, these shells can be hadled with most 3D pre- and post-processors. They also use

standard 3D material models, element loads and other boundary conditions designed for

hexahedral elements.

The presented shell elements are particularly useful for structures that combine solid 3D

elements and shell elements, because they do not imply any additional shell kinematic constraint

that would harm an anjancent 3D solid elements. (Typical shell elements assume 0t = that

enforces the same displacements of the corresponding top and bottom nodes in direction of their

connecting line). They are designed for bent shells and to analyze these structures (with the same

accuracy) they require far less finite elements compared to a similar analysis using standard

hexahedral elements. On the other hand, the 3D behaviour of these elements involves a small

overhead, so that standard 2D shell elements (with only 5 stress/strain components per material

point) can perform in some cases slightly better. Nevertheless, the overhead is well paid off by

easy of use of the presented elements, their nice 3D visualization, simple connection to adjacent

3D solid parts of the structure etc. In addition, the hiearchical isoparametric space interpolation

(used for the presented 3D shell elements) ensures that finer and coarser meshes are easy to

connect. Of coarse, this feature must be supported by pre- and postprocessor being used.

Geometry and displacements are approximated by hiearchical isoparametric spatial interpolation,

(similar to other 2D and 3D elements defined in previous sections). The elements have at

minimum 4 points at its top and 4 points at its bottom surface. It corresponds to linear

approximation and the element's name CCIsoShellBrick<xxxxxxxx>. The most accurate version

of the elements uses nodes 1 to 16 and 21,22, see the figure above. Its name is

CCIsoShellBrick<xxxxxxxxxxxxxxxxxx>. Such element can have curvilinear shape and features

quadratic displacement approximation. Hierarchical concept the shell element is employed.

Hence, the 3D shell element can have from 8 to 18 nodes. The nodes 1-8 are compulsory. Nodes

9-16 and 21,22 are optional. Nodes 17 to 22 are automatically removed from the element's

incidences. They are considered only for the sake of compatibility with input data preprocessor.

The <xxxxx..> string in the element name (following CCIsoShellBrick) specifies, which of the

element's node is (or is not) included. An included node is market as "x", a node not included is

marked as "_", (underscore). The shell's nodes are maped into the string as follows:

<1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,21,22>. For example,

CCIsoShellBrick<xxxxxxxxx_x_x_x_xx> uses nodes 1-8,9,11,13,15,21,22. Note that the bottom

and top surface must use the same number and location of the optional nodes. Hence, if node 9 is

included, node 13 must be included, too.

The shell’s geometry at the configuration time t and t dt+ , (iteration (i-1) and (i)), is defined by:

(1)

()

, ,

, (1) , (1)

, () , ()

1 1

2 2

1 1

2 2

1 1

2 2

i

i

t t k top t k bot

i k i i

t t t t k top i t t k bot i

i k i i

t t t t k top i t t k bot i

i k i i

t t
x h X X

t t
x h X X

t t
x h X X

−+ + − + −

+ + +

+ − 
= + 

 

+ − 
= + 

 

+ − 
= + 

 

 (3.149)

where i=1,2,3 is index relating to global axes 1 2 3, ,x x x , (i.e. x,y,z), (,)k kh h r s= is k-th

interpolation function, (see Table 3-4), 1... Gk n= is number of the shell's nodes, Gn = number of

the element's nodes used to approximate geometry, typically 8 or 9. t

ix represents i-th

coordinate of a node of the element (at the specified time).

Displacements at time
(1)it t −+  , i=1,2,3 for global axes x,y,z, at iteration (1)i − reads :

 (1) (1)t t i t t i t

i i iu x x+ − + −= − (3.150)

Substituting (3.149) into (3.150), i=1,2,3 for global axes x,y,z, we can derive

()

(1) , (1) , (1) , ,

, (1) , , (1) ,

, (1)

1 1 1 1

2 2 2 2

1 1 1

2 2 2

1 1

2

t t i t t k top i t t k bot i t k top t k bot

i k i i k i i

t t k top i t k top t t k bot i t k bot

k i i i i

t t k top i

k i

t t t t
u h X X h X X

t t t
h X X X X

t
h U

+ − + − + −

+ − + −

+ −

+ − + −   
= + − + =   

   

 + − −  
= − + −  

  

+ −
= + , (1)

, (1) , (1) , (1) , (1)

2

where

,

t t k bot i

i

t t k top i t t k top i t k t t k bot i t t k bot i t k

i i i i i i

t
U

U X X U X X

+ −

+ − + − + − + −

 
 
 

= − = −

 (3.151)

Displacement increments within i-th iteration are calculated as
() () (1)t t i t t i t i

i i iu x x+ + −= − :

 () , () , ()1 1

2 2

i t t k top i t t k bot i

i k i i

t t
u h U U+ ++ − 

= + 
 

 (3.152)

where , () , () (1) , () , () (1),t t k top i t t k top i t k i t t k bot i t t k bot i t k i

i i i i i iU X X U X X+ + − + + −= − = − . In the above ,k top

iX

and ,k bot

iX is top and bottom nodal coordinate of node i. Similarly, , (1)t t k top i

iU+ − , , (1)t t k bot i

iU+ −

denotes displacements at the same node.

The elements are derived using Green-Lagrange strains and 2nd Piola Kirchhoff stresses. Total

Lagrangian formulation is employed, but after each load step we transform the analyzed model

(and its stress and other tensors) to the coordinate system defined by the current shape of the

model. (The standard Total Lagrangian formulation calculates all with respect to the original

coordinate system without any transformation; Updated Lagrangian formulation carries all the

transformation each transformation, BATHE(1982).)

The shell's total strains at time t t+  , i-th iteration, are calculated: (i, j=1..3 for axis x,y,z)

()

() () ()()()

() () () () ()

, , , ,

(1) () (1) () (1) () (1) ()

, , , , , , , ,

(1) () ()

1

2

1

2

t t i t t i t t i t t i t t i

t ij t i j t j i t k i t k j

t t i i t t i i t t i i t t i i

t i j t i j t j i t j i t k i t k i t k j t k j

t t i i i

t ij t ij t ij

u u u u

u u u u u u u u

e



 

+ + + + +

+ − + − + − + −

+ −

= + +

= + + + + + +

= + +

 (3.153)

where ()

,

t t i

t i ju+ is derivative of displacement ()t t i

iu+ with respect to axis t

jx at time t, i.e. at the

beginning of time step. (i) refers to iteration number. Similarly, ()

,

i

t i ju denotes displacement

increment at the current iteration.

Subtracting ()(1) (1) (1) (1) (1)

, , , ,

1

2

t t i t t i t t i t t i t t i

t ij t i j t j i t k i t k ju u u u+ − + − + − + − + −= + + from (3.153) we can calculate

linear and nonlinear strain increments ()i

t ije and ()i

t ij :

()

()

() () () (1) () (1) ()

, , , , , ,

() () ()

, ,

1

2

1

2

i i i t t i i t t i i

t ij t i j t j i t k i t k j t k j t k i

i i i

t ij t k i t k j

e u u u u u u

u u

+ − + −= + + +

=

 (3.154)

Derivatives with respect to global ()1 2 3, ,x x x x= are calculated in standard way from derivatives

with respect to curvilinear isoparametric coordinates () ()1 2 3, , , ,r r s t r r r=  . For example,

derivatives of a function 1 2 3(, ,)f x x x is:

1 2 3

1 1

1 2 3

2 2

1 2 3

3 3

, i.e.
j

ij

i i j j

f ff x x x

x xr r r r

xf x x x f f f f f
J

s s s s x x r r x x

f x x x f f

t t t t x x

          
                  
               = = = =                     

           
                    

J (3.155)

1

1

2

3

, . . inv

ji

i j

f f

x r

f f f f
i e J

x s x r

ff

tx

−

   
       
     = =         

   
      

J (3.156)

The presented shell elements employs isoparametric hierarchical interpolation. Hence,

coordinates t x of a point are calculated by:

 , ,1 1

2 2

t t k top t k bot

i k i i

t t
x h X X

+ − 
= + 

 
 (3.157)

where the interpolation functions (,)kh r s are enlisted in Table 1-3-1 and their derivatives
t

i

i

x

r





with respect to r,s,t (to calculate J) are:

()

, ,

, ,

, ,

1 1

2 2

1 1

2 2

2

t
t k top t k boti k

i i

t
t k top t k boti k

i i

t
t k top t k boti k

i i

x h t t
X X

r r

x h t t
X X

s s

x h
X X

t

  + − 
= + 

   

  + − 
= + 

   


= −



 (3.158)

The above expressions are employed to obtain derivatives of (total) displacements (1)t t i

iu+ − with

respect to r,s,t. They are needed to calculate strains (3.154).

-

()

(1)
, (1) , (1)

(1)
, (1) , (1)

(1)
, (1) , (1)

1 1

2 2

1 1

2 2

2

t t i
t t k top i t t k bot ii k

i i

t t i
t t k top i t t k bot ii k

i i

t t i
t t k top i t t k bot ii k

i i

u h t t
U U

r r

u h t t
U U

s s

u h
U U

t

+ −
+ − + −

+ −
+ − + −

+ −
+ − + −

  + − 
= + 

   

  + − 
= + 

   


= −



 (3.159)

Derivatives of displacement increments with respect to r,s,t:

()

()
, () , ()

()
, () , ()

()
, () , ()

1 1

2 2

1 1

2 2

2

t t i
t t k top i t t k bot ii k

i i

t t i
t t k top i t t k bot ii k

i i

t t i
t t k top i t t k bot ii k

i i

u h t t
U U

r r

u h t t
U U

s s

u h
U U

t

+
+ +

+
+ +

+
+ +

  + − 
= + 

   

  + − 
= + 

   


= −



 (3.160)

To proceed further in the derivation of the 3D isoparametric element, we need to calculate

derivatives of the displacement increments with respect to ()1 2 3, ,t t t tx x x x= . This is achieved

using (3.156) and (3.160):

() () () () ()

1 2 3

i i i i i
t inv t inv t inv t invi i i i i

jl j j jt

j l

u u u u u
J J J J

x r r s t

    
= = + +

    
 (3.161)

()

()
, () , ()

1

, () , ()

2

, () , ()

3

1 1

2 2

1 1

2 2

2

i
t inv t t k top i t t k bot ii k

j i it

j

t inv t t k top i t t k bot ik
j i i

t inv t t k top i t t k bot ik
j i i

u h t t
J U U

x r

h t t
J U U

s

h
J U U

+ +

+ +

+ +

  + − 
= + 

   

 + − 
+ + 

  

+ −

 (3.162)

After some rearrangement Eqn. (3.162) yields:

()
, ()

1 2 3

, ()

1 2 3

, () , ()

, ,

1 1

2 2 2

1 1

2 2 2

i
t t k top i t inv t inv t invi k k k

i j j jt

j

t t k bot i t inv t inv t invk k k
i j j j

top t t k top i bot t t k bot i

k j i k j i

u h t h t h
U J J J

x r s

h t h t h
U J J J

r s

h U h U

+

+

+ +

  +  + 
= + + + 

   

 −  − 
+ + = 

  

+

 (3.163)

where

, 1 2 3 , 1 2 3

1 1 1 1
,

2 2 2 2 2 2

top t inv t inv t inv bot t inv t inv t invk k k k k k
k j j j j k j j j j

h t h t h h t h t h
h J J J h J J J

r s r s

 +  +  −  −   
= + + = + +   

      

At this place, we can derive final expression to compute linear and nonlinear strains increments.

Linear strains ()i

t ije are calculated as follows, see (3.154):

 0 0 01 1 1

()

11 ()

11()

22

()

() 33 ()
1 1()

12

()

23 ()

()

13

...

... ...
2

...
2

2

i

t i

i

t

i

L L LL L Li t i
t k k n n ki

t

i

t i

ni

t

e

e

e
e

e

e

e

 
  
  
  
  = = + + +      
  
    

  

u

B B B B B B u

u

 (3.164)

 0

,1 ,1

,2 ,2

,3 ,3

,2 ,1 ,2 ,1

,3 ,2 ,3 ,2

,3 ,1 ,3 ,1

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0 0

top bot

t k t k

top top

t k t k

top top

t k t kL

k top top top top

t k t k t k t k

top top top top

t k t k t k t k

top top top top

t k t k t k t k

h h

h h

h h

h h h h

h h h h

h h h h

 
 
 
 

=  
 
 
 
  

B (3.165)

where () , () , () , () , () , () , ()

1 2 3 1 2 3, , , , ,
T

i k top i k top i k top i k bot i k bot i k bot i

k U U U U U U =  u at node k.

Introducing

(1)

(1) (1)

,

t t i
i t t ii

ij t i jt

j

u
l u

x

+ −
− + −

= =


 (3.166)

we can write

() ()

()

(1) () (1) ()

, , , ,

(1) , () , () (1) , () , ()

, , , ,

, () (1) (1)

, ,

t t i i t t i i

t m i t m j t m j t m i

i top t t k top i bot t t k bot i i top t t k top i bot t t k bot i

mi k j m k j m mj k i m k i m

t t k top i i top i top t t

m mi k j mj k i

u u u u

l h U h U l h U h U

U l h l h

+ − + −

− + + − + +

+ − − +

+ =

+ + + =

+ + (), () (1) (1)

, ,

k bot i i bot i bot

m mi k j mj k iU l h l h− −+

 (3.167)

Finally, matrix 1L
B yields

 1

(1) (1) (1) (1)

11 ,1 21 ,1 31 ,1 11 ,1

(1) (1) (1) (1)

12 ,2 22 ,2 32 ,2 12 ,2

(1) (1) (1) (1)

13 ,3 23 ,3 33 ,3 13 ,3

(1)

11 ,

i top i top i top i bot

t k t k t k t k

i top i top i top i bot

k k k k

i top i top i top i bot

k k k kL

k i

k

l h l h l h l h

l h l h l h l h

l h l h l h l h

l h

− − − −

− − − −

− − − −

−
=B

(1) (1) (1) (1) (1) (1) (1)

2 12 ,1 21 ,2 22 ,1 31 ,2 32 ,1 11 ,2 12 ,1

(1) (1) (1) (1) (1) (1)

12 ,3 13 ,2 22 ,3 23 ,2 32 ,3 33

top i top i top i top i top i top i bot i bot

k k k k k k k

i top i top i top i top i top i

k k k k k

l h l h l h l h l h l h l h

l h l h l h l h l h l h

− − − − − − −

− − − − − −

+ + + +

+ + + (1) (1)

,2 12 ,3 13 ,2

(1) (1) (1) (1) (1) (1) (1) (1)

11 ,3 13 ,1 21 ,3 23 ,1 31 ,3 33 ,1 11 ,3 13 ,1

top i bot i bot

k k k

i top i top i top i top i top i top i bot i bot

k k k k k k k k

l h l h

l h l h l h l h l h l h l h l h

− −

− − − − − − − −







 +


+ + + +

(1) (1)

21 ,1 31 ,1

(1) (1)

22 ,2 32 ,2

(1) (1)

23 ,3 33 ,3

(1) (1) (1) (1)

21 ,2 22 ,1 31 ,2 32 ,1

(1) (1)

22 ,3 23 ,2

...

...

...

...

...

i bot i bot

t k t k

i bot i bot

k k

i bot i bot

k k

i bot i bot i bot i bot

k k k k

i bot i bot

k k

l h l h

l h l h

l h l h

l h l h l h l h

l h l h

− −

− −

− −

− − − −

− −

+ +

+ (1) (1)

32 ,3 33 ,2

(1) (1) (1) (1)

21 ,3 23 ,1 31 ,3 33 ,1...

i bot i bot

k k

i bot i bot i bot i bot

k k k k

l h l h

l h l h l h l h

− −

− − − −







+


+ + 

 (3.168)

Assembling stresses at time t t+  , iteration (i-1) into matrix (1)t t i

t

+ −
S , participation of nonlinear

strains ()i

t ij is, see (3.154)

() () ()

()

(1) () (1) () (1) () ()

, ,

(1) () () () ()

, , , ,

(1) () ()

, ,

()

11

()

()

1

2

1

2

...

...

t t i i t t i i t t i i i

t ij t ij t ij t ij t ij t k i t k j

t t i i i i i

t ij t k i t k j t k i t k j

t t i i i

t ij t k i t k j

i

i

k

i

n

S S S u u

S u u u u

S u u

    

 









+ − + − + −

+ −

+ −

 
= =  

 

 
= + 

 

=



=

u

u

u

()

()

11

(1) ()

()

...

...

T
i

T
NL t t i NL i

t k

i

n

+ −

  
   
   
   
   
   
   
   

u

B S B u

u

 (3.169)

1

,1 ,1

,1 ,1

,1 ,1

,2 ,2

,2 ,2

,2 ,2

,3 ,3

,3 ,3

,3

... ...

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

NL NL NL NL

k n

top bot

t k t k

top bot

t k t k

top bot

t k t k

top bot

t k t k

NL top bot

k t k t k

top bot

t k t k

top bot

t k t k

top bot

t k t k

top

t k

h h

h h

h h

h h

h h

h h

h h

h h

h

  

=

B B B B

B

,30 0 bot

t kh

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.170)

(1)

11

(1)

11

(1)

11

(1) (1)

12 22

(1) (1) (1)

12 22

(1) (1)

12 22

(1) (1) (1)

13 23 33

0

0 0

0 0

0 0 0

0 0 0 0

0 0 0 0

0

t t i

t

t t i

t

t t i

t

t t i t t i

t t

t t i t t i t t i
t t t

t t i t t i

t t

t t i t t i t t i

t t t

t t

t

s

s symmetric

s

s s

s s

s s

s s s

+ −

+ −

+ −

+ − + −

+ − + − + −

+ − + −

+ − + − + −

+

=S

(1) (1) (1)

13 23 33

(1) (1) (1)

13 23 33

0 0 0 0

0 0 0 0 0 0

i t t i t t i

t t

t t i t t i t t i

t t t

s s s

s s s

− + − + −

+ − + − + −

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.171)

Using (3.155) and (3.156) it follows to present final expression for computation of space

derivatives of 1 2 3(, ,)f x x x :

()

1

ˆ; (, ,) (,) ()

ˆ
ˆ ˆ(,) ()

ˆ
ˆ

k
inv k k k k

ji k

i j

k k
inv k k inv k k

ji k ji k

i j j j

k k
inv k k

i k

f h
J F h h r s t h r s h t

x r

f h h
J F h r s h t J F h h

x r r r

h h
J F h h

r r

  
= = = 

   

        
 = = + =    

             

    
 +         

2 3

1 2 3

ˆ ˆ
ˆ ˆ

ˆ ˆ
ˆ

k k k k
inv k k inv k k

i k i k

k k k
inv k inv k inv k

i k i k i k

h h h h
J F h h J F h h

s s t t

h h h
J F h J F h J F h

r s t

            
    + + + + =                            

       
+ +              

 (3.172)

Having all the matrices and relationships above, the rest of derivation of the presented

isoparametric shell elements is straightforward. Simply use the matrices 0L
B , 1L

B , NL
B and

(1)t t i

t

+ −
S to calculate structural stiffness matrices (1), t t i

t L t NL

+ −
K K , vectors of nodal forces

(1) ,t t iF+ − and loads t t R+  as described in the Section Problem Discretisation Using Finite

Element Method earlier in this document.

This section describes wedge shell finite elements. Their properties and their derivation are much

the same as that for hexahedral shell finite elements CCIsoShellBrick<xxxxxxxx> ...

CCIsoShellBrick<xxxxxxxxxxxxxxxxxx> described in the previous chapter. The only diference

in that they feature wedge shape. Their geometry is depicted in the figure below

Depending on number of element nodes these finite elements call CCIsoShellWedge<xxxxxx>

... CCIsoShellWedge<xxxxxxxxxxxx>.

A curvilinear 3D beam finite element CCBeamNL is described here. The element is based on a

similar beam element from BATHE (1982). It is fully nonlinear, in terms of its geometry and

material response. It uses quadratic approximation of its shape, so it can be curvilinear, twisted,

with variable dimensions of the cross-sections. Moreover, beam’s cross-sections can be of any

shape, optionally even with holes.

The element belongs to the group of isoparametric elements with Gauss integration along its axis

and trapezoidal (Newton-Cotes) quadrature within the cross-section. The integration (or

material) points are placed in a way similar to the layered concept applied to shell elements,

however, the “layers” are located in both “s,t” directions.

Geometry of the element is depicted in Fig. 3-40. The depicted brick nodes specification is

employed to ensure compatibility of the element with ATENA preprocessor. The beam 3D nodes

definition is used by ATENA postprocessor. The element response is computed within the 1D

beam geometry. Thus, on input the element has 20 nodes, while during the calculation it has only

15 nodes, i.e. 12 nodes for 3D beam shape definition and 3 nodes for the 1D beam geometry.

Any of the 15 nodes can be subject to a kinematic or static constraint. The 1D beam nodes have

6 degrees of freedom (dofs) – three displacements and three rotations with respect to global

coordinate axes. The 3D beam nodes allocate only the three displacement dofs per node. The

redundant brick nodes are ignored, and they allocate no dofs.

The element uses three configurations. The reference configuration corresponds to shape of the

beam at the beginning of the step, i.e. prior any load in the current step is applied was employed.

It is used as a reference coordinate system for all calculation within a loading step t, with respect

to which all derivatives are computed. This configuration is denoted by a t superscript left to a

referred symbol, e.g. t x . The element shape after all previous iterations within the current step

and prior the current iteration is denoted by t dt+ superscript,
t dt x+

. Increments within the

current iteration do not use any superscript, e.g. x.

1
Vs

1
Vt

t
a 1

t
b 1

t
b 2

t
a 2

t
b 3

t
a 3

r

s

t

1

2

3
4

5

6

7

8

9

10

14

15

13

11

12

16

17

18

19

20

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

Geom etry

Bric k nodes

Beam 3D nodes

Beam 1D nodes

x

y

z

u
v

w

x

z

y Isoparametric shape

r

s

t

2
2

2

Global c oord. system and elem ent dofs

The beam’s geometry at the configuration t and t dt+ is defined by:

2 2

2 2

2 2

x x

y y

z z

t st t t t t t

i i i i i i

t st t t t t t

i i i i i i

t st t t t t t

i i i i i i

t s
x h X a V b V

t s
y h Y a V b V

t s
z h Z a V b V

 
= + + 

 

 
= + + 

 

 
= + + 

 

 (3.173)

In the above i refers to axial nodes, i.e. 1..3i = for the nodes 13,14,15, see the 1D beam nodes.

()i ih h r= is i-th nodal interpolation function i described in Section 3.2. , ,
T

t t t

i i iX Y Z   are

global coordinates of a node i at time t. The vectors , , , , ,y yx xz z

T T
t st st st t t t t t

i i i i i iV V V V V V   
   

are the

vectors ,t t

t sV V depicted in Fig. 3-40, in a cross section i, at time t, which define local coordinate

axis s,t. The symbols ,t t

i ia b refers to dimensions of the cross section i, time t; see the figure,

too.

Geometry of the beam at time t dt+ is defined in a similar way:

2 2

2 2

2 2

x x

y y

z z

t st dt t dt t t dt t t dt

i i i i i i

t st dt t dt t t dt t t dt

i i i i i i

t st dt t dt t t dt t t dt

i i i i i i

t s
x h X a V b V

t s
y h Y a V b V

t s
z h Z a V b V

+ + + +

+ + + +

+ + + +

 
= + + 

 

 
= + + 

 

 
= + + 

 

 (3.174)

The element’s displacements at time t dt+ is calculated as follows:

t dt t dt t

t dt t dt t

t dt t dt t

u x x

v y y

w z z

+ +

+ +

+ +

= −

= −

= −

 (3.175)

 and displacement increments within a iteration:

2 2

2 2

2 2

x x

y y

z z

t st t

i i i i i i

t st t

i i i i i i

t st t

i i i i i i

t s
u h U a V b V

t s
v h V a V b V

t s
w h W a V b V

 
= + + 

 

 
= + + 

 

 
= + + 

 

 (3.176)

In the above equation the vectors ,t s

i iV V are
t t dt t t t

i i iV V V+= − and
s t dt s t s

i i iV V V+= − are

approximated by

()
()

()

()
()

()

yx z

y x z

y xz

yx z

y x z

y xz

tt tt dt y t dt z

i i i i i

t t tt dt z t dt x

i i i i i

t tt t dt x t dt y

i i i i i

ss st dt y t dt z

i i i i i

s s st dt z t dt x

i i i i i

s ss t dt x t dt y

i i i i i

V V V

V V V

V V V

V V V

V V V

V V V

 

 

 

 

 

 

+ +

+ +

+ +

+ +

+ +

+ +

= −

= −

= −

= −

= −

= −

 (3.177)

The parameters , ,x y z

i i i   are rotations around the global axis, with respect to beginning of the

current load step. Note that (3.177) is valid only approximately.

The element uses Green-Lagrange strain and Piola-Kirchhof stresses, see Section 1.4.2 and

Section 1.3.2. transformed to the local isoparametric r,s,t coordinate system. As the beam theory

implies, only normal strain component r and shear components ,rs rt  are considered. The

stress vector includes the corresponding , ,rr rs rt   entries, whereby the remaining strains have

to remain zero. The procedure of calculation stress-strain response is as follows:

1. Calculate all 6 components of Green-Lagrange strains (1.8) and their increments within

global coordinate systems. The increments are computed with respect to the beginning of

the current load step.

2. Transform the strains increments into local r,s,t coordinate system.

3. Zeroise components , ,ss tt st     .

4. Execute material law to compute corresponding stresses.

5. Transform the stresses to the global coordinate system.

The following expressions are used to calculate displacement derivatives needed for calculation

of the strains:

1

1

df dx dy dz df df

dx dr dr dr dr dr

df dx dy dz df df
J

dy ds ds ds ds ds

dx dy dz df dfdf

dt dt dt dt dtdz

−

−

       
       
       
       = =       
       
       
             

 (3.178)

 where f is a displacement function to be derived.

Substituting equations (3.173) to (3.178) into the expressions for calculating element matrices

(1.31) to (1.34) all important matrices and vectors of the beam element can be calculated. Their

explicit presentation is beyond the scope of this document. Nevertheless, the most important

ones are now given:

The Jacobian matrix:

11

12

13

21

22

23

2 2

2 2

2 2

1

2

1

2

x x

y y

z z

x

y

t
t st t t t ti

i i i i i

t
t st t t t ti

i i i i i

t
t st t t t ti

i i i i i

t
st t

i i i

t
st t

i i i

t

x h t s
J X a V b V

r r

y h t s
J Y a V b V

r r

z h t s
J Z a V b V

r r

x
J h b V

s

y
J h b V

s

J

   
= = + + 

   

   
= = + + 

   

   
= = + + 

   

  
= =  

  

  
= =  

  


=

31

32

33

1

2

1

2

1

2

1

2

z

x

y

z

st t

i i i

t
tt t

i i i

t
tt t

i i i

t
tt t

i i i

y
h b V

t

x
J h a V

t

y
J h a V

t

z
J h a V

t

 
=  

  

  
= =  

  

  
= =  

  

  
= =  

  

 (3.179)

The matrix t dt

t NLB+ :

It is constructed in the way that

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

x

y

z

t dt

t NL tx

y

z

x

y

z

U
u

V
x

W
u

y

u

z
Uv

Vx

Wv
B

y

v

z

w U
x V
w

W
y

w

z



















+

 
   

  
  

   
  
  

   
  
  

   
  
  
   = =

   
  

   
  
  
  

   
  
  

   
  
  

   
 

t dt

NLB U+

 (3.180)

The detailed expressions for calculating t dt

t NLB+ are given in (3.183) and (3.184). The equations

are important because they present the way, how spatial derivatives of all the displacements are

calculated. The entries in t dt

t NLB+ are thus used to setup also the matrix 0

t dt

t LB+ and 1

t dt

t LB+ .

These matrices are computed as follows:

0(1,) (1,)

0(2,) (5,)

0(3,) (9,)

0(4,) (4,) (2,)

0(5,) (6,) (8,)

0(6,) (7,) (

t dt t dt

t L i t NL i

t dt t dt

t L i t NL i

t dt t dt

t L i t NL i

t dt t dt t dt

t L i t NL i t NL i

t dt t dt t dt

t L i t NL i t NL i

t dt t dt t dt

t L i t NL i t NL

B B

B B

B B

B B B

B B B

B B B

+ +

+ +

+ +

+ + +

+ + +

+ + +

=

=

=

= +

= +

= + 3,)i

 (3.181)

1(1,) (1,) (4,) (7,)

1(2,) (2,) (5,) (8,)

1(3,) (3,)

+ +

+ +

+

t dt t dt t dt
t dt t dt t dt t dt

t L i t NL i t NL i t NL i

t dt t dt t dt
t dt t dt t dt t dt

t L i t NL i t NL i t NL i

t dt t dt
t dt t dt

t L i t NL i

u v w
B B B B

x x x

u v w
B B B B

y y y

u v
B B

z

+ + +
+ + + +

+ + +
+ + + +

+ +
+ +

  
=

  

  
=

  

 
=


(6,) (9)

1(4,) (2,) (1,) (5,)

(4,) (8,) (7,)

1(5,)

+

+ +

+ +

t dt
t dt t dt

t NL i t NL i

t dt t dt t dt
t dt t dt t dt t dt

t L i t NL i t NL i t NL i

t dt t dt t dt
t dt t dt t dt

t NL i t NL i t NL i

t dt
t dt

t L i

w
B B

z z

u u v
B B B B

x y x

v w w
B B B

y x y

B

+
+ +

+ + +
+ + + +

+ + +
+ + +

+
+



 

  
= +

  

  

  


= (3,) (2,) (6,)

(5,) (9,) (8,)

1(6,) (1,) (3,)

+ +

+ +

+

t dt t dt
t dt t dt t dt

t NL i t NL i t NL i

t dt t dt t dt
t dt t dt t dt

t NL i t NL i t NL i

t dt t dt t dt
t dt t dt t dt t dt

t L i t NL i t NL i t N

u u v
B B B

y z y

v w w
B B z B

z y y

u u v
B B B B

z x z

+ +
+ + +

+ + +
+ + +

+ + +
+ + + +

 
+

  

  

  

  
= +

  
(4,)

(6,) (7,) (9,)

+

+ +

L i

t dt t dt t dt
t dt t dt t dt

t NL i t NL i t NL i

v w w
B B B

x z x

+ + +
+ + +  

  

 (3.182)

1

(1,1) 1,1

(1,2)

(1,3)

(1,4)

1 1 1

(1,5) 1,1 1,2 1,3

1

(1,6) 1,1

0

0

0

1 1

2 2 2 2
z z z z

t dt i
t NL

t dt

t NL

t dt

t NL

t dt

t NL

t s s tt dt t t dt t t dt t t dt t t dti i
t NL i i i i i i i i i

t dt i
t NL

h
B J

r

B

B

B

h ht s
B J a V b V J h b V J a V

r r

h
B J

r

+ −

+

+

+

+ − + + − + − +

+ −


=



=

=

=

  
= + + + 

  


=



1 1

1,2 1,3

1

(2,1) 2,1

(2,2)

(2,3)

(2,4)

1

(2,5) 2,1

1 1

2 2 2 2

0

0

0

2 2

y y y y

z

t s s tt t dt t t dt t t dt t t dti
i i i i i i i i i

t dt i
t NL

t dt

t NL

t dt

t NL

t dt

t NL

tt dt t t dt t t dti
t NL i i i

ht s
a V b V J h b V J a V

r

h
B J

r

B

B

B

h t s
B J a V b V

r

+ + − + − +

+ −

+

+

+

+ − + +

 
− − − + 

 


=



=

=

=


= +



1 1

2,2 2,3

1 1 1

(2,6) 2,1 2,2 2,3

1

(3,1) 3,1

(3,2)

1 1

2 2

1 1

2 2 2 2

z z z

y y y y

s s tt t dt t t dti
i i i i i i

t s s tt dt t t dt t t dt t t dt t t dti i
t NL i i i i i i i i i

t dt i
t NL

t dt

t NL

h
J h b V J a V

r

h ht s
B J a V b V J h b V J a V

r r

h
B J

r

B

− + − +

+ − + + − + − +

+ −

+

 
+ + 

 

  
= − − − + 

  


=



(3,3)

(3,4)

1 1 1

(3,5) 3,1 3,2 3,3

1

(3,6) 3,1

0

0

0

1 1

2 2 2 2

1

2 2 2

z z z z

y y

t dt

t NL

t dt

t NL

t s s tt dt t t dt t t dt t t dt t t dti i
t NL i i i i i i i i i

t st dt t t dt t t dti
t NL i i i i

B

B

h ht s
B J a V b V J h b V J a V

r r

h t s
B J a V b V J

r

+

+

+ − + + − + − +

+ − + +

=

=

=

  
= + + + 

  

  
= − − − 

  

1 1

3,2 3,3

(4,1)

1

(4,2) 1,1

(4,3)

1 1 1

(4,4) 1,1 1,2 1,3

1

2

0

0

1 1

2 2 2 2

y y

xz z

s tt t dt t t dti
i i i i i

t dt

t NL

t dt i
t NL

t dt

t NL

st st dt t t dt t t dt t t dt t t dti i
t NL i i i i i i i i

h
h b V J a V

r

B

h
B J

r

B

h ht s
B J a V b V J h b V J a

r r

− + − +

+

+ −

+

+ − + + − + − +


+



=


=



=

  
= − − − − 

  

(4,5)

1 1 1

(4,6) 1,1 1,2 1,3

(5,1)

1

(5,2) 2,1

(5,3)

1

(5,4) 2,1

0

1 1

2 2 2 2

0

0

z

x x x x

t

i

t dt

t NL

t s s tt dt t t dt t t dt t t dt t t dti i
t NL i i i i i i i i i

t dt

t NL

t dt i
t NL

t dt

t NL

t dt

t NL

V

B

h ht s
B J a V b V J h b V J a V

r r

B

h
B J

r

B

B J

+

+ − + + − + − +

+

+ −

+

+ −

=

  
= + + + 

  

=


=



=


= 1 1

2,2 2,3

(5,5)

1 1 1

(5,6) 1,1 1,2 1,3

1 1

2 2 2 2

0

1 1

2 2 2 2

xz z z

x x x

st s tt t dt t t dt t t dt t t dti i
i i i i i i i i i

t dt

t NL

t s st dt t t dt t t dt t t dt t t di i
t NL i i i i i i i i

h ht s
a V b V J h b V J a V

r r

B

h ht s
B J a V b V J h b V J a

r r

+ + − + − +

+

+ − + + − + − +

 
− − − − 

  

=

  
= + + + 

  

xtt

iV

 (3.183)

(6,1)

1

(6,2) 3,1

(6,3)

1 1 1

(6,4) 3,1 3,2 3,3

(6,5)

1

(6,6) 3,1

0

0

1 1

2 2 2 2

0

xz z z

t dt

t NL

t dt i
t NL

t dt

t NL

st s tt dt t t dt t t dt t t dt t t dti i
t NL i i i i i i i i i

t dt

t NL

t dt i
t NL

B

h
B J

r

B

h ht s
B J a V b V J h b V J a V

r r

B

h
B J

+

+ −

+

+ − + + − + − +

+

+ −

=


=



=

  
= − − − − 

  

=


=



1 1

3,2 3,3

(7,1)

(7,2)

1

(7,3) 1,1

1

(7,4) 1,1 1,

1 1

2 2 2 2

0

0

1

2 2 2

x x x x

y y

t s s tt t dt t t dt t t dt t t dti
i i i i i i i i i

t dt

t NL

t dt

t NL

t dt i
t NL

t st dt t t dt t t dti
t NL i i i i

ht s
a V b V J h b V J a V

r r

B

B

h
B J

r

h t s
B J a V b V J

r

+ + − + − +

+

+

+ −

+ − + +

 
+ + + 

 

=

=


=



  
= + + 

  

1 1

2 1,3

1 1 1

(7,5) 1,1 1,2 1,3

(7,6)

(8,1)

(8,2)

1

2

1 1

2 2 2 2

0

0

0

y y

x x x x

s tt t dt t t dti
i i i i i

t s s tt dt t t dt t t dt t t dt t t dti i
t NL i i i i i i i i i

t dt

t NL

t dt

t NL

t dt

t NL

t dt

t NL

h
h b V J a V

r

h ht s
B J a V b V J h b V J a V

r r

B

B

B

B

− + − +

+ − + + − + − +

+

+

+

+


+



  
= − − − − 

  

=

=

=

1

(8,3) 1,1

1 1 1

(8,4) 2,1 2,2 2,3

1 1

(8,5) 2,1 2,2

1 1

2 2 2 2

1

2 2 2

y y y y

x x

i

t s s tt dt t t dt t t dt t t dt t t dti i
t NL i i i i i i i i i

t st dt t t dt t t dt t t dti
t NL i i i i i i

h
J

r

h ht s
B J a V b V J h b V J a V

r r

h t s
B J a V b V J h b V

r

−

+ − + + − + − +

+ − + + − +


=



  
= + + + 

  

  
= − − − 

  

1

2,3

(8,6)

(9,1)

(9,2)

1

(9,3) 3,1

1 1 1

(9,4) 3,1 3,2 3,3

1

2

0

0

0

1 1

2 2 2 2

x x

y y y

s tt t dti
i i i

t dt

t NL

t dt

t NL

t dt

t NL

t dt i
t NL

t s st dt t t dt t t dt t t dt t t dti i
t NL i i i i i i i i

h
J a V

r

B

B

B

h
B J

r

h ht s
B J a V b V J h b V J a V

r r

− +

+

+

+

+ −

+ − + + − + − +


−



=

=

=


=



  
= + + + 

  

1 1 1

(9,5) 3,1 3,2 3,3

(9,6)

1 1

2 2 2 2

0

y

x x x x

t

i

t s s tt dt t t dt t t dt t t dt t t dti i
t NL i i i i i i i i i

t dt

t NL

h ht s
B J a V b V J h b V J a V

r r

B

+ − + + − + − +

+

  
= − − − − 

  

=

 (3.184)

The stress matrix t t

t ij

+ S from (1.34) has he form:

.

t t t t t t

t xx t xy t xz

t t t t

t yy t yz

t t

t zz

t t t t t t

t xx t xy t xz

t t t t t t
t ij t yy t yz

t t

t zz

t t t t t t

t xx t xy t xz

t t t t

t yy t yz

t t

t zz

sym

  

 



  

 



  

 



+ + +

+ +

+

+ + +

+ + +

+

+ + +

+ +

+

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

S (3.185)

As already mentioned, stress-strain relations are calculated in r,s,t coordinate system, hence we

need equations for their transformations from global x,y,z coordinate system to the isoparametric

system with r,s,t coordinates and vice versa.

Let us denote ,t dt t dtT T 

+ + transformation matrices for strain and stress transformation from

global to isoparametric coordinate system, so that:

t t

t xx

t t

t t t yy

t rr t t

t t t dt t zz

t rs t t

t t t xy

t rt t t

t yz

t t

t xz

t t

t xx

t t

t t t yy

t rr t t

t t t dt t zz

t rs t t

t t t xy

t rt t t

t yz

t t

t xz

T

T



































+

+

+

+

+ +

+

+

+

+

+

+

+

+

+ +

+

+

+

+

 
 
  
  

=   
  

   
 
  



 
 

= 
 
 




 
 
 
 
 
 
 
 

 (3.186)

Then the transformation matrices are calculated by:

() () ()
22 2

2y yx xz

y y y yx x x xz z

y y y yx x x xz z

r rr rrt dt t dt t dt t dt t dt

r s s rr s r sr st dt t dt t dt t dt t dt t dt t dt t dt t dt t dt t dt

r t t rr t r tr st dt t dt t dt t dt t dt t dt t dt t dt t dt t dt

V V V V V

T V V V V V V V V V V

V V V V V V V V V V



+ + + + +

+ + + + + + + + + + +

+ + + + + + + + + +





= +
 +



... 2 2

...

...

y xz z

y y x xz z z z

y y x xz z z z

r rr rt dt t dt t dt t dt

r s r ss r s rt dt t dt t dt t dt t dt t dt t dt t dt

r t r tt r t rt dt t dt t dt t dt t dt t dt t dt t dt

V V V V

V V V V V V V V

V V V V V V V V

+ + + +

+ + + + + + + +

+ + + + + + + +




+ + 


+ + 

 (3.187)

() () ()
22 2

2 2 2

2 2 2

yx z

y yx x z z

y yx x z z

rr rt dt t dt t dt

r sr s r st dt t dt t dt t dt t dt t dt t dt

r tr t r st dt t dt t dt t dt t dt t dt

V V V

T V V V V V V

V V V V V V



+ + +

+ + + + + + +

+ + + + + +





= 




...

...

...

y xz z

y y x xz z z z

y y x xz z z z

r rr rt dt t dt t dt t dt

r s r ss r s rt dt t dt t dt t dt t dt t dt t dt t dt

r t r tt r t rt dt t dt t dt t dt t dt t dt t dt t dt

V V V V

V V V V V V V V

V V V V V V V V

+ + + +

+ + + + + + + +

+ + + + + + + +




+ + 


+ + 

 (3.188)

where vectors yx z
ss st dt s t dt t dt t dtV V V V+ + + + =

 
, yx z

tt tt dt t t dt t dt t dtV V V V+ + + + =
 

 are

vectors of unity length from Fig. 3-40. The remaining vector is calculated as a vector product of

the previous two vectors:

 yx z
rr rt dt r t dt t dt t dt t dt s t dt tV V V V V V+ + + + + + = = 

 
 (3.189)

Inverse transformation matrices are calculated as:

1

1

t dt t dt T

t dt t dt T

T T

T T

 

 

+ − +

+ − +

=

=

 (3.190)

The element is integrated numerically. Along its longitudinal axis the element is integrated by

standard two to six nodes Gaussian integration. The table below lists r coordinates and

associated weights for utilized integration points:

Number of

integ. points

Integrat

ion

point

Coordinate r

Weight

2
1 0.577350269189626 1.

2 -0.577350269189626 1.

3

1 0.774596669241483 0.555555555555556

2 0. 0.888888888888889

3 -0.774596669241483 0.555555555555556

4

1 0.861136311594053 0.347854845137454

2 0.339981043584856 0.652145154862546

3 -0.339981043584856 0.652145154862546

4 0.861136311594053 0.347854845137454

5

1 0.906179845938664 0.236926885056189

2 0.538469310105683 0.478628670499366

3 0. 0.568888888888889

4 -0.538469310105683 0.478628670499366

5 -0.906179845938664 0.236926885056189

6

1 0.932469514203152 0.171324492379170

2 0.661209386466265 0.360761573048139

3 0.238619186083197 0.467913934572691

4 -0.238619186083197 0.467913934572691

5 -0.661209386466265 0.360761573048139

6 -0.932469514203152 0.171324492379170

In most cases the 2-nodes integration should be sufficient, for a higher order integration schemes

oscillatory shear stresses and forces may be observed along the length of the beam.

As for integration within the cross-section, i.e. in s,t coordinates, trapezoidal quadrature is used.

The element cross-section is subdivided into ,s tn n “strips” as depicted in the following figure.

s

t

2

2

dt1

dt2

dtnt

ds1
dsns

ds2

individual weight

and materia l

“ “

The integration is then carried out by summing functional values in center of all quadrilaterals

multiplied by their area.

Note that the element is integrated within the isoparametric coordinate system, hence we have to

use det()dxdy dz J dr ds dt= , see (3.178).

Nice feature of the ATENA’s implementation of the beam is that each of the quadrilaterals in a

cross section adopts an artificial input weight factor. By default, such a “weight” is equal to one,

however, if we set its value to zero, essentially a hole is introduced. This mechanism, together

with possibility of defining a customized material law in each of the quadrilaterals facilitates to

analyze beams that have a arbitrary shape of cross-sections.

The present beam implementation supports also smeared reinforcement. This is done in the same

way as it was for the Ahmad elements described in the previous section.

CCIsoBeamBrick20_3, CCIsoBeamBrick12_3D and CCIsoBeamBrick8_3D are beam curved

isoparametric elements similar to the previous CCBeamNL_3D element. They use similar

geometry, node numbering etc., but differ from CCBeamNL_3D in that they account for all 6

components of 3D strains and stress vectors. They comply with all 3D static equations and no

additional static or kinematic constrains are imposed. The comparison of CCBeamNL_3D vs.

CCIsoBeamBrick12_3D resembles that of CCAhmad vs. CCIsoShell elements described above.

The CCIsoBeamBrick20_3, CCIsoBeamBrick12_3D and CCIsoBeamBrick8_3D are easy to use,

they preserve their 3D volume and they are nicely visualized during pre and post processing.

They can be input, loaded, and output in the same way as CCIsoBrick hexahedral elements.

CCIsoBeam8_3D features linear geometry and displacement approximation, (i.e. it has nodes

1...8, see the figure below), whilst CCIsoBeam12_3D has reduced quadratic approximation, (i.e.

it has nodes 1...12). CCIsoBeam20_3D comprises 20 nodes as shown in the sub-figure “Brick

nodes” below and it has full serendipity displacements approximation.

1
Vs

1
Vt

r

s

t

1

2

3
4

5

6

7

8

9

10

14

15

13

11

12

16

17

18

19

20

1

2

3
4

5

6

7

8

9

10

11

12

Geometry

Brick nodes

Beam 3D nodes

x

y

z

u
v

w

x

z


y Isoparametric shape

r

s

t

2
2

2

Global coord. system and element dofs

Shape of cross section can be any quadrilateral, i.e. it need not be only a rectangle as depicted

above. The elements are particularly useful for analyses of structures, where beam elements must

be combined with 3D solid and/or shell elements.

Derivation of the element is much the same as that for CCIsoShell element, i.e. Equations

(3.150) and (3.152) thru (3.172) remain valid. Geometry and displacement approximation

(3.151) is replaced by:

(1)

()

, , , ,

, (1) , (1) , (1) , (1)

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1

2

i

i

t t k front t k back t k top t k bot

i k i i i i

t t t t k front i t t k back i t t k top i t t k bot i

i k i i i i

t t t

i k

s s t t
x h X X X X

s s t t
x h X X X X

ds
x h

−+ + − + − + − + −

+

+ − + −  
= + +  

  

+ − + −  
= + +  

  

+
= , () , () , () , ()1 1 1

2 2 2

t k front i t t k back i t t k top i t t k bot i

i i i i

s t t
X X X X+ + + +− + −  

+ +  
  

 (3.191)

()k kh h r= are 1D interpolation functions, see the interpolation function for CCIsoTruss

elements. The same notation is used for CCIsoShell Elements.

The element is calculated in integration points, (i.e. material points) that are located similar to

CCBeamNL_3D elements, refer to Fig. 3-41. The element can use any 3D material model.

Different materials can be specified for each material points, (or points in cross section). Some

of them can be used for modelling of embedded reinforcement. (Btw. discrete reinforcement can

be employed, too). The elements support both material and geometric nonlinearity.

The elements CCIsoBeamBar<xx> and CCIsoBeamBar<xxx> are from the point of view of

mechanics nearly identical to the element described in Section 3.13, the difference being only in

that that these elements are specified by their axis as 1D beams. The first element has 2 nodes

(and uses linear interpolation of its geometry and displacements). The latter element has 3 nodes

(and uses quadratic interpolation of its geometry and displacements, which is identical to

CCBeamNL element referred above). The elements can be curved and can have variable height,

width and orientation of their cross section. All these parameters are input in CCBeam1D

geometry in form of algebraic expressions. The expression are functions of beam's coordinates

x,y,z. Similar to CCBeamNL element, these elements are also integrated by Gauss integration

along the beam's axis while grid quadrature is used for the remaining 2 directions (within cross

sections). The elements support embedded reinforcements, holes different materials in different

integration points etc. in the same way as it is the case of CCBeamNL element. They are suitable

for modeling of both shallow and deep beams. Note that CCIsoBeamBar<xx> has far worse

properties compared to CCIsoBeamBar<xxx>. Hence, the linear element should be used only to

model some links and connections within the structures.

1

2

3

Beam 1D nodes

x

y

z

u
v

w

x

z


y Isoparametric shape

r

s

t

2
2

2

Global coord. system and element dofs

The procedure to connect beam1D's dofs to an ambient element is like that for shell2D elements,

see 3.13.2. Again, it consists of two parts:

1. fix a FE node with [, ,]u v w displacement within the beam1D element,

2. fix three rotation dofs of the beam1D element within ambient elements

 [, ,]u v w

Using (3.176) and (3.177) write expression for beam1D displacements at the top top

iu and bottom

bot

iu , i.e. 0, 1s t= =  of a cross section. Do the same for right right

iu and left left

iu point, i.e.

1, 0s t=  = .

Write 3D solid approximation for the same 4 nodes. Then, if we compare the 1D and 3D

approximation, after some mathematical manipulation we derive

14 58

14 58

15 48

(, 1, 1) (, 1, 1) (, 1, 1) (, 1, 1)

(, 1, 1) (, 1, 1) (, 1, 1) (, 1, 1)

(, 1, 1) (, 1, 1) (, 1, 1)

p

k k k k k

m

k k k k k

m

k k k k

hh hh r s t hh r s t hh r s t hh r s t

hh hh r s t hh r s t hh r s t hh r s t

hh hh r s t hh r s t hh r s t

= = = + = − = + = = − + = − = −

= = = + = − = − = = − − = − = −

= = = + = = − − = − = −

14 58 14 58 15 48

1

14 58 14 58

2

,
14 58 15 483

,

,

(, 1, 1)

0 0 0
2 2

0 0 0 0
2

0 0 0 0

k

k
p m mk k

k k k
k

kp mk
k k

k x k
p m

k k y k

z k

hh r s t

u
a b

hh hh hh v
u

wa
u hh hh

u
hh hh







= − = −

 
 

 − 
    
    = −     
       

 
      



 (3.192)

Similarly, to the expressions for shell2D the resulting equations for beam1D rotation , ,x y z  

are

1 2 3 1 2 3 1 2 3 1 2 3

x
T

top top top bot bot bot right right right left left left

y

z

UU UU UU UU UU UU UU UU UU UU UU UU







 
   =   
  

MM

 (3.193)

1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2

1 / 2

x y x yx x x z x z

x y x y y y y z y z

y z y zx z x z z z

x

T

y x yx x x z x z

Vs Vr Vr VsVr Vs Vs Vr Vr Vs

a a a a a

Vr Vs Vs Vr Vr Vs Vs Vr Vr Vs

a a a a a

Vr Vs Vs VrVr Vs Vs Vr VrVs

a a a a a

Vs Vr Vr VsVr Vs Vs Vr Vr Vs

a a

MM

a a a

Vr

− + − +

− + − +

− + − +

− − −

=

1 / 2 1 / 2

1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2

1 / 2

x y x y y y y z y z

y z y zx z x z z z

x y x yx x x z x z

x y x y y y y z y z

x z x z

Vs Vs Vr Vr Vs Vs Vr Vr Vs

a a a a a

Vr Vs Vs VrVr Vs Vs Vr Vr Vs

a a a a a

Vt Vr Vr VtVr Vt Vt Vr Vr Vt

b b b b b

Vr Vt Vt Vr Vr Vt Vt Vr Vr Vt

b b b b b

Vr Vt Vt Vr

b

− − −

− − −

− − −

− − −

− 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2

y z y z z z

x y x yx x x z x z

x y x y y y y z y z

y z y zx z x z z z

Vr Vt Vt Vr Vr Vt

b b b b

Vt Vr Vr VtVr Vt Vt Vr Vr Vt

b b b b b

Vr Vt Vt Vr Vr Vt Vt Vr Vr Vt

b b b b b

Vr Vt Vt VrVr Vt Vt Vr Vr Vt

b b b b b

− −

− + − +

−




















+ − +

− +






− +
































 
 
 
 
 
 
 
 
 
 

 (3.194)

where
, , , ,k kr s

i i kk i k i kV V V a ar Vs b b= = = =

Note that displacement dofs are fixed by(3.192).

If either bottom or top node gets outside the ambient element, the middle point is used instead.

Equations (3.193) and (3.194) are still valid but it is necessary to use

1
(,) (,), 1..6, (,) (,), 7..12

2
MM i j MM i j j MM i j MM i j j= = = = to calculate

T

x y z     .

Similarly, if either right or bottom node gets outside the ambient element, the middle point is

used instead. Then, it is necessary to use

1
(,) (,), 1..6, (,) (,), 7..12

2
MM i j MM i j j MM i j MM i j j= = = = to calculate

T

x y z     .

Integrated forces for shells are computed as follows:

/ 2

' ' '
/ 2

/ 2

' ' '
/ 2

/ 2

' ' '
/ 2

/ 2

' ' ' '
/ 2

/ 2

' ' ' '
/ 2

/ 2

' ' ' '
/ 2

/ 2

' ' '
/ 2

/ 2

' ' '
/ 2

/ 2

' ' ' '
/ 2

'

'

'

'

'

'

'

() '

() '

t

x x x
t

t

y y y
t

t

z z z
t

t

x z x z
t

t

x y x y
t

t

y z y z
t

t

y x x
t

t

x y y
t

t

x y x y
t

N dz

N dz

N dz

Q dz

Q dz

Q dz

M z dz

M z dz

K z dz



















−

−

−

−

−

−

−

−

−

=

=

=

=

=

=

=

= −

= −



















 (3.195)

The above forces and moments act on planes indicated below:

' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' ' ' '

' ' : 0

' ' : 0

' ' : 0 0 0

x x y x z x y y x z

y x x y y y z x y x x y y z

z x x z z y y z z z x z y z

y z N Q Q K M K

x z Q Q N Q M K K K

x y Q Q Q Q N K K M

 = 

 = = − = 

 = = = = = 

The actual values of the forces and moments are calculated by extrapolation of stresses from IPs

into finite element nodes, (please refer to Section "Extrapolation of Stress and Strain to Element

Nodes" in Chapter CONTINUUM GOVERNING EQUATIONS. The process is as follows:

Let us take an example of 'xN that is calculated by integration of ' 'x x thru element's thickness.

The stress ' 'x x at element nodes is extrapolated from stresses in IPs ' '
ˆ

x x by

 ' ' ' '

, ' '
ˆ

e

e

inv

x x x x

xx i i x x e
V

ij i j e
V

M P

P h dV

M h h dV





=

=

=





 (3.196)

where eV stands for element volume. Using (3.195) and writing (3.196) for extrapolation within

shell mid-plane e , (i.e. integration over e instead of eV) we can write

 

()
' ' ' '

/ 2

, ' ' ' '
/ 2

ˆ ˆ

1

e e

e e

inv

x x x x

t

xx i i x x e i x x e
t V

ij i j e i j e
V

N MM PP

PP h dz d h dV

MM h h d h h dV
t

 
 −



=

=  =

=  =

  

 

 (3.197)

 where (,)t t r s= is element thickness at r,s. The integration for extrapolation is carried out over

e , because the forces and moments are the same through shell thickness. Note that

(,)k kh h r s= is interpolation function in the shell mid-plane and it is independent of t coordinate,

(unlike (, ,)i ih h r s t= in (3.196)). Therefore, we can write, (see the last equation in (3.197):

()
()

/ 2

/ 2

/ 2

/ 2

(,) (,)

(,) (,)

(,) (,) (,)

1

e e

e

e e

e e

t

i j e i j e
V t

t

i j e
t

i j e i j e

i j e i j e ij
V

h h dV h r s h r s dt d

h r s h r s dt d

h r s h r s t r s d h h t d

h h dV h h d MM
t

 −

 −

 



= 

= 

=  = 

=  =

  

 

 

 

 (3.198)

Integrated forces for beams are computed as follows:

/ 2

' ' '
/ 2

/ 2

' ' ' '
/ 2

/ 2

' ' ' '
/ 2

/ 2

' ' ' ' ' '
/ 2

/ 2

' ' '
/ 2

/ 2

' ' '
/ 2

' '

' '

' '

((') ') ' '

(') ' '

(') ' '

t

x x x
t

t

x y x y
t

t

x z x z
t

t

y z x y x z
t

t

y x x
t

t

z x x
t

N dy dz

Q dy dz

Q dy dz

K z y dy dz

M z dy dz

M y dy dz







 





−

−

−

−

−

−

=

=

=

= − +

=

= −













 (3.199)

The forces and moments act on the plane (x'y'). They are calculated similar way to (3.197),

however,
1

e e
ij i j i j e

l V
MM h h dr h h dV

bh
= =  , where b h is area of the beam's cross section and

el is element length.

Most element loads can be defined in global or local coordinate system. Global coordinate

system is always available, hence using it is usually the safest way to input a desired element

load. Nevertheless, some elements are internally defined in a local coordinate system and it can

be employed for an element load definition, too. Location of such a local system, (if it exists) has

been described together with description of the associated finite element. For example, local

coordinate systems are defined for plane 3D isoparametric elements, shell, and beam elements

etc. On the other hand, elements such as tetrahedrons, bricks and others are defined in directly in

global coordinate system and therefore a local element load is treated as if it were input as a

global element load.

An exception to the above are truss elements. Although they are defined in global coordinate

system, they do support local element load. Their local coordinate system (for element loading

only) is defined as follows:

• local X axis points in direction of the truss element,

• local Y axis is normal to local X axis and lies in the global XY plane,

• its positive orientation is chosen so that the local X and local Y forms a right-hand (2D)

coordinate system in the plane defined by these local axes,

• local Z axis is vector product of the local X and local Y axes, (for 3D case only).

• if the truss is parallel to global z, then local X points in direction of global Z, local Y

coincides with global Y and local Z has opposite direction of the global X, (for 3D case

only).

Specification of a boundary load deserves slightly more attention. Firstly, it is applied only to an

element’s edge or an element’s surface, (see also the note below), as opposed to e.g. an element

body load that is for the whole element. Local coordinate system is thus defined by location of

the loaded edge or surface. Secondly, a boundary load definition must include a reference to a

selection, which contains nodes to be loaded. Their order in the list is irrelevant, as what really

matters is the order in which they appear in the element incidences. When processing a boundary

load, ATENA loops thru all element’s surfaces and edges, (in the order specified in the table

below) and checks appropriate incidental nodes. If the tested node is present in the list of loaded

boundary nodes, it is picked up and put into incidences of a new planar or line element. This

element is later used to process the boundary load. It is its local coordinate system, that is

(possibly) used to deal with local/global load transformations.

The table below defines the orders, in which element surfaces and edges are tested for a surface

or edge element load. (It is assumed that element incidences are 1 2 _ _(, , ...)num elem nodesn n n). It

describes linear elements, but surfaces and edges of nonlinear elements are treated in the same

order.

N2

N1

YG

ZG

YL

YG

XL
XG

N2

N1

XG

YG

YL

XL

2D
3D

Element shape Type Surface/node incidences

Truss Edge
1 2(,)n n

Triangle Surface
1 2 3(, ,)n n n

Edge
1 2 2 3 3 1(,); (,); (,)n n n n n n

Quad Surface
1 2 3 4(, , ,)n n n n

Edge
1 2 2 3 3 1 4 1(,); (,); (,); (,)n n n n n n n n

Hexahedron,

(brick)

Surface
1 2 3 4 5 6 7 8 1 4 8 5 2 3 7 6

1 2 6 5 4 3 7 8

(, , ,); (, , ,); (, , ,); (, , ,);

(, , ,); (, , ,);

n n n n n n n n n n n n n n n n

n n n n n n n n

Edge
1 2 2 3 3 4 4 1

5 6 6 7 7 8 8 5

1 5 2 6 3 7 4 8

(,); (,); (,); (,);

(,); (,); (,); (,);

(,); (,); (,); (,)

n n n n n n n n

n n n n n n n n

n n n n n n n n

Tetrahedron Surface
1 2 3 1 2 4 1 3 4 2 3 4(, ,); (, ,); (, ,); (, ,)n n n n n n n n n n n n

Edge
1 2 2 3 3 1

4 1 4 2 4 3

(,); (,); (,);

(,); (,); (,)

n n n n n n

n n n n n n

Pyramid Surface
1 2 3 4 1 2 5 2 3 5 3 4 5 4 1 5(, , ,); (, ,); (, ,); (, ,); (, ,)n n n n n n n n n n n n n n n n

Edge
1 2 2 3 3 4 4 1

1 5 2 5 3 5 4 5

(,); (,); (,); (,);

(,); (,); (,); (,);

n n n n n n n n

n n n n n n n n

Wedge Surface
1 2 3 4 5 6

1 2 5 4 6 5 2 3 4 6 3 1

(, ,); (, ,);

(, , ,); (, , ,); (, , ,)

n n n n n n

n n n n n n n n n n n n

Edge
1 2 2 3 3 1

4 5 5 6 6 4

1 4 2 5 3 6

(,); (,); (,);

(,); (,); (,);

(,); (,); (,);

n n n n n n

n n n n n n

n n n n n n

Note that only one surface or one edge of each element can be loaded in a single boundary load

specification. If more element’s surfaces or edges are to be loaded, use more boundary load

definitions. Violation of this rule causes an error report and skipping of the offending boundary

load.

G
X

G
Y

1
n

2
n

3
n

L
X

L
Y

1
n

2n
3n

L
X

L
Y

L
Z

G
X

G
Z

G
Y

G
X

G
Z

G
Y

1n

2n 3n

5n

6n

L
X

L
Y

L
Z

L
Z

G
X

G
Z

G
Y

1
n

2n 3n

5n

6n

L
X L

Y

2D edge load
planar element

3D edge load
planar element

3D edge load
solid element 3D surface load

solid element

Transport analysis does not distinguish between local and global element loads. Hence, a local

element “load” is treated as being a global load. The actual load value is always scalar, (unlike

vectors in statics) and it is assumed positive for flow out of the element.

Digital 3D printing of concrete and reinforced concrete structures seems to be an innovated,

progressive, and economically effective method for building civil engineering structures in

future. It has several advantages in comparison to the traditional methods in building industry.

4 Not available in ATENA version 5.7.0 and older

For example, it allows for miscellaneous shapes of the structures, so that they can be designed

more favorably for their static and functional behavior, architectonic design etc. It enables better

optimization of the structures resulting in reduced cost, less labor-intensity, less waste produced,

greater integration of function and increased speed of the whole construction process. Although

most printing methods have not yet showed their full potentials, most engineers agree that they

are the right way for civil engineering in near future, because they contribute to better design of

the structures and their higher industrialization.

There exists a variety of 3D printing methods used at construction scale, name e.g. 3D extrusion,

powder/particle bed printing, 3D block assembling, spraying etc. This Section presents ATENA

support for analyses of printed structures using 3D extrusion and describes, how such a

construction process can be modelled by this software. It is characterized by printing the

structure by layers, i.e. pressing concrete mix thru the nuzzle moving alongside a stepwise linear

polygon line that corresponds to individual walls of the structure. Often, some walls are too wide

to be printed by one pass of the nuzzle and two or more (parallel) printing passes are needed.

Once the current layer has been completed, the printing head returns to its origin, moves one

layer upwards and starts printing next layer until full height walls of the structure is produced.

This section brings preliminary considerations and requirements that should be addressed in

design and fabrication of extruded concrete structures. Some derivations below are inspired by

papers (Roussel 2018) and (Wolfs at.al. 2018).

Material behavior used for digital fabrication of concrete structures can be modelled by

viscoplastic and elastoplastic materials. The former model is suitable for times when the material

is being pumped and is flowing to a place of its final position. This time period is not addressed

here. We will rather concentrate on the later times, when the material is still fresh, but it is

already in rest. At that time, the material features approximately elastoplastic behavior.

There exist several kinds of yield surfaces that define threshold between elastic and fully plastic

behavior. Using a few material parameters that are typically obtained from laboratory tests they

define general 3D stress-strain conditions when the material start to yield. Uniaxial tensile

strength, shear tensile strength etc. are examples of such parameters.

Stress-strain conditions in printed walls are close to 1D conditions, (with self-weight body load

only) and thus, throughout all the derivation here we assume 1D elastic behavior up to the

material compression cf . Nevertheless, as some people prefer to measure and use the material

shear strength shf , we will show how to convert 1D material strength 1Df to shf and vice versa.

Using e.g. Mises yield surface, https://en.wikipedia.org/wiki/Von_Mises_yield_criterion

() () () ()
2 2 2 2 2 2

2 11 22 22 33 33 11 23 31 12

1
3 6

2
v J         

  = = − + − + − + + +   
 (3.200)

calculate equivalent von Mises stress v (2J is the second invariant of stress deviator tensor) for

uniaxial test conditions 1 11 0, 0 for (1) (1)D ijf i j =  =    and pure shear test conditions

https://en.wikipedia.org/wiki/Von_Mises_yield_criterion

12 21 0, otherwise 0sh ijf   = =  = . By comparing the corresponding equivalent von Mises

stresses, we get the required strength conversion formula:

11 1

12

1

3 3

3

v D

v sh

D sh

f

f

f f

 

 

= =

= =

=

 (3.201)

Another option is to use maximum shear stress theory, see

http://thegateacademy.com/files/wppdf/Theories-of-failure.pdf. It defines yield surface by

constraining maximum shear

1 2 2 3 3 1
,max max abs(), abs(), abs()

2 2 2
sh

     


− − − 
=  

 
 (3.202)

where 1 2 3, ,   are principal stresses. Substituting the above two stress test conditions in

(3.202) we get

11 1
1 11 2 3 ,max

12 12
1 2 12 3 12 ,max 12

1

, 0
2 2

()
0, ,

2

2

D
sh

sh sh

D sh

f

f

f f


    

 
      

= = = → = =

− −
= = = − → = = =

=

 (3.203)

Total strain theory postulates, see also the above reference:

 ()2 2 2

1 2 3 1 2 2 3 1 32tst          = + + − + + (3.204)

Then

 () ()

()

1 11 2 3 11 1

1 2 12 3 12 12

1

, 0

0, , 2 1 2 1

2 1

tst D

tst sh

D sh

f

f

f f

     

        



= = = → = =

= = = − → = + = +

= +

 (3.205)

Of course, a more elaborate and precise yield surface can be employed but we believe that for

the preliminary assessment the above simple expressions serve enough accuracy. After all, in

ATENA computer analyses one can use any material model suitable for cementitious material. It

is more accurate but at the same time also computationally expensive.

Let as assume a simplified time development of material yield stress ()cf t

 ,0 ,max() min(,)c c c cf t f f t f= + (3.206)

http://thegateacademy.com/files/wppdf/Theories-of-failure.pdf

where ,0cf is yield stress at time 0t = , (i.e. initial value just after material depositing), ,maxcf is

maximum cf and
cf is structuration rate. The layer is loaded primarily by its gravity self-

weight and therefore

 ,0cf h g (3.207)

Maximum height of one printed layer is

,0cf

h
g

 (3.208)

If surface tension  is considered, it produces stresses of order st
h


  . Comparing with

(3.208) we get

h g
h

h
g












 (3.209)

For example, for
Pa

0.1
m

 = , (=water) we calculate
0.1

0.002m
2300 10

h  . Therefore, for

printed structures stability contribution of ,0cf is more important than contribution of surface

tension.

If we consider the case of several printed layers, the lowest layer must resist vertical load H g ,

where H is total height of the structure.

11

,0

,0

c

c c c v

c

c v

H g f

f f f t H g v t g

f
f v g

t

 

 



= 

= +  =

 −

 (3.210)

where vv is vertical printing speed. The last expression in (3.210) states minimum structuration

rate f for being able to print the top layer at time t.

The total time tott for printing height H of the structure is

 l h
tot

v h

l

l
H

H H H t v H l
t

hv h h v h

t

= = = = = (3.211)

In the above lt is time to print a single layer, i.e. time necessary for printing head’s move along

the printing polygon that has total length l.

This section describes steps that are executed to estimate plasticity-based criterion in ATENA.

The procedure is inspired by (Suiker 2020) presentation at DC2020 conference in Eindhoven in

2020.

The stability criterion is similar to that presented in the previous section; however, it is expressed

in slightly different form. It assumes linear material curing function, i.e.

 ,0() (1)p pt t  = + (3.212)

where ()p t is material yield strength at time t, ,0p is its initial value at 0t = and  represents

material linear curing rate of the yield stress.

Vertical stress v at the bottom of the wall is, (H is the wall height,  is concrete density and g

states for gravity acceleration)

 v H g = (3.213)

and we require

 p v  (3.214)

For the following derivation, lets introduce dimensionless parameter

,0p

vgv
 


 


= (3.215)

 Note that vertical printing speed vv is in the (Suiker 2020) paper (and Atena) denoted as l .

Substituting vH v t= into (3.213) we get

 ,0 *(1)p p vt v g   = +  (3.216)

After some mathematical manipulation it yields

,0

1

1
p

p

p p

l

l l
g








−



 (3.217)

where pl is the maximum wall height before the collapse.

If ,0 0p = , then the wall is stable for
p

vv g
t








, i.e. the case, when time rate of increase of

material strength is higher than the rate of increase of vertical stress during printing of the wall.

This condition also indicates unlimited wall height.

The paper (Suiker 2020) also discusses, how to calculate p . For the case of pressure-

dependent shear failure, they recommend Mohr-Coulomb theory

2 cos()

1 (1)sin()
p

c

K K





=

− − +
 (3.218)

 In the above  is material frictional angle, c states for material cohesion and min(,)y zK K K=

is minimum of coefficient of lateral stresses / , /y y x z z xK K   = = , (axis x is vertical, axes

y,z are lateral, i.e. horizontal.

Substituting (3.218) into (3.212) yields

 ,0 ,0 ,0

,0

1
(1) 1

p p p p

p p p p p

p

c c
t t t

t c t t c t

    
    

  

          
= + = + + = + +                

 (3.219)

From the above

,0

1 p p

p

p

c

t c t

 


 

   
= + 

    
 (3.220)

where

2

2

2 sin() 2 cos() (1)

1 (1)sin() (1 (1)sin())

2cos()

1 (1)sin()

p

p

c c K

K K K K

c K K

  

  

 



 − +
= +

 − − + − − +


=

 − − +

 (3.221)

This section describes a similar stability assessment; however, exponential decaying curing

process is assumed now. This means that Eqn. (3.212) changes to

,0() ((1)e)

t

p p p pt     −
= + − (3.222)

where
,0

()p

p

p







= and  is now coefficient of compression strength exponential curing rate.

Substituting (3.222) into (3.213) and (3.214) yields

() 0

0

0

11
W e

p p

v
p p gv

collaps v p p

vv

et gv
v g gv

  

 





  
   

  

−  −
  = − +

  
  

 (3.223)

W(z) states for Lambert W(z) function. The maximal wall height at collapse is

 p collapse vl t v= (3.224)

Buckling stability of the printed structures may limit the structure even more that strength-base

stability. It is computed using Euler Buckling Theory, see

http://www.continuummechanics.org/columnbuckling.html. Let us start our derivation with

classic beam bending equation that reads

 E I u M= (3.225)

where E, I state for Young modulus and quadratic moment of inertia, x is longitudinal coordinate

of the beam with its origin at the bottom, ()u u x= is deformation and
2

2

d u
u

dx
= is its second

derivation with respect to x. M is loading moment. Let us assume 1m long section of the wall. It

can be modelled by a vertical beam supported at the bottom and loaded by a vertical force P at

its top, i.e. M Pu= − . Solving differential equation (3.225) yields

 sin cos
P P

u A x B x
E I E I

   
= +      

   
 (3.226)

A, B are two constants to be solved from the beam’s boundary conditions (0) () 0u u H= = and

(0) () 0u u H= −  . It yields 0B = and when looking for a nontrivial solution, we get

P
H

E I
= , from which we derive the well-known final expression for critical force

2

2

E I
P

H


= (3.227)

http://www.continuummechanics.org/columnbuckling.html

The same applies for boundary conditions (0) (0) () 0u u u H= = = and () 0u H  . For a general

case

2

2()

EI
P

kH


= (3.228)

Substituting P H g A= , (A is cross section of the 1m long wall section), we get

2 3
2 2 2

2

2 2 2

2 2

3

1
1

12

1 12

1

12

E w
E I E w

H
Pk k H g w k H g

E w
H

k g


 

 





= = =

=

 (3.229)

Equation (3.229) states critical height of a printed wall to prevent its collapse due to losing

stability. W states for the wall width.

Finally, using (3.229) and (3.210) calculate a threshold H, below which the strength-based

stability criterion (3.210) is dominant whilst above it the buckling limit is more restrictive.

2 2 2 2

3
3

1 1

12
12

12

c

c

E w E w
H

fk g k

H

w E
H

k f

 





= =

=

 (3.230)

The paper by (Suiker 2020), (Suiker 2018) also presents an estimation of elastic buckling

stability of the printed walls. It is more accurate than the criterion from the previous section

because it allows for clamp or simple support boundary conditions along the wall vertical edges.

Like 3.23.1.4.1 the material linear curing rate is assumed

 0 () (1)EE t E t= + (3.231)

where ()E t is material Young modulus at time t, 0E is its initial value at 0t = and

E represents material linear curing rate of elasticity modules.

The employed method is in detail derived in (Suiker 2018). It presents a semi numerical-

analytical solution expressed in forms of easily useable plots. The recommended procedure is

implemented in ATENA.

The solution uses three dimensionless parameters

3

0

3

0

0
3

cr cr

cr

E
E

v

gh
l l

D

gh
b b

D

D

gh v










=

=

=

 (3.232)

In the above equations , ,crl b h is critical buckling height, horizontal length, (i.e. width), and

thickness of the wall, respectively. Vertical printing speed is:

 l
v

n l l

q t
v l

v hT T
= = = (3.233)

with n lq v h t= being the material volume discharged from the printing nozzle per unit time, lT is

the period required for printing an individual layer and lt is height, (i.e. thickness) of the printed

layer, see the figure below

0D states for initial wall bending stiffness defined by

3

0
0 212(1)

E h
D


=

−
 (3.234)

where 0E is initial Young modulus and  is Poisson ratio of the material.

The procedure to calculate critical wall height crl is as follows

1. Calculate 0D , (3.234).

2. Calculate E , crb , (3.232).

3. For the particular support conditions along vertical edges of the wall use

Fig. 3-47 and find crl that corresponds to the above E , crb .

4. Using inverse of the expression for crl calculate crl , (3.232).

If the printed wall is not supported along its vertical edges, use the dash line for free wall in Fig.

3-47, (i.e. for crb = ). The dash lines for the case of clamped and simply supported wall yield

the same the same crl .

Alternatively, (Suiker 2020) recommends 0.7931.98635 0.996cr El = + .

This section provides solution for buckling stability subject to exponential material curing rate

 0() ((1)e)E t

E EE t E   −
= + − (3.235)

Notation used is similar to the above, i.e.
0

()
E

E

E



= and E is now coefficient of exponential

Young modulus curing rate.

The overall solution is the same as it was for the case of linear curing, only instead of Fig. 3-47

the solution with exponential curing rate requires to use plots Fig. 48 thru Fig. 50. These plots

also comes from (Suiker 2018).

Note that (Suiker 2018) provides the above plots only for {2..10}E = . It is sufficient for

modelling some laboratory experiments, but practical analyses typically require values of P

much higher.

If we assume c pf = , then the previously presented strength stability criteria in Section 3.23.1.3

and Section 3.23.1.4 yield the same results. However, the buckling stability criterion in Section

3.23.1.6 is more sophisticated than that from Section 3.23.1.5. It is mainly improved in that it

can account for additional boundary conditions along the printed wall’s vertical edges.

Nevertheless, for the case of unsupported, (i.e. free) vertical edges the two models should yield

similar results. This is checked here.

Using Young modulus from (3.231) and vertical printing speed vv from (3.233) we can write,

(see Section 3.23.1.5)

2 2

0
3

1

(1)1

2
v

E w
H v t

k g

E t



+
= = (3.236)

where the wall width w h= , see Fig. 3-46. Solving the above equation for t yields critical wall

height crl

3 5 3 3
2 3 2 3 2 2 2 2 2 2 28 29 2 203

0 0

2 4 2

0

2 2

144.5 10 2.4649 10 2.025 10

1
0.000009700895963 28232.21472

l n E

n l l n E

cr v

n l

E T h v
h E g k h E g k k

qgk

v h

q

T T h v E
t

Q gk Qk

t Q
l t v

q

v hT

q


 





 

 + − 

= +

=

=  +

=

(3.237)

Example: substituting wall parameters

0

3
3

3

2

48500 Pa

1
0.000895

sec

m
54427 0.001

sec

kg
2100

m

6.25 m

60 sec

m
10.

sec

1

0.055 m

1 m

l

n

E

n

b
T

v

E

q

v

g

k

h

b





=

=

=

= 

=

=

=

=

=

= (3.238)

the expression (3.237) and (3.232) calculates critical wall height 0.188m an 0.1825m

respectively. For the case of 0.1mh = the expression (3.237) and (3.232) results in 0.305m and

0.292 m.

A typical analysis of a structure built by 3D extrusion slightly differs from usual analyses. All

the required steps are now described:

Step 1. Prepare a FE model of the structure neglecting the printing process:

The analysis starts by creating a full FE models whereby the process of the printing is ignored. It

means that we model the final geometry, properties, and conditions of the structure. Any

available FE preprocessor can be used to achieve the goal. Use appropriate (time independent)

material model and supply parameters that correspond to the final (long age) material properties.

Step 2. Calculate time of construction
constr

it of each part of the structure, i.e. for each individual

element:

Use ATENA UPDATE_ELEMENT_CONSTRUCT_TIME command to accomplish this step. It

requires the following data:

• List of element groups that are printed. It is assumed that all elements of the groups are

constructed in this way. Actual group’s ids are entered via an ATENA selection list.

• Horizontal velocity of the printing head hv , about 1-10 cm/s.

• Thickness of one printed layer h, usually 1-10 cm.

• Width of the printed layer w, typically 5-25 cm

• Vector of vertical move from one layer to the next layer n .

• Track polygon of the printing head’s motion. It is specified as an ATENA selection

containing ids of FE nodes thru which the printing head passes. The track consists of any

number of linear segments. If some segments are not mutually connected, i.e. the track is

broken, separate the corresponding segments by inserting id=0 between their adjacent

end nodes.

• Set start time startt of the track polygon. Typically, 0startt = , however if the structure is

printed using several track polygons (with e.g. different width), then startt of the current

polygon equals to time corresponding to the last point of the previous polygon.

Having all the above it follows to calculate time constr

it of each element. Let  
T

ECP x y z= are

coordinates of center of the element. The element is printed when the head is at the closest

position. The track polygon of the moving head is input by setting location of its bottom right

edge. Hence, in the following derivations we work with a point P, (instead of ECP):

()

()
()

/ 2

/ 2

/ 2

x x

y y

z z

x hn wv

P y hn wv

z hn wv

 − +
 

= − + 
 

− + 

 (3.239)

Element construction time is calculated as follows:

()
2 2

cos(,)

AB AP
PQ

AB

AQ AP PQ

AB
Q A AQ

AB

n PQ
QR PQ n PQ PQ

n PQ

n
R Q QR

n


=

= −

= +

= =

= +

 (3.240)

P

Q

w

EC
P

A

B

h

v

n

R

AB

The element is printed as a part of a segment AB , if point Q AB and its distance

/ 2PR h= . It is printed in a layer id ()int / 1l QR t= + and has construction time

 () _ _1constr

i layer prev segs cur seg

AR
t l t t t

AB
= − + + (3.241)

where layert is total time to print one layer, i.e. its length divided by
hv , _prev segst is time to print

element in the current layer up to point A and _cur segt is time to print the current segment AB .

The symbol  and stand for cross and dot product, respectively. The remaining symbols in

the equations are depicted in Fig. 3-104.

3. Account for construction time constr

it during the analysis:

ATENA calculates structures step by step. Each step has its time t and it stepwise increases.

When executing an analysis step, its time is compared with constr

it of each printed element. If
constr

it t , then the element’s contribution is assembled as usually, i.e. at its full values. For

elements with constr

it t ATENA offers two options:

• The element is calculated as usually, i.e. neglecting its constr

it . It yields unreduced stresses

(corresponding to deformation), vector of element forces and matrix of element stiffness.

However, before their assembly into global data structures, the vector and matrix is

multiplied by a reduction coefficient 1 . This simulates that the element does not yet

exist. The coefficient is defined by ATENA command

NEGLIGIBLE_ELEMENT_CONTRIBUTION_COEFF  . If 0 = , the element does

not contribute at all.

Although this approach is simple, it has several disadvantages: it is computationally

inefficient because it calculates at each time step all elements despite their contribution to

the whole structure is possibly later minimized by the coefficient  . The next

disadvantage is that it involves some element forces’ redistribution, (i.e. some additional

iterations), when the element transfers from
constr

it t to
constr

it t status. Note that it

happens in spite of ATENA uses incremental solution technique.

As discussed previously, the stresses are computed always in full value, i.e. neglecting
constr

it . Now at constr

it t= we calculate element forces by something like

()1

T T

i i i i i
i i

F dV dV  −= = +  B E B . If the structures does not exhibit any

deformation increment at the current step, then
10

T

i i i
i

F dV  − = → =  B , which is

differs from what we used in the previous step, (=
1 1

T

i i
i

F dV − −=  B)!

On the other hand, this solution approach simulates better the case, when we require print

layers having a constant height, (although not quite exactly).

• The second method is to mark all elements active only on condition
constr

it t . Use an

ATENA command something like

 SELECTION "SOLID_BOX_ELEMENTS"

CONSTRUCT_TIME_DEPENDENT_ACTIVE GROUP 1

It ensures that elements with constr

it t are skipped. They are not computed, not assembled,

they don’t contribute the structure. They also do not deform, unless dictated by their

adjacent elements. This solution is more effective because it calculates only “printed”

parts of the structure. Also, no additional iterations are needed. It corresponds to the case

when we keep constant top position of each layer, (while its height slightly increases).

This method is preferable over the previous one.

4. Account for time dependent material behavior

For this kind of analysis, it is essential to use a material model whose properties vary in time.

Mechanical properties of a fresh concrete are certainly significantly different from those for the

mature material. For this purpose, ATENA offers CCMaterialWithVariableProperties material

model. It builds up on any ATENA material model, but it updates its parameters using explicitly

given time functions. Of course, CCMaterialWithVariableProperties accounts for constr

it , i.e. the

time functions receive ()constr

it t− argument. If creep and shrinkage analysis is required, one

should use ATENA MATERIAL id MAT_CONSTR_TIME t command. The material model

then calculates behavior of the material being by t younger, i.e. current and load time , 't t is

replaced by , 't t t t−  −  .

5. Loading

A structure produced by digital 3D extrusion requires typically three kinds of boundary

conditions:

• Kinematic boundary condition, i.e. definitions of supports etc. They are much the same as

for traditionally built structure.

• Self-weight loading: This is modelled by element BODY LOAD option. Use its new

“INSIDE_T_TDT_ONLY” flag to add the element’s weight only once and at the proper

time. For example, use the command something like

LOAD BODY group 1 INSIDE_T_TDT_ONLY VALUE Z -0.023 ;

• Material shrinkage: This loading is input as element INITIAL STRAIN load, whereby we

must consider element construction time constr

it . It is achieved by using a new element

load’s flag CONSIDER_CONSTR_TIME VALUE. At a particular time, younger

elements will exhibit a smaller shrinkage than the older ones. For example, use the

command something like LOAD TOTAL FUNCTION 100 INITIAL STRAIN group 1

CONSIDER_CONSTR_TIME VALUE X 1. Y 1.000 Z 1.000 ;

Note that for the sake of convenience it is recommended to input the load as total load.

Therefore, the loading function is defined as TOTAL. (By default, ATENA assumes

incremental load, i.e. LOAD INCREMENTAL FUNCTION….).

6. Visualization of printing process

By default, ATENA draws only elements that are active and/or elements active on condition

provided constr

it t . However, it can be overridden by checking a special switch, in which case

ATENA draws active element only if
constr

it t and/or it draws conditionally active elements

despite their constr

it t status. As such, it is always possible to view full or only printed part of the

structure.

AHMAD, S., B. M. IRONS, ET AL. (1970). "Analysis of Thick and Thin Shell Structures by

Curved Finite Elements." International Journal of Numerical Methods in Engineering 2:

419-451.

BATHE, K.J.(1982), Finite Element Procedures In Engineering Analysis, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey 07632, ISBN 0-13-317305-4.

CRISFIELD, M.A. (1983) - An Arc-Length Method Including Line Search and Accelerations,

International Journal for Numerical Methods in Engineering, Vol.19,pp.1269-1289.

FELIPPA, C. (1966) - Refined Finite Element Analysis of Linear and Nonlinear Two-

Dimensional Structures, Ph.D. Dissertation, University of California, Engineering, pp.41-50.

HINTON, E. AND D. R. J. OWEN (1984). Finite Element Software for Plates and Shells,

Peridge Press.

JENDELE, L. (1981). Thick Plate Finite Element based on Mindlin's Theory. Prague, student

research work.

JENDELE, L. (1992). Nonlinear Analysis of 2D and Shell Reinforced Concrete Structures

Including Creep and Shrinkage. Civil Engineering Department. Glasgow, University of

Glasgow: 393.

JENDELE, L., A. H. C. CHAN, ET AL. (1992). "On the Rank Deficiency of Ahmad's Shell

Element." Engineering Computations 9(6): 635-648.

RAMM, E. (1981) - Strategies for Tracing Non- linear Responses Near Limit Points, Non- linear

Finite Element Analysis in Structural Mechanics, (Eds. W.Wunderlich, E.Stein, K.J.Bathe)

ROUSSEL, N. (2018). - Rheological Requirements for Printable Concretes, Cement and

Concrete Research 112: 76-85.

SUIKER, A. S. (2018). "Mechanical Performance of Wall Structures in 3D Printing

Processes: Theory, Design Tools and Experiments." International Journal of Mechanical

Sciences, 137: 145-170.

SUIKER, A. S., R. J. M. WOLFS, ET AL. (2020). "Elastic Buckling and Plastic Collapse During

3D Concrete Printing." Cement and Concrete Research 135: 1-16.

WOLFS, R. J. M., F. P. BOS, ET AL. (2018). Early Age Mechanical Behaviour of 3D Printed

Concrete: Numerical Modelling and Experimental Testing, Cement and Concrete Research 106:

103-116.

Suiker, A. S. (2018). "Mechanical Performance of Wall Structures in 3D Printing

Processes: Theory, Design Tools and Experiments." International Journal of Mechanical

Sciences, 137: 145-170.

The main objective of this chapter is to review methods for the solution of a set of nonlinear

equations. Several methods, which are implemented in ATENA are described later in this

Chapter. However, all of them need to solve a set of linear algebraic equations in the form

 x b=A (4.1)

where , ,x bA stands for a global structural matrix and vectors of unknown variables and rhs of

the problem, respectively. Hence, this problem is discussed first.

Two types of solvers are supported: direct and iterative, each of them having some pros and

cons. Without going into details, a direct solver is recommended for smaller problems or

problems. It is more robust and manages better ill-posed equations systems. On the other hand,

iterative solvers are typically more efficient to solve large (well-posed) 3D analyses. In addition,

two sparse direct solvers are provided. They intend to borrow advantages from both direct and

iterative solvers.

The two approaches (i.e., direct and iterative) differ in the way they store the structural matrix
A . It comes from the nature of FEM that the structural matrices have sparse character, with most

of nonzero elements located near the diagonal. The matrix has banded pattern and ATENA

works with band of variable width.

If a direct solver is used, then each column of matrix A stores all entries between the diagonal

element and the last nonzero element in the column. This structure is sometimes called sky-line

profile structure. The matrix A

11 12 13 15

21 22 23 24 25

31 32 33 34 35

42 43 44 45 46

51 52 53 54 55 56

64 65 66 67

76 77

a a a a

a a a a a

a a a a a

a a a a a

a a a a a a

a a a a

a a

 
 
 
 
 

=  
 
 
 
 
 

A (4.2)

is thus stored in three vectors , ,d u l with actual data and one vector p with information about

matrix’s profile:

 

 

 

 

11 22 33 44 55 66 77

12 13 23 13 24 34 15 25 35 45 46 56 67

21 31 32 13 43 43 51 52 53 54 64 65 76

0 1 3 5 9 11 12

T

T

T

T

d a a a a a a a

u a a a a a a a a a a a a a

l a a a a a a a a a a a a a

p

=

=

=

=

 (4.3)

For each column i of the matrix A the vector p stores location of (1)i ia − within the array u ,

resp. l . If A is symmetric, then u l= and only l is stored. Note the a direct solver we have to

store all elements within the bandwidth, even though some of them may be equal to zero,

because that they can become nonzero in the process of solution, (i.e., matrix factorization).

 Iterative solver can store only true nonzero elements, irrespective of whether they are located

above or below the skyline. Suppose the matrix A from (4.2) that stores some zero elements

below the skyline

11 13 15

22 23 24

31 32 33 34

42 43 44 46

51 55

64 65 66 67

76 77

0

0 0

0

0

0 0 0 0

a a a

a a a

a a a a

a a a a

a a

a a a a

a a

 
 
 
 
 

=  
 
 
 
 
 

A (4.4)

 All iterative solvers would store the matrix A in three vectors. All the data are stored in a vector

a and location of the stored element is maintained in vectors ,r c . The above matrix is stored as

follows:

 

 

 

11 31 51 22 32 42 33 13 23 43 77 67...

1 3 5 2 3 4 3 1 2 3 ... 7 6

1 4 7 21 23

a a a a a a a a a a a a a

c

r

=

=

=

 (4.5)

The vector a stores for each column of A first diagonal element, followed by all nonzero

elements, from the top to the bottom of the column. The vector c stores row index of each entry

in the vector a . r stores location of all diagonal elements iia within a appended by an artificial

pointer to 1 1n na + + , where dim()n = A .

The well-known Cholesky decomposition is used to solve the problem. The matrix A is

decomposed into

 =A LDU (4.6)

where ,L U is lower and upper matrix and D is diagonal matrix. The method to compute the

decomposition is described elsewhere, e.g. (Bathe 1982). Equation (4.1) is then solved in two

steps:

()

1

1

v b

x v

−

−

=

=

L

DU
 (4.7)

Both of the above equations are computed easily, because the involved matrices have triangular

pattern. Hence, the solution of (4.7) represents back substitution only. If A is symmetric, (which

is usually the case), then

 T=U L (4.8)

Direct sparse solvers are similar to the above Direct solvers; however, they should work more

economically both in terms of RAM and CPU requirements. They belong to a group of direct

(i.e., non-iterative) solution methods. They are based on matrix decomposition similar to (4.6).

The decomposition can be LU or LDU for non-symmetric matrices and/or LLT or LDLT

decomposition for symmetric matrices.

The main difference between these solvers and those from Section 4.1.3 is that they run the so-

called pre-factorization procedure before the actual factorization is executed. Such a pre-

factorization has two jobs:

1. Find out, what initially zero ija entries of the matrix A (that are stored below the skyline)

become nonzero due to factorization of A. Such entries are called fill-in.

2. Per mutate lines and columns of A so that the filling gets minimum.

Once a map of fill-in is known, it is added to the originally nonzero data of A and only these data

are to be stored and maintained in the next operations. Hence, as it is not necessary to store and

work upon all data below the skyline of A (as it is he case of solvers in Section 4.1.1); we can

use here a sparse matrix storage scheme. The incurred savings in both RAM and CPU resources

is significant and it pays off well for a computation overhead caused by the pre-factorization

phase and a bit more complicated storage scheme in use.

It is beyond the scope of this document to describe all details about the implementation of this

solver. It is based on (Vondracek, 2006) and (Davis et. al, 1995). A number of optimization

techniques are used to speed up the solution procedure, such as the problem (4.6) can be solved

using a block structure. This applies to pre-factorization, factorization as well as for

backward/forward substitution phases. The typical size of such a block is 2x2 .. 6x6. The bigger

block size, the smaller overhead for pre-factorization and mapping of the matrix and the faster

the operation to actually factorize and solve the problem (4.6). Use of a bigger block, however,

results also in a higher waste of RAM because all nonzero data and fill-in are rounded into a

storage with block pattern.

Direct sparse solvers are a compromise between Direct Solvers and Sparse Solvers. They

typically need more RAM and CPU than Sparse solvers do (and less than Direct Solvers),

however, they never diverge and bring uncertainties as what precoditioner to use, etc. Therefore,

they are recommended for middle size (may-be ill-conditioned) problems, the solution of which

would not fit into RAM subject a Direct Solver is used, and for which Sparse solvers are not

sufficiently robust.

The table below lists all solvers in ATENA that can solve the problem (4.1) iteratively. Although

the list is long, from the practical point of view only a few of them are recommended, see the

column “Description”. In addition, only the methods DCG and ICCG are designed to take full

advantage of symmetry of A (if present). The remaining solvers would store only the symmetric

part of A, however, they will operate on it in the same way as it is not symmetric. Therefore, for

symmetric problems, the solvers DCG and ICCG are preferable.

Each of the iterative solvers typically consists of two routines, one for “preparation” of the

solution and the other for the solution itself, i.e., “execution” phase. The former routine is

particularly important for the case of preconditioned iterative solvers. This is where a

preconditioning matrix is created.

The most efficient preconditioning routine are based on incomplete Cholesky decomposition

(Rektorys 1995). The preconditioning matrix A' is decomposed in the same way as (4.6), i.e.

 =A' L'D'U' (4.9)

Comparing A and A' , it can be written

0 '

0 '

ij ij ij

ij ij ij

for a a a

for a a a

 =

= 
 (4.10)

The incomplete Cholesky decomposition is carried out in the same way as complete Cholesky

decomposition (4.6), however, entries in A , which were originally zero and became nonzero

during the factorization are ignored, i.e., they stay zero even after the factorization. The incurred

inaccuracy is the penalty for memory savings due to usage of the iterative solvers’ storage

scheme. For symmetric problem, use ssics routine, for non-symmetric problems the ssilus is

available to construct = T
A' L'D'(L') or =A' L'D'U' .

Last but not least, note that each solver needs some temporary memory. Such requirements are

included in the table below. Typically, the more advanced the iterative solver, the more extra

memory it needs and the fewer the number of iterations needed to achieve the same accuracy.

Type D/I Prep.

phase

Exec.

phase

Sym/N

on-

sym

Temporary memory

required

Description

LU D --- --- S,NS ----- For smaller or ill-

posed probems

JAC I ssds sir S,NS 4*(11)+8*(1+4*n) Simple, not

recommended

GS I --- sir S,NS 4*(11+nel+n+1)+8*(1+3

*n+nel)

ILUR I ssilus sir S,NS 4*(13+4*n+nu+nl)+8*(1

+4*n+nu+nl)

DCG I ssds scg S 4*(11)+8*(1+5*n) For large symmetric

well-posed problems

ICCG I ssics scg S 4*(12+nel+n)+8*(1+5*n

+nel)

For large symmetric

problems,

recommended

DCGN I ssd2s scgn S,NS 4*(11)+8*(1+8*n) For large non-

symmetric well-

posed problems

LUCN I ssilus scgn S,NS 4*(13+4*n+nl+nl)+8*(1

+8*n+nl+nu)

For large non-

symmetric problems,

recommended

DBCG I ssds sbcg S,NS 4*(11)+8*(1+8*n)

LUBC I ssilus sbcg S,NS 4*(13+4*n+nl+nu)+8*(1

+8*n+nu+nl)

DCGS I ssds scgs S,NS 4*(11)+8*(1+8*n)

LUCS I ssilus scgs S,NS 4*(13+4*n+nl+nu)+8*(1

+8*n+nu+nl)

DOMN I ssds somn S,NS 4*(11)+8*(1+4*n+nsave

+3*n*(nsave+1))

LUOM I ssilus somn S,NS 4*(13+4*n+nu+nl)+8*(1

+nl+nu+4*n+nsave+3*n

*(nsave+1))

DGMR I ssds sgmres S,NS 4*(31)+8*(2+n+n*(nsav

e+6)+nsave*(nsave+3))

LUGM I ssilus sgmres S,NS 4*(33+4*n+nl+nu)+8*(2

+n+nu+nl+n*(nsave+6)+

nsave*(nsave+3))

In the above:

n is the number of degree of freedom of the problem. nel is the number of nonzeros in the lower

triangle of the problem matrix (including the diagonal). nl and nu is the number of nonzeros in

the lower resp. upper triangle of the matrix (excluding the diagonal).

Phase name Description

sir Preconditioned Iterative Refinement sparse Ax = b solver. Routine to solve a

general linear system Ax = b using iterative refinement with a matrix

splitting.

scg Preconditioned Conjugate Gradient iterative Ax=b solver. Routine to solve a

symmetric positive definite linear system Ax = b using the Preconditioned

Conjugate Gradient method.

scgn Preconditioned CG Sparse Ax=b Solver for Normal Equations. Routine to

solve a general linear system Ax = b using the Preconditioned Conjugate

Gradient method applied to the normal equations AA'y = b, x=A'y.

sbcg Solve a Non-Symmetric system using Preconditioned BiConjugate Gradient.

scgs Preconditioned BiConjugate Gradient Sparse Ax=b solver. Routine to solve a

Non-Symmetric linear system Ax = b using the Preconditioned BiConjugate

Gradient method.

somn Preconditioned Orthomin Sparse Iterative Ax=b Solver. Routine to solve a

general linear system Ax = b using the Preconditioned Orthomin method.

sgmres Preconditioned GMRES iterative sparse Ax=b solver. This routine uses the

generalized minimum residual (GMRES) method with preconditioning to

solve non-symmetric linear systems of the form: A*x = b.

Phase name Description

ssds Diagonal Scaling Preconditioner SLAP Set Up. Routine to compute the

inverse of the diagonal of a matrix stored in the SLAP Column format.

ssilus Incomplete LU Decomposition Preconditioner SLAP Set Up.Routine to

generate the incomplete LDU decomposition of a matrix. The unit lower

triangular factor L is stored by rows and the unit upper triangular factor U is

stored by columns. The inverse of the diagonal matrix D is stored. No fill in

is allowed.

ssics Incompl Cholesky Decomposition Preconditioner SLAP Set Up. Routine to

generate the Incomplete Cholesky decomposition, L*D*L-trans, of a

symmetric positive definite matrix, A, which is stored in SLAP Column

format. The unit lower triangular matrix L is stored by rows, and the inverse

of the diagonal matrix D is stored.

ssd2s Diagonal Scaling Preconditioner SLAP Normal Eqns Set Up. Routine to

compute the inverse of the diagonal of the matrix A*A'. Where A is stored in

SLAP-Column format.

As for the solution procedure, i.e., the latter of the two solution phases, the most commonly used

method is the Conjugate gradient method (with incomplete Cholesky preconditioner) (Rektorys

1995). The flow of execution is as follows:

()

()

1 1

1 1 1

1 1

1

1

1

1 1 1

1

i i
i

i i

i i i i

i i
i

i i

i i i i

i i i i

i i

r b x

z r

r z

r z

p z p

r z

p p

x x p

r r p

z r

i i











−

− −

−

+

+

+ − +

= −

=

=

= +

=

= +

= −

=

= +

A

M

A

A

M

 (4.11)

This solution procedure is implemented in scg routine.

The iterative solvers in ATENA are based on SLAP package (Seager and Greenbaum 1988) that

were modified to fit into ATENA framework. The authors of the package refer to (Hageman and

Young 1981), where all of the implemented solution techniques are fully described.

This solver uses PARDISO parallel direct sparse solver from the Math Kernel Library (MKL)

provided by Intel together with Intel Composer XE 2011. The solver has been developed within

the PARDISO Project, (see for example http://www.pardiso-project.org/). It is aimed for large

sparse symmetric and un-symmetric linear systems with shared memory. It offers direct or

iterative solver algorithms. The solver is well established and used by many software packages.

A lot of literature is related to the PARDISO project. For more information, refer to

http://fgb.informatik.unibas.ch/people/oschenk/index.html. Also, basic information is given in

the Intel Composer XE 2011 manuals.

A simplified version of this solver is also included in Atena. For the sake of simplicity, most

solution parameters are kept with their default value. The exception to that is the parameter

"PARDISO_REQUIRED_ACCURACY". It is input via the Atena "SET" input command. It

specifies, whether use of direct method with LU decomposition or iterative method with CGS

preconditioning is preferred. In the latter case, it also set a required solution accuracy. (For more

information refer to the Atena Input File Manual).

The following solver description is taken from the MKL manual provided by with Intel

Composer XE 2011, (also at http://software.intel.com/sites/products/documentation/hpc/

mkl/mklman/GUID-7E829836-0FEF-46B2-8943-86A022193462.htm.

Symmetric Matrices:

The solver first computes a symmetric fill-in reducing permutation P based on either the

minimum degree algorithm (Liu, 1985) or the nested dissection algorithm from the METIS

package (Karypis, 1998) (both included with Intel MKL), followed by the parallel left-right

looking numerical Cholesky factorization (Schenk, 2000) of PAPT = LLT for symmetric

5 Available starting from ATENA version 5.

positive-definite matrices, or PAPT = LDLT for symmetric indefinite matrices. The solver uses

diagonal pivoting, or 1x1 and 2x2 Bunch and Kaufman pivoting for symmetric indefinite

matrices, and an approximation of X is found by forward and backward substitution and iterative

refinements.

Whenever numerically acceptable 1x1 and 2x2 pivots cannot be found within the diagonal super-

node block, the coefficient matrix is perturbed. One or two passes of iterative refinements may

be required to correct the effect of the perturbations. This restricting notion of pivoting with

iterative refinements is effective for highly indefinite symmetric systems. Furthermore, for a

large set of matrices from different application areas, this method is as accurate as a direct

factorization method that uses complete sparse pivoting techniques(Schenk, 2004).

Another method of improving the pivoting accuracy is to use symmetric weighted matching

algorithms. These algorithms identify large entries in the coefficient matrix A that, if permuted

close to the diagonal, permit the factorization process to identify more acceptable pivots and

proceed with fewer pivot perturbations. These algorithms are based on maximum weighted

matchings and improve the quality of the factor in a complementary way to the alternative idea

of using more complete pivoting techniques.

The inertia is also computed for real symmetric indefinite matrices.

Unsymmetric Matrices:

The solver first computes a non-symmetric permutation PMPS and scaling matrices Dr and Dc

with the aim of placing large entries on the diagonal to enhance reliability of the numerical

factorization process (Duff and Koster 1999). In the next step the solver computes a fill-in

reducing permutation P based on the matrix PMPSA + (PMPSA)T followed by the parallel

numerical factorization

QLUR = PPMPSDrADcP

with super-node pivoting matrices Q and R. When the factorization algorithm reaches a point

where it cannot factor the super-nodes with this pivoting strategy, it uses a pivoting perturbation

strategy similar to (Li and Demmel 1999). The magnitude of the potential pivot is tested against

a constant threshold of alpha = eps*||A2||inf , where eps is the machine precision, A2 =

P*PMPS*Dr*A*Dc*P, and ||A2||inf is the infinity norm of the scaled and permuted matrix A.

Any tiny pivots encountered during elimination are set to the sign (lII)*eps*||A2||inf, which

trades off some numerical stability for the ability to keep pivots from getting too small. Although

many failures could render the factorization well-defined but essentially useless, in practice the

diagonal elements are rarely modified for a large class of matrices. The result of this pivoting

approach is that the factorization is, in general, not exact and iterative refinement may be needed.

Direct-Iterative Preconditioning.

The solver enables to use a combination of direct and iterative methods (Sonneveld 1989) to

accelerate the linear solution process for transient simulation. Most of the applications of sparse

solvers require solutions of systems with gradually changing values of the nonzero coefficient

matrix, but the same identical sparsity pattern. In these applications, the analysis phase of the

solvers has to be performed only once and the numerical factorizations are the important time-

consuming steps during the simulation. PARDISO uses a numerical factorization A = LU for the

first system and applies the factors L and U for the next steps in a preconditioned Krylow-

Subspace iteration. If the iteration does not converge, the solver automatically switches back to

the numerical factorization. This method can be applied to un-symmetric and structurally

symmetric matrices in PARDISO. For symmetric matrices, Conjugate-Gradients method is

applied. You can select the method using only one input parameter.

Separate Forward and Backward Substitution.

The solver execution step can be divided into two or three separate substitutions: forward,

backward, and possible diagonal. This separation can be explained by the examples of solving

systems with different matrix types.

A real symmetric positive definite matrix A is factored by PARDISO as A = L*LT . In this case

the solution of the system A*x=b can be found as a sequence of substitutions: L*y=b (forward

substitution) andLT*x=y (backward substitution).

A real unsymmetric matrix A is factored by PARDISO as A = L*U . In this case the solution of

the system A*x=b can be found by the following sequence: L*y=b (forward substitution) and

U*x=y (backward substitution).

Note that different pivoting (1x1, 2x2...) produces different LDLT factorization. Therefore results

of forward, diagonal and backward substitutions with diagonal pivoting can differ from results of

the same steps with Bunch and Kaufman pivoting. Of course, the final results of sequential

execution of forward, diagonal and backward substitution are equal to the results of the full

solving step regardless of the pivoting used.

Sparse Data Storage.

Sparse data storage in PARDISO follows the scheme described above.

Using the concept of incremental step by step analysis, we obtain the following set of nonlinear

equations:

 () ()p p q f p = −K (4.12)

where:

q is the vector of total applied joint loads,

()f p is the vector of internal joint forces,

p is the deformation increment due to loading increment,

p are the deformations of the structure prior to load increment,

 ()pK is the stiffness matrix, relating loading increments to deformation increments.

The R.H.S. of (4.12) represents out-of-balance forces during a load increment, i.e., the total load

level after applying the loading increment minus internal forces at the end of the previous load

step. Generally, the stiffness matrix is deformation dependent, i.e., a function of p , but this is

usually neglected within a load increment in order to preserve linearity. In this case, the stiffness

matrix is calculated based on the value of p pertaining to the level prior to the load increment.

The set of equations (4.12) is nonlinear because of the nonlinear properties of the internal forces:

 () ()f kp kf p (4.13)

and nonlinearity in the stiffness matrix

 () ()p p p + K K (4.14)

where k is an arbitrary constant.

The set of equations represents the mathematical description of structural behavior during one

step of the solution. Re-writing equations (4.12) for the i-th iteration within a distinct loading

increment we obtain:

 1 1() ()i i ip p q f p− − = −K (4.15)

All the quantities for the (i-1)-th iteration have already been calculated during previous solution

steps. Now we solve for
i

p at load level q using:

 1i i ip p p−= +  (4.16)

As pointed out earlier, equation (4.15) is nonlinear, and therefore it is necessary to iterate until

some convergence criterion is satisfied. The following possibilities are supported in ATENA

(k marks k -th component of the specified vector):

.

1 1

.

1

.

1 1

.

(()) (())

() ()

(())

()

max((())) max((()))

max(()) max(())

T

i i

rel dispT

i i

T

i i

rel forceT

i i

T

i i

rel energyT

i i

k k k k

i i

abs forcek k

i i

p p

p p

q f p q f p

f p f p

p q f p

p f p

q f p q f p

f p f p









− −

−

− −

 


− −


 −


− −


 (4.17)

The first one checks the norm of deformation changes during the last iteration whereas the

second one checks the norm of the out-of-balance forces. The third one checks out-of-balance

energy, and the fourth condition checks out-of-balanced forces in terms of maximum

components (rather than Euclid norms). The values of the convergence limits  are set by

default to 0.01 or can be changed by the input command SET.

The concept of solving nonlinear equation set by Full Newton-Raphson method is depicted in

Fig. 4-1:

q

p p p
0 1 2

Loading

Loading increment

Deformation

The most time-consuming part of solution (4.15) is the re-calculation of the stiffness matrix

1()ip −K at each iteration. In many cases this is not necessary and we can use matrix 0()pK from

the first iteration of the step. This is the basic idea of the so-called Modified Newton-Raphson

method. It produces very significant time saving, but on the other hand, it also exhibits worse

convergence of the solution procedure.

The simplification adopted in the Modified Newton-Raphson method can be mathematically

expressed by:

 1 0() ()ip p−K K (4.18)

The modified Newton-Raphson method is shown in Fig. 4-2. Comparing Fig. 4-1 and Fig. 4-2 it

is apparent that the Modified Newton-Raphson method converges more slowly than the original

Full Newton-Raphson method. On the other hand, a single iteration costs less computing time,

because it is necessary to assemble and eliminate the stiffness matrix only once. In practice, a

careful balance of the two methods is usually adopted in order to produce the best performance

for a particular case. Usually, it is recommended to start a solution with the original Newton-

Raphson method and later, i.e., near extreme points, switch to the modified procedure to avoid

divergence.

q

Loading

Loading increment

Deformationp0 p1 p2 p3 p4

Next to the Modified Newton-Raphson method, the most widely used method is the Arc-length

method. This method was first employed about fifteen years ago to solve geometrically nonlinear

structures. Because of its excellent performance, it is now quite well established for geometric

nonlinearity and for material nonlinearity as well. Many workers have been interested in using

and improving Arc-length procedures. In Atena, it can be used within CCStructures module, i.e.

for static analysis.

The main reason for the popularity of this method is its robustness and computational efficiency

which assures good results even in cases where traditional Newton-Raphson methods fail. Using

an Arc-length method stability problems such as snap back and snap through phenomena can be

studied as well as materially nonlinear problems with non-smooth or discontinuous stress-strain

diagrams. This is possible due to the changing load conditions during iterations within an

increment.

The main idea of this method is well explained by its name, arc-length. The primary task is to

observe complete load-displacement relationship rather than applying a constant loading

increment as it is in the Newton-Raphson method. Hence this method fixes not only the loading

but also the displacement conditions at the end of a step. There are many ways of fixing these,

but one of the most common is to establish the length of the loading vector and displacement

changes within the step.

From the mathematical point of view, it means that we must introduce an additional degree of

freedom associated with the loading level (i.e., a problem has n displacement degrees of freedom

and one for loading) and in addition, a constraint for the new unknown variable must be

introduced. The new degree of freedom is usually named . There are many possibilities for

defining constraints on  and those implemented in ATENA are briefly reviewed in the

following sections.

To derive the Arc-length method, we re-write the set of equations (4.12) in the form of (4.19),

where  defines the new loading factor:

 () ()p p q f p = −K (4.19)

Now re-writing (4.19) in a form suitable for iterative solution:

 1 1 1() ()i i i ip p q f p q f − − − = − = −K (4.20)

 1 1 1 1i i i i i ip p p p  − − − −= +  = + (4.21)

 1 1 1i i i ip p  − − − =  + (4.22)

 1 1i i i  − −= +  (4.23)

The notation is explained in Fig. 4-3. The matrix K can be recomputed for every iteration

(similar to the Full Newton-Raphson method) or it can be fixed based on the 1st iteration for all

subsequent iterations (Modified Newton Raphson method). The vector q does not mean in this

case the total loading at the end of the step but only a reference loading "type". The actual

loading level is a multiple of this.

The scalar  is an additional variable introduced by the Line-search method, which will be

discussed later. The scalar  is used to accelerate solutions in cases of well-behaved load-

deformation relationships or to damp possible oscillations if some convergence problems arose,

e.g., near bifurcation and extreme points.







p

p

p

1

2

3

  q

q 

0

1








0

1

2

3





  

0

0

0
T

q

q

q

q

g

R

R

g

0

1

1

2

Load increment

Deformation

q start

Loading

p0

p1
p2

11 2 2
00

Additional notation is defined as follows:

Out-of-balance forces in i-th iteration:

 1 1() ()i i i i i i ig p g f q f q  − −= = − = − +  (4.24)

R.H.S vector in i-th iteration:

 1 1 1i i i i iRHS q f q g − − −= − =  − (4.25)

Substituting (4.21) through (4.25) into (4.20), the deformation increment 1i − can be calculated

from:

 11 1 1ii i iRHS q g −− − −= =  −K (4.26)

 Hence:

 11 1ii i T   −− −= +  (4.27)

where

1

1 1

1

i i

T

g

q





−

− −

−

= −

=

K

K

 (4.28)

It remains only to set the additional constraint for 1i − and 1i − and the whole algorithm is

defined. Thus compared to the Newton-Raphson methods in which we solve n dimensional

nonlinear problem, the Arc-length method need to solve a (n + 2) dimensional problem, where

the first n unknowns correspond to deformations and the last two are 1i − and 1i − .

If we set 1 1i − = , then we deal with an (n + 1) dimensional problem that corresponds to the pure

Arc-length method, otherwise, a combination of Arc-length and Line search must be employed.

The Line search method is discussed later in this chapter. Note that all vectors including 1i − ,

T are of order (n + 1). Their (n + 1)-th coordinate corresponds to the loading dimension  and

it is set to zero.

Now, introduce two new vectors 1it− and 1in − as shown in Fig. 4-4. There are defined by:

 1 1 1()i i i startt p   − − −=  + − (4.29)

 1 1 1i i in   − − −= +  (4.30)

where:

 is scalar that relates dimensions of  to size of deformation space,

1i − is a (n + 1) dimensional vector with its firth n coordinates set to zero (deformation

space) and its (n + 1)-th coordinate equal to 1i − .

start is a (n+1) dimensional vector similar to 1i − , however its (n + 1)-th coordinate equal

to start .

p

n1
n2

n3

t1
t2

t3



it in 

It is then obvious that

 1 1i i nt t n− −= + (4.31)

Defining the residual R :

 1 1 1i i iR t n− − −= (4.32)

equations (4.20) through (4.32) lead to the final expression for the unknown 1i − (noting that

1 1 1 1 0T T

i i i ip p − − − −  = =):

1 1 1

1 2

1 1()

T

i i i

i T

i T i start

R p

p




    

− − −

−

− −

− 
 =

 + −
 (4.33)

To obtain 1i − by (4.33) the residual 1iR − must be defined. In fact, it also defines the type of

Arc-length constrain being used. The types supported in ATENA are described below.

Vector 1it − and 1in − are normals in this case, hence residual 1 0iR − = , see Fig. 4.4-3.

p

n1
n2

n3

t1
t2

t3



The main advantage of this method is its simplicity. The Normal update plane is relatively

reliable, but it can fail if the l-p diagram suddenly changes its slope or turns back or down (snap

back and snap through). Nevertheless, if these special conditions are treated by this method, then

a very significant reduction in step length is unavoidable.

The residual 1iR − is defined in this case by

 1 1 1 1 1 1 1cos() ()T

i i i i i i iR t n t n t t s− − − − − − −= = = − − (4.34)

The step length s and angle  are depicted in Fig. 4.3-4. The norm of the vector 1it− is

calculated using (4.29):

2 2 2

1 1 1 1()T

i i i i startt p p   − − − −=   + − (4.35)

t

n

t

p

 

s

s

s


i-1

i-1

i

current

required

= step length

Substituting (4.34) and (4.35) in (4.33) we obtain the final expression for 1i − . It should be

noted that the scalar s is set 'a priori' and governs the actual step length. Of course, the proper

choice of this parameter is essential for the solution and therefore it will be discussed later in

more detail.

This method is especially suitable for solutions that embrace p − diagrams with sudden breaks

and discontinuities, e.g. for materially nonlinear problems.

The basic constraint for 1i − in this case is that 1i it t s− = = , where s is some distinct 'a priori'

set step length. Similar to the previous method, we also have to evaluate the residual 1iR − :

 1 1 1 1 1 1 1cos()T

i i i i i i iR t n t n t r− − − − − − −= = = − (4.36)

Based on the similar triangles (see Fig. 4.4-), the following can be derived:

1 1

1' '

l l

l l

r t

t s t

− −

−

=
−

 (4.37)

2 '

1 '

()i

i

i

s t s
R

t
−

− −
= (4.38)

 ' '

1 1i i it t n− −= + (4.39)

2 2 2

' ' 2 2 2

1 1 1i i i it t    − − −= +  + (4.40)

The vector '

1it− is calculated using (4.35). By substituting the above equations into (4.33) the

final expression for 1i − is obtained.

From the above derivation, it is clear that in practice we at first employ Normal Update Method

(Chapter 4.4.1) to solve for '

it and '

1in − and thereafter, we correct the 1i − in order to satisfy

the constraint 1i it t s− = = .

p

 



||t’i||

||ti-1||

s

s = step length

|| r’i-1|| = ||t’i - s||

ni-1

n’i-1

ti-1

ti

||ri-1||

 This method is usually utilized to analyze geometrically nonlinear structures, particularly

stability problems. Its main feature is robustness and compared with the "classical" Crisfield

cylinder method (see below) it avoids the problem of the choice of the proper 1i − root (the

condition 1i it t s− = = while expressing vector length analytically). As for convergence, the

method is comparable to the method 4.4.3, but has the advantage that it preserves the step length.

The Crisfield method is derived directly from the constraint of constant step length

1i it t s− = = The residual 1iR − is not used in this case and we substitute equations (4.20)

through (4.31) straight into the above constraint. It leads to the following equation for 1i − :

 2

1 1 2 1 3 0i ia a a − − +  + = (4.41)

 where:

2 2

1

2 2

2 1 1

2 2 2 2

3 1 1 1

2 () 2

()

T

T T

T

i start T i

T

i start i i

a

a

a s

   

     

     

− −

− − −

= +

= − +

= − + −

 (4.42)

Equation (4.41) has generally two roots 1i − and hence we must decide which of them to use.

There exist several strategies but ATENA chooses that root 1i − , for which 1cos(,) 0i it t−  (or

higher of them), i.e., direction of new increment as close as possible to direction of the previous

increment (within the same step).

The proper step length is of essential importance for good execution performance. It directly

influences the convergence radius on the one hand and the number of required steps on the other.

ATENA uses the following procedure to set (or optimize) s :

(1) Set loading vector q and thus define a reference loading level (within one load

increment).

(2) Structural response to this load in the 1st execution step, the 1st iteration defines step

length
1s in the 1st step. In the subsequent steps, the step length is kept fixed or optimized

(based on SET ATENA input command, subcommand

&ARC_LENGTH_OPTIMISATION:

1

1

i i

i

n
s s

n
−

−

= (4.43)

 4
1

1

i i

n

n
s s

n
−

−

= (4.44)

 1
1

i
i i

n
s s

n

−
−= (4.45)

where

is and 1is − is Arc length step length in the current and the previous load increment,

respectively.

 n and 1in − is desired number of iterations and number of iterations in the previous step.

n is typically 5-6.

The objective of this method is to calculate the parameter  that was already introduced in the

Chapter 4.4 Arc-Length Method The method can be used either independently or in combination

with Arc length method. The primary reason for introducing a new parameter (i.e. a new degree

of freedom to the set of equations) is to accelerate or to damp the speed of analysis of the load-

displacement relationship.

The basic idea behind  is to minimize work of current out-of-balance forces on displacement

increment.

Let us assume that we have already solved already two points 0p and 0 'p  + p and thus we

have also calculated out-of-balance forces 0()g p and 0(')g p  + at these points. The aim of

this method is to set the parameter  so that the work being done by out-of-balance forces at

point 0p + is minimum.

The work of out-of-balance forces is:

 0() () ()
o

p
T

p
p p g p dp minimum =  + = (4.46)

Hence:

0

()
0 () () 0

p
T T

p

p p p
g p g p

d p  

    = + = = 
    (4.47)

Interpolating linearly out-of-balance forces between points 0p and 0 'p  +

0 0 0 0

0 0 0 0 0

0 0

(') () (') ()
() () || || ()

|| ' || '

g p g p g p g p
g p g p p p g p

p p

   
  

  

 + − + −
+ = + + − = +  + − 

 (4.48)

and using :

0p p

p






= +


=



 (4.49)

The final expression for ' can be derived:

0

0 0

()
'

() (')

T

T T

g p

g p g p


 

   
=

− +
 (4.50)

Thus, the Line search method can be summarized:

Use any method to calculate displacement increment  , (see Fig. 4-3 and (4.28)). The

parameter ' can be set from the last load increment or simply to unity.

Calculate out-of-balance forces for both 0()g p and 0(')g p  + .

Use (4.50) to calculate new value for  .

As all the above equations are nonlinear, the parameter  must be solved by iterations until

0

0

(

()

g p

g p

+
 a specified energy drop, typically < 0.6 – 0.8 >.

Practical experience suggests that the value of parameter  should be kept in interval < 0.1 – 5>.

 

The parameter  scales the deformation space p to the loading dimension  . If 0 = , the

solution for 1i − is searched on an area of a cylindrical shape of radius equal to step length

s (Crisfield method) and the axis normal to the p (deformation) space. The solution is the point

of intersection of this area and the line, defined by the energy gradients of structure and by the

applied load at point p . If 0  , the solution is carried out in the same way on ellipsoidal or

spherical space.

The higher value of  , the higher "weight factor" for changes in loading space compared to

displacement increments.

ATENA currently supports the following formulae for setting and optimization of  (for current

step j). They are reviewed below.

The first strategy requires the “load to displacement” increment ratio (4.51) is constant

throughout all steps, (e.g., input value req)

()

req
p

 
 = = 


 (4.51)

 Then, at the end step j-1 we can calculate

1 1

1

1()

j j

j

j p

 − −

−

−


 =


 (4.52)

This value (due to nonlinearities) will not match req . Therefore, for step j we will modify j 

as follows:

1

1

1

1 1 1
1 11 1

1

()

()

j req j

req

j

jreq req

j j j j req
j jj j

j

p

p





    
  

−

−

−

− − −
− −− −

−

 =  = 


=



 
= = = = 

 



 (4.53)

The above optimization process is initialized in the first step by assuming that

0 0 11, 1, ()j Tp  −=  =  = , where T is displacement corresponding to master Arc-length

load increment defined earlier in this chapter. Hence

 1 0
1 11

1

1

()

req req req

req T
j jj

Tj p

   
 


− −−

−

  
= = = = = 





 (4.54)

The parameters j  in all subsequent steps are calculated using (4.53). If the ratio of

displacements changes ()j p to load changes ()j  in the last load step increase, then the

equation (4.54)(4.55) increases  in the current step, thereby puts higher „weight factor“ on

loads compared to displacements. Hence, the equation (4.54) tends to keep constant importance

of loading space irrespective of displacements. Note that the equation (4.54) corresponds to

BETA_FORCES_DISPLS_RATIO_CONSTANT.

The second supported strategy is different. In ATENA, it is referred to as

BETA_RATIO_CONSTANT method and it tries to keep constant  coefficients, whilst

managing the coefficients  . Thus, it works in the opposite way as compared to the first strategy

described above.

From (4.52) we can write for steps (j-1) and j

1 1

1

1

()

()

j j

j

j

j j

j

j

p

p







− −

−

−

 
=



 
=



Now requiring 1j j − = we have

1 1

1

1

1

1

() ()

()

()

j j j j

j j

j

j j

j j

j

p p

p

p

 





− −

−

−

−

−

   
=

 



 
=

 



 (4.56)

and if we assume
1

1() ()

j j

j jp p

 −

−

 
=

 
, then

1 1

j j

j j



− −


=


 and the above equation yields

1

1

1

()

()

j

j

j j

j

j

p

p


 



−

−

−




=





 (4.57)

If

1

1

()

()

j

j

j

j

p

p





−

−









 in subsequent steps changes, the procedure is trying to compensate for that by re-

adjusting the coefficients  . In other words, this strategy is trying to keep
()p






 constant,

(i.e., the relative importance of load vs. displacement spaces).

The way in which individual structural degrees of freedom (dofs) are mapped into the global

structural matrices has a significant impact on their size and cost of the solution in terms of

required CPU and RAM resources.

Let us assume the 2D example of the 3 bars element from Fig. 4-5. The structure consists of

three beam elements 1,2,3. It has four global nodes with three degrees of freedom in each of

them, i.e., two displacements and one rotation. Suppose the structure is solved by a direct solver,

i.e., we use half-band skyline storage scheme (4.4).

By default, i.e., without any optimization, the structural degrees of freedom are allocated

sequentially starting from the node 1 up to the last node n, i.e., 4. Hence, the jth degree of

freedom at the node i has number (1)ndof i j− + , where ndof is number of dofs per node.

If the structural nodes are numbered as indicated, then the beam 1,2 and 3 have nodal incidences

1-3, 3-4 and 4-2, respectively and the final stiffness matrix K has the pattern from the left-

bottom part of Fig. 4-5. Note that the matrix K must also store the entries depicted as circles

without filling. Although they are initially zero, they may turn nonzero during the matrix

decomposition needed to solve the problem, i.e., we must store the matrix with 69 entries and

maximum half-band width 9.

On the other hand, if nodal degrees of freedom are numbered as shown in the right-bottom part

of Fig. 4-5, then the matrix K must store only 51 entries and has maximum half bandwidth only

6.

The two examples document, how important efficient numbering of the degrees of freedom of

the structure is. If the structure (to be solved) is simple, then a suitable dofs' numbering can be

done manually by appropriate numbering of the structural nodes. However, in the more complex

cases (and in particular if a model of the structure is generated automatically), an optimal dofs

mapping must be calculated.

There are number of algorithms that deliver more or less efficient dofs mapping. Probably the

best established algorithm of that kind is Cuthill-McKee algorithm (Cuthill, McKee 1969). This

is not due to its superior property, but due it has been developed as first. The algorithm produces

an ordered n-tuple R of vertices which is the new order of the structural vertices. It numbers the

vertices according to a particular breadth-first traversal, where neighboring vertices are visited in

order from lowest to highest vertex order.

The reverse Cuthill–McKee algorithm (RCM) is the alternative of the Cuthill-McKee algorithm,

in which the vertices are visited in reverse order, i.e. form the highest to the lowest vertex.

ATENA implements Gibbs and Sloan dofs optimization algorithms:

http://en.wikipedia.org/wiki/Breadth-first_search

The Sloan algorithm (Sloan, Randolf (1983)

In an effort to obtain an optimum elimination order, the algorithm first renumbers the nodes, and

then uses this result to resequence the elements. This intermediate step is necessary because of

the nature of the frontal solution procedure, which assembles variables on an element-by-

element basis but eliminates them node by node. To renumber the nodes, a modified version of

the King’ algorithm is used. In order to minimize the number of nodal numbering schemes that

need to be considered, the starting nodes are selected automatically by using some concepts from

graph theory. Once the optimum numbering sequence has been ascertained, the elements are

then reordered in an ascending sequence of their lowest-numbered nodes. This ensures that the

new elimination order is preserved as closely as possible. For meshes that are composed of a

single type of high-order element, it is only necessary to consider the vertex nodes in the

renumbering process. This follows from the fact that mesh numberings which are optimal for

low-order elements are also optimal for high-order elements. Significant economies in the

reordering strategy may thus be achieved.

The Gibbs et. al. algorithm (Gibbs et. al. 1976)

This algorithm typically produces bandwidth and profile, which are comparable to those of the

commonly-used reverse Cuthill–McKee algorithm, yet it requires significantly less computation

time. Nevertheless, it delivers dofs mapping that is usually slightly less efficient than that by the

Sloan algorithm and therefore, it is less preferred option the optimization.

Note that the above algorithms optimize dofs numbering by reordering the structural nodes. They

do not account for possible different number of dofs within a particular node. Note also that in

order to minimize cost of the dofs remapping, the optimization is carried out before assembling

the structural global matrices and vectors. Thus, they are assembled directly into their final,

optimized location.

Iterative solvers use data storage scheme (4.3). As the storage scheme stores only nonzero

elements, the solution is less sensitive to a bad dofs mapping. For huge analyses it is nevertheless

suggested to carry out a dofs mapping optimization, as it typically yields individual elements

entries stored closer to each other with positive effect on solution convergence and RAM data

management.

A detailed description of the above algorithms is above scope of the publication. For more

information the reader is suggested to study the given references.

BATHE, K.J.(1982), Finite Element Procedures In Engineering Analysis, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey 07632, ISBN 0-13-317305-4.

CRISFIELD, M.A. (1983) - An Arc-Length Method Including Line Search and Accelerations,

International Journal for Numerical Methods in Engineering, Vol.19, pp.1269-1289.

CUTHILL, E. and J. MCKEE (1969). Reducing the Bandwidth of Sparse Symmetric Matrices.

Proc. 24th Nat. Conf. ACM.

DAVIS, T., AMESTOY, P., DUFF, I.S (1995) - An Aproximate Minimum Degree Ordering

Algorithm, Comp. and Information Science Dept., University of Florida, Tech. Report

TR-94-039.

DUFF, I. S. and KOSTER, J. (1999) - The Design and Use of Algorithms for Permuting Large

Entries to the Diagonal of Sparse Matrices. SIAM J. Matrix Analysis and Applications,

20(4):889-901.

FELIPPA, C. (1966) - Refined Finite Element Analysis of Linear and Nonlinear

Two-Dimensional Structures, Ph.D. Dissertation, University of California, Engineering,

pp.41-50.

GIBBS, N. E., W. G. POOLE, et al. (1976). "An Algorithm for Reducing the Bandwidth and

Prole of a Sparse Matrix." SIAM Journal of Numerical Analysis 13(2).

KARYPIS, G. and KUMAR, V. (1998) - A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359-392.

LIU, J.W.H. (1985) - Modification of the Minimum-Degree Algorithm by Multiple Elimination.

ACM Transactions on Mathematical Software, 11(2):141-153.

LI, X.S., DEMMEL, J, W. (1999) - A Scalable Sparse Direct Solver Using Static Pivoting. In

Proceeding of the 9th SIAM conference on Parallel Processing for Scientific Computing, San

Antonio, Texas, March 22-34.

RAMM, E. (1981) - Strategies for Tracing Non- linear Responses Near Limit Points, Non- linear

Finite Element Analysis in Structural Mechanics, (Eds. W.Wunderlich,E.Stein, K.J.Bathe)

REKTORYS, K. (1995). Přehled užité matematiky. Prague, Prometheus.

SLOAN, S. W. and M. F. RANDOLF (1983). "Automatic Element Reordening for Finite

Element Analysis with Frontal Solution Schemes." Int. Journal for Numerical Methods in Eng.

19: 1153-1181.

SEAGER, M. K. and A. GREENBAUM (1988). A SLAP for the Masses, Lawrence Livermore

National Laboratory

SCHENK, O., GARTNER, K. and FICHTNER, W. (2000) - Efficient Sparse LU Factorization

with Left-right Looking Strategy on Shared Memory Multiprocessors. BIT, 40(1):158-176.

SCHENK, O. and GARTNER, K. (2004) - On Fast Factorization Pivoting Methods for Sparse

Symmetric Indefinite Systems. Technical Report, Department of Computer Science, University

of Basel, submitted.

SONNEVELD, P. (1989) - CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear

Systems. SIAM Journal on Scientific and Statistical Computing, 10:36-52.

VONDRACEK, R. (2006) - The Use Of The Sparse Direct Solver In The Egineering

Applications Of The Finite Element Method. Theses for Ph.D. Czech Technical University,

Prague.

Creep and shrinkage are undoubtedly features that have a significant influence on concrete

behaviour. Although creep and shrinkage analysis can be neglected in the design of most civil

structures, there exist cases when these phenomena have to be accounted for. The Ref. (Bazant

and Baweja 1999) provides a five levels classification of structures that can serve as simple

guidelines for making a decision, when creep and shrinkage analysis is needed and when it is not

needed. The recognized levels of structures are as follows:

Level 1: Reinforced concrete beams, frames, and slabs with span under 20m and heights of up to

30m, plain concrete footings, retaining walls.

Level 2. Prestressed beams or slabs of spans up to 20m, high-rise building frames up to 100m

high.

Level 3. Medium-span box girder, cable-stayed or arch bridges with spans of up to 80m,

ordinary tanks, silos, pavements.

Level 4. Long-span prestressed box-girder, cable-stayed or arched bridges; large bridges built

sequentially in stages by joining parts, large gravity, arch or buttress dams, cooling towers, large

roof shells, very tall buildings.

Level 5. Record span bridges, nuclear containments and vessels, large offshore structures, large

cooling towers, record-span thin roof shells, record-span slender arch bridges.

Full creep and shrinkage analysis is mandatory for the design of structures level 4 and 5 and it is

recommended also for the level 3 structures.

ATENA software provides a powerful method for creep and shrinkage analysis for most

problems from engineering practice. It is based on the so-called cross-sectional approach,

meaning that the analysis builds upon creep and shrinkage behavior of the whole cross-section

rather than the behavior of individual material points only. The reason for choosing this method

is that at this moment, there are available numerous models for predicting creep and shrinkage

behavior of a concrete cross-section, whereas there is very low evidence about the same behavior

at the material point level. The second reason is that its accuracy suffices for most analyses from

engineering practice, and it is much less expansive in terms of computational cost.

The implemented creep and shrinkage analysis is based on the assumption of linear creep, which

in other words means that the material compliance function (, ')t t and accompanying function

for shrinkage 0()t depends only on material composition, temperature, shape, and time at

observation t and at loading 't . It does not depend on stress-strain conditions. In spite of the

simplifications, the provided analysis is sufficiently accurate in most practical cases and it is fast

and efficient. On the other hand, it is applicable only for structures, where the stress value does

not exceed about 60% of the ultimate strength of concrete. For higher load levels, the material

nonlinearity becomes significant and a more elaborate solution has to be employed. The above

simplification applies to time-dependent (i.e., long-term) material behavior only. For short-term

behavior of the material, model retains its nonlinearity, i.e., it accounts for phenomena such as

cracks, plasticity.

 The creep and shrinkage analysis is based on the assumption of Stieltjes integral, which is

written for the case of 1D analysis in the following form:

 0

'
() (, ') ()

t

t
t t t d t


  




=  +

 (4.58)

where:

t = observation time,

't = loading time,

()t =stress at the time t ,

0()t = initial stress-independent strain such as concrete shrinkage,

(, ')t t = compliance function of concrete.

The sense of Stieltjes integral is given in the above figure.

Equation (4.58) has to be modified for the case of 2 and 3D analyses for practical analyses. This

is done below. It is important to note that (4.58) applies to any stress and strain history, and it is

defined in incremental form. It means that at a particular time t , stress at t t+  depends only

on the current material state at time t and stress increment at a time t t+  , i.e. d


 



 =


.

The final form of the above equations reads:

 0

'

(())
() (,) (()) () ()

t

t
t t d t

  
       

 

  
=  + + 

  


B
B (4.59)

where:

()t = is stress vector at a time t , (note the bar atop of a symbol indicates vector),

0()t = vector of initial strains, such as shrinkage,

(()) B = matrix accounting for multiaxial stress-strain conditions, including all material

short-term nonlinearities.

Notice the way the equation (4.59) is written. Long-term and short-term material behavior is

separated. The former is encapsulated in the compliance function (, ')t t , whereas the short-

term behavior is comprised in the matrix (()) B . This assumption brings significant

simplification of the creep and shrinkage analysis, and it is believed that for most practical

analysis, the induced inaccuracy is acceptable.

Substituting ' , 0t t t t = + → into (4.59) and applying load increment (') (')t t  = (i.e.,

loading from the zero level) at a time 't , it can be derived

 0(') (' , ') ((')) (') (')t t t t t t t t t      + =  + + +B (4.60)

Comparison of (4.60) with similar equations for constitutive relations for short-term loading

conditions, i.e. ' 't t t+ , yields instantaneous secant material rigidity matrix:

 ()
1

(') ((')) (', ')t t t t
−

D = B (4.61)

The matrix (')tD corresponds to the reciprocal value of the well-known secant Young modulus

(')E t in the case of 1D stress-strain conditions. In the case of plane stress conditions, the matrix

(()) B reads (4.62), etc.

1 0

1 0

. 2(1)sym





− 
 
 
 + 

B = (4.62)

 (, ')t t

Ref. (Bazant and Spencer 1973) and others show that significant improvement of computational

efficiency can be obtained if the original material compliance function (, ')t t is during the

creep solution approximated by Dirichlet series '(, ')t t as follows:

'

1

1 1
'(, ') 1

(') (')

t t
n

t t e
E t E t



 

 −
− 

 
 

=

 
  = + −
 
 

 (4.63)

where :

 = are so-called retardation times,

n = number of approximation functions, i.e., this parameter is related to the input parameter

number of retardation times.

(')E t = instant Young modulus at the time 't ,

(')E t =coefficients for the approximation functions.

The effect of the use of Dirichlet series approximation is depicted in the above figure. A single

approximation exponential is drawn in sub-figure (a), while the whole process of decomposition

of compliance and retardation curves is depicted in the sub-figures (b), (c), respectively.

The incorporation of the Dirichlet series '(, ')t t brings the following benefits:

- Creep analysis is independent of the material creep prediction model.

- Time integration is exact; hence, fewer temporal increments are necessary.

- Less demand of computer storage needed for storing data from the previous temporal

steps of the analysis. It suffices to store data from the previous analysis step only, rather

than the complete stresses-strain history of the analyzed structure.

Equation (4.59) (upon substitution (4.63) is solved numerically. The structure is discretized in

space by the finite element method (described elsewhere in this document). As for time, the

solution is carried out by the Step-by-step method (SBS) (Bazant 1988). The structural behavior

is analyzed in several time steps, i.e. in time increments, as it corresponds to (4.59). After some

mathematical manipulations (Jendele and Phillips 1992), the final solution equations read:

 ()
1

1/ 2 -1/ 2 (r rr r rE  
−

− =  B -) (4.64)

 1()r r r rt   −= = +  (4.65)

 1()r r r rt   −= = +  (4.66)

 (),
1/ 2 11/2 , 1/2

1 1 1
1

n

r
r r rE EE


 


− =− −

= + − (4.67)

 1

r

r

t

r

e
t

 







− 

 = −
  
 

 (4.68)

1

* 0

1

1

i

r

t
n

r re 




  
−


−

=

 
  = − + 
  

 (4.69)

 1()r r r rt   −= = +  (4.70)

()

1

1/2

1/ 2
* *

r

r

r r

r

t
r rE

e
E




 



  
 

−

−


− −  − 

= + (4.71)

In the above the following notation is used:

r = identification of temporal increments, 1..r N , where N is number of time

increments for the analysis,

1r r rt t t − = − = time increment,

1r r r   − = − = stress increment in time rt ,

* *()r rt  = =internal variables at time rt ,

0 0

()r rt = = shrinkage at time rt ,

()1/ 2 1

1
() ()

2
r r rE E t E t− −= + = constant average secant Young modulus at time incremenent

rt ,

() ()
11/ 2 1

1 1
() ()

2 2 r rr r rE E t E t E E     −− −= + = + = constant average value of Dirichlet

coefficient E at rt ,

()1/ 2 1

1
() ()

2
r r rt t− −= +B B B = average value of the matrix B at rt .

Equation (4.64) thru (4.71) defines all necessary relations to complete the creep and shrinkage

analysis in ATENA. Of course, they are supplemented by relations used by the short-term

material constitutive model, i.e., equations for calculating the matrix B.

At each time increment, a typical short-term alike analysis is carried. The difference between the

short-term analysis and the described analysis of one step of the creep and shrinkage is that the

latter one uses especially adjusted Young modulus 1/2rE − and initial strain increments r to

account for creep and shrinkage. After each step, these have to be updated. It involves mainly

update of
r and r . With these values, a new 1/2rE − is calculated and the next temporal

analysis step is carried out.

Appropriate selection of retardation and integration times is of crucial importance for accurate

and efficient creep and shrinkage analysis. The choice of retardation times has a direct impact on

the accuracy of approximation of an original compliance function by Dirichlet series, see

Equation (4.63) and Fig. 5-2, whilst the choice of integration times affects the accuracy of the

approximation of loading function of the structure, see Equation (4.58) and Fig. 5-1. If the

number of times is too low, some important features of concrete behavior can be disregarded.

The opposite extreme, i.e., using too many retardation or integration times results in worthless

lengthy solution of the problem.

The ATENA software respects recommendation in (Bazant and Whittman 1982). Retardation

times are spread uniformly in log()t space and they are automatically calculated as follows:

1

1

1

1

10 (), 1,2.. , 0, 0

10 (), 1,2..

i

m
i i i i

m

n i

n









     

  

− −

+

−

= + − = = =

= =

 (4.72)

In the above m is the number of retardation times per log()t unit, 1m  . By default, this

constant is in ATENA set to 1. If required, a more detailed approximation is possible, i.e., any

value 1m  can be used. In the program, this parameter is input as a number of retardation times

per time unit in logarithmic scale. For a typical concrete creep law, a certain optimal value can

be determined, and it is independent of a structure being analyzed. Note, however, that the value

depends on the choice of time units.

Example: If the retardation times parameter is set to 2, the creep law will be approximated by

two approximation points for the time interval between 0 - 1 day, two points for the interval 1 -

10 days, then two points for 10 - 100 days, etc.

Therefore, the proper values will depend on the choice of time units. If the time unit is a day, the

recommended value is 1 - 2.

 Start time 1 must be chosen sufficiently low, so that Dirichlet series can account for processes

in very young concrete right after its loading has been applied. As a default, ATENA uses the

expression 1 0.1 't = .

As for the upper limit for  , it is required:

2

n

t
  (4.73)

The above limits are applicable for the case when the coefficients (')E t of the Dirichlet series

in (4.63) are calculated by the Least-square method (Jendele and Phillips 1992).

ATENA also supports an alternative way of calculation of the coefficients (')E t of the Dirichlet

series in (4.63). In this case, Inverse Laplace transformation (Bazant and Xi 1995) is used

instead. This method requires 1 0 → , typically 1E-3 and

 n t  (4.74)

Comparing the above two approaches, it can be said that the Least-square method yields

approximation of the compliance function at discrete times, whereby Inverse transformation is

based on continuous approach. In some cases, the Least-square method results in better

convergence behavior; however it sometimes suffers from numerical problems during

calculation due to an ill-posed problem for solution of (')E t . It is left to experience and

engineering judgment to decide, which of the method is more appropriate for a particular

solution.

Integration times or sample times
rt are calculated in a similar way. In this case, the times are

uniformly spread in log(')t t− time scale. They are generated starting from the 1st loading time

't . Hence, we can write

 ()
1

110 , '
r i

l
r i i i it t t t t t

− −

+= + − = (4.75)

where 2l  is the number of time increments per unit of log(')t t− and 1 ' 0.1 0.1i it t t+ + = +

days. Each new major load increment or decrement causes the generation procedure (4.75) must

start again from small time increments. This parameter defines the number of time steps that the

program will use to integrate the structural behavior. Creep or other nonlinear effects will cause

a redistribution of stresses inside the structure. In order to properly capture such processes, a

sufficiently small time steps are needed. Its definition depends on the type of the analyzed

structure as well as on the choice of time units. For typical reinforced concrete structures and for

the time unit being a day, it is recommended to set this parameter to 2. This will mean that for

each load interval longer then 1 day, two sub-steps will be added. For a load that is interval

longer than 10 days, 4 sub-steps will be added. For an interval longer than 100 days, it will be 6

sub-steps, etc.

The creep and shrinkage analysis in ATENA requires that the user set number of retardation

times m and the number of time increments l per unit of log time, (unless the default values are

OK). He/she also specifies time span, i.e., 1 and n . Then, retardation times are generated, i.e.,

an appropriate command is issued. It follows to set stop time of the analysis. Usual input data

describing structural shape, material etc. are given thereafter; however, there are three important

differences from the time-independent analysis:

1. Material model for concrete contains data for long-term as well as for short-term material

model.

2. Step data must include information about the time at which the step is applied.

3. It is recommended to input data for all intended load time steps prior to the steps are executed.

It helps the generation of integration (intermediate) times

Intermediate time steps, i.e., times rt as well retardation times are generated automatically. The

analysis proceeds until the stop time is reached. If no stop time is specified, it is assumed to be

the time of the last load step. If the time span for retardation times does not cover step load

times, the solution is aborted, giving an appropriate error message.

In the above sections, it was silently assumed that the long-term part of the material model, i.e.,

compliance function (, ')t t and shrinkage function
0

r for concrete, is known and it was shown

how it is utilized within creep and shrinkage analysis. It is the primary intention of this section to

describe what long-term creep and shrinkage prediction models are implemented in ATENA and

how they should be used.

Generally speaking, ATENA applies no restriction on the kind and shape of both (, ')t t and

0

r , as it adopts the SBS method solution algorithm, in which compliance function is

approximated by Dirichlet series. Hence, the most widely recognized creep prediction models

could be implemented.

The CCStructureCreep module currently supports the following models:

1. CCModelACI78 (ACI_Committee_209 1978), recommended by ACI,

2. CCModelACI209R2, (update of the above materiál model),

3. CCModelCEB_FIP78 (Beton 1984), recommended by CEB committee, by now already

obsolete,

4. CCModelB3 (Bazant and Baweja 1999), developed by Bazant and Al Manaseer in 1996,

very efficient model recognized world-wide,

5. CCModelB3Improved, same as the above, improved to account for temperature history,

6. CCModelB4, update of the above B3 model. It features better prediction of drying and

autogenous shrinkage and it also provides limited support for concrete with the following

admixtures: RETARDER, FLY_ASH, SUPER_PLASTICIZER, SILICA_FUME,

AIR_ENTRAINING_AGENT, WATER_REDUCER. It is probably the best model

available in ATENA,

7. CCModelCSN731202, model developed by CSN 731202 Code of practice in Czech

Republic,

8. CCModelBP1_DATA (Bazant and Panula 1978; Bazant and Panula 1978; Bazant and

Panula 1978; Bazant and Panula 1978), relatively efficient and complex model; now it is

superseded by CCModelBP_KX or CCModelB3,

9. CCModelBP2_DATA (Bazant and Panula 1978), simplified version of the above model,

10. CCModelBP_KX (Bazant and Kim 1991; Bazant and Kim 1991; Bazant and Kim 1991;

Bazant and Kim 1991), a powerful model with accounts for humidity and temperature

history etc., for practical use it may-be too advanced,

11. CCModelGeneral general model into which experimentally obtained (, ')t t and 0

r

function can be input.

12. CCModelEN1992- Eurocode model for creep, (EN1992),

13. CCModelFIB_MC2010- creep model based on CEB-FIP FIB Model Code 2010.

14. WAN-WENDER, R. and HUBLER, M. and BAZANT, Z. (2013). The B4 Model for

Multi-decade Creep and Shrinkage Prediction. 429-436. 10.1061/9780784413111.051. It

is successor of the B3 model by Bazant.

The following data summarized input parameters for the supported models. Note that some

models allow improved prediction based on laboratory data. If it is the case, the model input the

corresponding experimentally measured values. Also, some models can account for material

point history of humidity ()h t and temperature ()T t . Again, a model supports this feature if it

can input adequate data.

Parameter name Description Units Default

Concrete. type Type of concrete according to ACI. Type 1

is Portland cement etc. Types 1,3 accepted

for static analysis, types 1-4 accepted for

transport analysis.

 1

Cement class Type of cement, see e.g.

http://www.cis.org.rs/en/cms/about-

cement/standardization-of-cement :

Strength classes of cement

Cements are according to standard strength

grouped into three classes, they being:

 • Class 32,5

 • Class 42,5

 • Class 52,5

Three classes of early strength are defined

for each class of standard strength:

 • Class with ordinary early strength –

N

 • Class with high early strength – R

 • Class with low early strength – L

Class L can be applied only on CEM III

cements.

 42,5

Aggregate Type of aggregate. One of

BASALTDENSELIMESTONE,

QUARTZITE, LIMESTONE,

SANDSTONE ,

LIGHTWEIGHTSANDSTONE

 QUART

ZITE

Thickness /V S Cross section thickness defined as ration of

section's volume to surface

length 0.0767m

Strength 28cylf Material cylindrical strength in compression

at time 28 days

stress 35.1MPa

Strength 0,28cylf Strength at onset of nonlinear behaviour in

compression at time 28 days

stress Constant

from the

base

material

Fracture energy ,28fG Fracture energy at time 28 days stress Constant

from the

base

material

Strength 28tf Material tensile strength at time 28 days stress Constant

from the

base

material

Young m. 28E Short-term material Young modulus at 28

days, i.e. inverse compliance at 28.01 days

loaded at 28 days

stress
28()cylF f

Ambient humid. h Ambient relative humidity. Accepted range

(0.4..1).

 0.78

Ratio ca Total aggregate/cement weight ratio. 7.04

Ratio cw Water/cement weight ratio. 0.63

Ratio sa Total aggregate/find sand weight ratio.
1

s aa s −= .

 2.8

Ratio as Fine/total aggregate weight ratio. 1

a ss a −= 0.4

Ratio sg Coarse gravel/fine aggregate weight ratio.

 1.3

Ratio cs Fine aggregate/cement weight ratio. 1.8

Shape factor Cross section shape factor. It should be 1,

1.15, 1.25, 1.3, 1.55 for slab, cylinder,

square prism, sphere, cube, respectively.

 1.25

Slump Result of material slump test. length 0.1 m

Air content Material volumetric air content. % 5

Cement mass Weight of cement per volume of concrete mass/

length3

320kg/

m3

Concr. density Material density used to evaluate strength

and Young modulus at 28 days..

mass/

length3

2125kg/

m3

Curing type Curing conditions. It can be either in water

(i.e. WATER) or air under normal

temperature (i.e. WATER) or steamed

curing (i.e. STEAM).

 AIR

Thermal expansion

coefficient T

Thermal expansion coefficient T 1/temp

erature

Constant

from he

base

material

End of curing Time at beginning of drying, i.e. end of

curing.

days 7

,a  Autogenous shrinkage at infinity time,

(typically negative!)

, ,(0.99 min(0.99,) tanh s
a a a

a

t t
h 


 

 −
= −  

 

- 0

a Half-time of autogenous shrinkage. days 30

st Time of final set of cement days 5

,ah  Final self-desiccation relatibe humidity - 0.8

I/
D

 Current time t Current time days 0

Load time t' Load time days 0

Tot.water loss w Total water loss (up to zero humidity and

infinite time). It is measured in an oven in a

laboratory and it is used to enhance

prediction of shrinkage infinite 2sht 

(Bazant and Baweja 1999). This value is in

turn used to elaborate drying creep and

shrinkage prediction of the model. If it is

not specified, the model prediction

enhancement is not activated. It can be used,

if water loss w(t) are input as well.

kg N/A

Im
p

ro
v
em

.

Water loss w(t) Water losses at time t; measured at a

laboratory. It is used to enhance

drying creep and shrinkage

prediction. See also description of

total water loss w.

kg N/A

Shrink.
0 ()t Measured shrinkage at time t. It is used to

enhance drying creep and shrinkage

prediction. See also description of total

water loss w.

 N/A

Compl. (, ')t t Measured material compliance at time t. It is

used to improve overall creep and shrinkage

prediction of the model.

1

/stress

N/A
H

is
t.

Humidity ()h t History of humidity in a material point.

Value at time t. Some material models can

use these values to account for real temporal

humidity and temperature conditions.

Although the data can be input manually,

i.e. to group material points with similar

humidity and temperature history into a

group and dedicate a distinct material for

that group, it is prepared for full automatic

processing being currently in development.

It will automatically link heat and humidity

transport analysis with the static analysis

using one of available creep and shrinkage

prediction model. Applicable range (0.4..1).

 N/A

Temperat. ()T t History of temperature in a material point.

See also description of ()h t

Celsia

D
ir

ec
t

Compl. (, ')t t Measured compliance at time t loaded at

time t'. This and the next two parameters

should be used, if known (measured)

compliance functions are to be employed

in ATENA creep and shrinkage analysis.

Hence, no prediction is done and the given

data are only used to calculate the

parameters of Dirichlet series

approximation.

1/

stress

Shrink. 0 ()t Measured shrinkage at time t . See the

parameter above.

 N/A

Strength ()cylf t Measured shrinkage at time t . See the

parameter above

Model name B3

B3-

impr

BP-

KX

CEB ACI CSN BP1 BP2 Gen

eral

EN

1992

MC

2010

Model No. 3 4 8 2 1 5 6 7 9 10 11

Concrete. Type x x x x x x x

Cement class x x

Aggregate x x

Thickness

/S V

x x x x x x x x x x

Strength 28cylf x x x x x x x x x x

Strength

0,28cylf

 x x x

Fracture

energy ,28fG

 x x x

Strength 28tf x x x

Young m. 28E x x x x x x x

Ambient

humid. h

x x x x x x x x x x

Ratio ca x x x x x x

Ratio cw x x x x x x

Ratio sa

Ratio as x x

Ratio sg x x

Ratio cs x x

Shape factor x x x x x

Slump x

Air content x

Cement mass x

Concr. density x x x x x x

Curing type x x x x x x

End of curing x x x x x x x x x x

Thermal

expansion

coefficient
T

 x x x

,a  x

a x

st x

,ah  x

I/
D

 Current

time t

x x x x x x x x x xx x

Load time t’ x x x x x x x x x xx x

Tot.water loss

w

x x x

Im
p
ro

v
em

.

Water loss

w(t)

x x

Shrink.
0 ()t

x x x x x x x x xx x

Compl.

(, ')t t

x x x

H
is

t.

Humidity

()h t

 x x x xx x

Temperat.

()T t

 x x x xx x

D
ir

ec
t

Compl.

(, ')t t

 x

Shrink.
0 ()t

 x

Strength

()cylf t

 x

The above parameter "Concrete type" actually referes to a cement type according to the ACI

classification. It used in the creep analysis. The following table brings description of widely

recognized cement types. Note that only types 1,3 are supported in Atena static analysis. The

transport analysis in Atena recognizes types 1-4. The remaining types are described just for

information.

ATENA

Concrete

type

Cement type Description

1 I and Type IA6
General purpose cements suitable for all uses where the

special properties of other types are not required.

2 II and Type IIA6

Type II cements contain no more than 8% tricalcium

aluminate (C3A) for moderate sulfate resistance. Some

Type II cements meet the moderate heat of hydration

option of ASTM C 150.

3 III and Type IIIA6

Chemically and physically similar to Type I cements

except they are ground finer to produce higher early

strengths.

4 IV

Used in massive concrete structures where the rate and

amount of heat generated from hydration must be

minimized. It develops strength slower than other cement

types.

5 V
Contains no more than 5% C3A for high sulfate

resistance.

6 IS (X)7 Portland blast furnace slag cement

7 IP (X)7 Portland-pozzolan cement.

8
GU8

General use

9 HE8 High early strength

10 MS8 Moderate sulfate resistance

11 HS8 High sulfate resistance

12 MH8 Moderate heat of hydration

6 Air-entraining cements

7 Blended hydraulic cements produced by intimately and uniformly intergrinding or blending two or more types of

fine materials. The primary materials are portland cement, ground granulated blast furnace slag, fly ash, silica fume,

calcined clay, other pozzolans, hydrated lime, and pre-blended combinations of these materials. The letter “X”

stands for the percentage of supplementary cementitious material included in the blended cement. Type IS(X), can

include up to 95% ground granulated blast-furnace slag. Type IP(X) can include up to 40% pozzolans.

8 All portland and blended cements are hydraulic cements. "Hydraulic cement" is merely a broader term. ASTM C

1157, Performance Specification for Hydraulic Cements, is a performance specification that includes portland

cement, modified portland cement, and blended cements. ASTM C 1157 recognizes six types of hydraulic cements.

13 LH8 low heat of hydration

ACI_COMMITTEE_209 (2008). Prediction of Creep, Shrinkage and Temperature Effects in

Concrete Structures. Detroit, 209R-92, ACI.

BATHE, K. J. (1982). Finite Element Procedures in Engineering Analysis. Englewood Cliffs,

New Jersey 07632, Prentice Hall, Inc.

BAZANT, Z. AND T. SPENCER (1973). "Dirichlet Series Creep Function for Aging Concrete."

ASCE Journal of Engineering and Mechanical Division: 367-387.

BAZANT, Z. P. (1988). Mathematical Modeling of Creep and Shrinkage of Concrete. New

York, John Wiley & Sons.

BAZANT, Z. P. AND S. BAWEJA, EDS. (1999). Creep and Shrinkage Predicition Model for

Analysis and design of Concrete Structures: Model B3. Creep and Shrinkage of Concrete,

ACI Special Publicatino.

Wan-Wendner, Roman & Hubler, M. & Bažant, Z.. (2013). The B4 Model for Multi-decade

Creep and Shrinkage Prediction. 429-436. 10.1061/9780784413111.051.

BAZANT, Z. P. AND J. K. KIM (1991). "Improved Prediction Model for Time-Dependent

Deformation of Concrete: Part 1- Shrinkage." Materials and Structures 24: 327-345.

BAZANT, Z. P. AND J. K. KIM (1991). "Improved Prediction Model for Time-Dependent

Deformation of Concrete: Part 2- Basic Creep." Materials and Structures 24: 409-421.

BAZANT, Z. P. AND J. K. Kim (1991). "Improved Prediction Model for Time-Dependent

Deformation of Concrete: Part 3- Creep at Drying." Material and Structures 25: 21-28.

BAZANT, Z. P. AND J. K. KIM (1991). "Improved Prediction Model for Time-Dependent

Deformation of Concrete: Part 4- Temperature Effects." Material and Structures 25: 84-

94.

BAZANT, Z. P. AND L. PANULA (1978). "Practical Prediction of Time-dependent

Deformations of Concrete; Part 1: Shrinkage." Material and Structures 11 (65): 301-316.

BAZANT, Z. P. AND L. PANULA (1978). "Practical Prediction of Time-dependent

Deformations of Concrete; Part 3: Drying Creep." Material and Structures 11 (65): 415-

423.

BAZANT, Z. P. AND L. PANULA (1978). "Practical Prediction of Time-dependent

Deformations of Concrete; Part 4: Temperature Effect on Basic Creep." Material and

Structures 11 (66): 424-434.

BAZANT, Z. P. AND L. PANULA (1978). "Practical Prediction of Time-dependent

Deformations of Time-dependent Deformation of Concrete; Part 2: Basic Creep."

Material and Structures 11 (65): 317-328.

BAZANT, Z. P. AND L. PANULA (1978). Simplified Prediction of Concrete Creep and

Shrinkage from Strength and Mix. Struct. Engng. Report No. 78-10/6405. Evanston,

Illinoins, Northwestern University, Dep. of Civ. Engng.

BAZANT, Z. P. AND F. H. WHITTMAN (1982). Creep and shrinkage in Concrete Structures.

New York, John Wiley & Sons.

BAZANT, Z. P. AND Y. XI (1995). "Continous Retardation Spectrum for Solidification Theory

of Concrete Creep." Journal of Engineering Mechanics 121(2): 281-287.

BETON, C. E.-I. D. (1984). CEB Design Manual on Structural Effects on Time Dependent

Behaviour of Concrete. Saint Saphorin, Switzerland, Georgi Publishing Company.

HAGEMAN, L. AND D. YOUNG (1981). Applied Iterative Methods. New York, Academic

Press.

JENDELE, L. AND D. V. PHILLIPS (1992). "Finite Element Software for Creep and Shrinkage

in Concrete." Computer and Structures 45 (1): 113-126.

REKTORYS, K. (1995). Přehled užité matematiky. Prague, Prometheus.

SEAGER, M. K. AND A. GREENBAUM (1988). A SLAP for the Masses, Lawrence Livermore

National Laboratory.

WAN-WENDER, R. AND HUBLER, M. AND BAZANT, Z. (2013). THE B4 MODEL FOR

MULTI-DECADE CREEP AND SHRINKAGE PREDICTION. 429-436.

10.1061/9780784413111.051.

263

The durability analysis in ATENA can currently assess the deterioration of structures due to

carbonation and chlorides ingress. It is available for static and creep analyses. At each time step,

an appropriate 1D transport analysis is carried out to investigate how far the pollution (i.e.,

carbonation and/or chlorides) penetrate from loaded surfaces inside the structure. The main

results of the analyses are induction times, i.e., times at which the pollution concentration

reaches critical values that are already for the structure unacceptable (e.g., the reinforcement

corrosion begins etc.). They are always given with respect to time 0 0t = . In addition, pollution

concentration at times (corresponding to the individual steps) is also computed.

Note that static analysis in ATENA typically does not care about time (or more precisely, each

analysis step increments the structural age by unit time). At each step, it yields a sort of artificial

age of the structure. Hence, if the durability analysis is carried out, this artificial age must be

somehow mapped onto real structural age. It is done in ATENA with the help of a multilinear

function. Such a function corresponds to loading functions used to define variable BCs and it is

input in exactly the same way.

The following text describes the theory behind the 1D transport analysis of the carbonation and

chlorides pollution, and, in the end, some information regarding the transport parameters is

given.

The service life of a structure tl usually has the form of

 l c i p rt t t t t= + + + (4.76)

where tc is the construction phase, ti initiation (induction) period, tp propagation period, and tr

post-repair period.

We aim at predicting the initiation period without going into propagation or post-repair phases.

Carbonation and chloride ingress are two leading mechanisms contributing to reinforcement

corrosion. Both of them are described further. The initiation phase ends with the beginning of

reinforcement corrosion. Fig. 6-1 brings a more detailed description of initiation and propagation

phases and their relationship to concrete events. Prediction of the initiation period represents a

preventive measure that is affected above all by concrete cover thickness, concrete composition,

and environment. It makes sense to change the design at the beginning rather than mitigating

reinforcement corrosion later. Acceleration of carbonation and chloride ingress on crack

appearance is taken into account.

9 Not available in ATENA version 5.1 and older. Development/testing implementation of CARBONATION,

CHLORIDES, and ASR in version 5.3.

264

Carbonation depth of a sound (uncracked) concrete reads (Papadakis and Tsimas 2002)

, 2 2

1

2

0.218()

e CO

c

D CO
x t A t

C kP
= =

+
 (4.77)

where xc is the carbonation depth, De,CO2 is the effective diffusivity for CO2, C is the Portland

cement content in kgm-3, k<0.3,1.0> is the efficiency factor of supplementary cementitious

material (SCM-slag, silica, fly ash), P is the amount of SCM in kgm-3, CO2 is the volume

fraction of CO2 in the atmosphere taken as 3.6e-4 and t is the time of exposure. The effective

diffusivity in m2s-1 is given by the empirical equation (Papadakis and Tsimas 2002)

()

3

6 2.2

, 2

(0.267) / 1000)
6.1 10 (1)

1000

e CO

c

W C kP
D RH

C kP W



−

 
 − +
 =  −

+ + 
 

 (4.78)

where W is the water content in concrete in kgm-3, c is the cement density in kgm-3 assumed as

3150 kgm-3 and RH is the relative humidity of ambient air. Eqs. (4.77)(4.78) allow predicting

either carbonation depth or induction time of uncracked concrete. Relative humidity must be

higher than 0.50 for carbonation to proceed.

Cracked concrete leads to faster carbonation. This acceleration is given in the form (Kwon and

Na 2011)

1() (2.816 1)cx t w A t= + (4.79)

where w is the crack width in mm, A1 is the carbonation velocity according to Eq.(4.77).

Eq. (4.79) allows computing carbonation depth and induction time. Note that crack 0.3 mm

increases carbonation depth by a factor of 2.54. This also means that induction time is 6.46 times

shorter compared to a sound concrete.

265

In reality, cracks may grow during any service time. Thus, Eq. (4.79) needs to be recast to

incremental form. An increment of carbonation depth in a given time step t is evaluated from

the total derivative by differentiating Eq. (4.79)

 ()
()1 1

1

0.5 0.5

2.816 1 2.816

2 2

i

c

i i

w A A t
x t t w

t w

+

+ +

+
 =  +  (4.80)

where wi+1 is the crack width at the end of the time step, ti+0.5 is the mid-time. It is assumed that

nonzero w at a frozen time t has no effect on carbonation depth; thus the term w can be left

out. Eq. (4.80) allows predicting either carbonation depth or induction time of gradually cracking

concrete.

Let us consider first a regular concrete made from ordinary Portland cement, w/b=0.45, C=400

kgm-3, W=202.5 kgm-3, P=50 kgm-3. The supplementary cementitious material is fly ash with

almost zero calcium content hence k=0.5. Concrete is exposed to relative humidity 0.60.

Consider a concrete cover of 30 mm. A crack is always introduced at the beginning of the

exposure.

The second concrete is made from ordinary Portland cement, w/b=0.45, C=200 kgm-3,

W=90 kgm-3, P=0 kgm-3. Table 6.1-1 compares both concretes in terms of induction time.

Crack width

(mm)

Induction time for concrete

w/b=0.45, C=400 kgm-3,

P=50 kgm-3 (years)

Induction time for concrete

w/b=0.45, C=200 kgm-3, P=0 kgm-3

(years)

0 246 157

0.1 69.9 44.5

0.2 49.2 31.4

0.3 39.1 24.9

Implemented model for chloride ingress is based on (Kwon, Na et al. 2009). Let us consider 1D

transient problem of chloride ingress in concrete with initially free chloride content

 ()
()

, 1
2 ()

S

m

x
C x t C erf

D t f w t

  
  = −

  
  

 (4.81)

where CS is the chloride content at surface in kgm-3, Dm is the averaged diffusion coefficient at

time t in mm2 s-1, x is the position from the surface in mm, and f(w) gives acceleration by

cracking and equals to one for a crack-free concrete. Cs and C can be related to concrete volume

or to binder volume; however, the units must be kept consistently through the computation.

The diffusion coefficient D(t) is assumed to decrease over time t according to the power-law

266

 ()
m

ref

ref

t
D t D

t

 
=  

 
 (4.82)

where m is a decay rate (sometimes called an age factor). If m=0, a constant value of D(t)=Dref is

recovered. This model was proposed by (Collepardi, Marcialis, et al. 1972). Nowadays, it

became clear that this assumption is too conservative and is not generally recommended. The

mean diffusion coefficient Dm is obtained by averaging D(t) over time of interest

0

1
() ,

1

m mt
ref ref ref

m ref R

t D t
D t D d t t

t m t




   
= =    

−   
 (4.83)

 () 1 ,
1

m

refR
m ref R

R

tt m
D t D t t

t m t

   
= +    

−   
 (4.84)

where tR is the time when diffusion coefficient is assumed to be constant and is generally taken

as 30 years. tref corresponds to the time when the diffusion coefficient was measured. Fig. 6-2

shows the characteristic evolution of diffusion coefficients over time.

The mean diffusion coefficient increases when cracks are present in the concrete. Based on

recent results, the following scaling function is proposed (Kwon, Na et al. 2009)

 2() 31.61 4.73 1f w w w= + + (4.85)

where w stands for crack width in mm. The crack width 0.3 mm increases the mean diffusion

coefficient by a factor of 5.26. In reality, crack width evolves, and incremental solution needs to

be formulated. The mean coefficient Dm,w(t) incorporating crack width is evaluated from a crack

increment

() ()

,

1
1

00

()

() ()
() 63.22 4.73 63.22 4.73 { () ()}

2

m w

n
i i

m m i i i

i

w

D t

w t w t
D t w dw D t w t w t w t+

+

=

=

 −  
+  + + −  

  


 (4.86)

If last values of f(w) and w are stored, Eq. (4.86) can be evaluated only in the actual time step.

This speeds up the solution.

267

Proper determination of diffusion coefficient is not a trivial subject, considering various

concretes, cement types, models, and exposure conditions. (Papadakis 2000) presented a model

for estimating intrinsic effective diffusivity for concretes made from blended cements; however,

recalculation to Da is not straightforward. DuraCrete model (III 2000) provides useful data for

estimating apparent diffusion coefficient in the form

 () 0
0t ()

m

a e c Cl Da

t
D k k D t

t


 
=  

 
 (4.87)

where ke<0.27,3.88> is the environment factor, kc<0.79,2.08> is the curing factor, Dcl(t0) is

the measured diffusion coefficient determined at time t0, m<0.2,0.93> is the age factor and

Da<1.25,3.25> is the partial factor. In our notation, Da(t)=Dm(t) and t0=tref.

To our opinion, the most relevant and well-documented field data come from 10 years exposure

tests (Luping, Tang et al. 2007). Fig. 6-3 shows the apparent diffusion coefficient in dependence

of water-binder ratio. In this particular case, tref=10 years, m is unknown, Dref=(1-m)Da, tR can be

assumed as 30 years.

268

The next figure shows the apparent diffusivity coefficient at 10 years from Fig. 6-3. They can be

used as a starting point for estimating Dref.

269

3.2. Example of chloride ingress

Let us consider regular concrete made from ordinary Portland cement, w/b=0.45. According to

Fig. 6-3, Da is about 2e-12 m2s-1 at tref=10 years. According to the Duracrete model, the age

factor for concrete submerged in salt water corresponds to m=0.30 (Table 8.6 in DuraCrete). In

such case, Dref=(1-m)Da=1.4e-12 m2s-1. Fig. 6-5 shows the evolution of diffusion coefficients for

this particular case.

270

Let us assume characteristic value Cs 10.3% of chlorides per binder for submerged concrete

without further reductions (Table 8.5 in DuraCrete). The critical level for corrosion is 1.85 % per

binder (Table 8.7 in DuraCrete). The concrete cover is taken as 100 mm. Computed induction

time according to Eq. (4.81) is summarized in Table 6.3-1. Crack width is considered since the

beginning of the exposure.

Crack width

(mm)

Induction time (years)

0 74.58

0.1 36.02

0.2 15.70

0.3 7.76

The corrosion rate for the carbonation depends on the corrosion current density icorr [µA/cm2],

which ranges between 0.1-10 (passive corrosion-high corrosion) and depends on the quality and

the relative humidity of the concrete (Page CL, 1992). This model predicts the amount of

corroded steel during the whole propagation period tp. The corrosion rate is based on Faraday's

law (Rodriguez, 1996), determined as follows:

 ()corr corr () 0.0116 x t i t= (4.88)

271

where corrx is the average corrosion rate in the radial direction [m/year], icorr is corrosion current

density [µA/cm2], and t is the calculated time after the end of the induction period [years].

By integration of Eq. (1), it is obtained the corroded depth for 1D propagation:

 ()corr corr corr() 0.0116 d

ini

t

t

x t i t R t=  (4.89)

where xcorr is the total amount of corroded steel in radial direction [mm] and Rcorr is parameter,

depends on the type of corrosion [-]. For uniform corrosion (carbonation) Rcorr = 1, for pitting

corrosion (chlorides) Rcorr = <2; 4> according to (Gonzales at.al., 1995) or Rcorr = <4; 5.5>

according to (Darmawan &, 2007).

Effective bar diameter for both types of corrosion is obtained from:

 () 2 () ini corrd t d x t= − (4.90)

where d(t) is the evolution of bar diameter in time t, d ini is initial bar diameter [mm], ψ is

uncertainty factor of the model [-], mean value ψ = 1 and xcorr is the total amount of corroded

steel according to (2).

The corrosion rate for chlorides is more complicated because it is affected by the concentration

of chlorides in the concrete. Calculation of corrosion current density was formulated by Liu and

Weyer's model (Liu, Weyers, 1998):

 () 0.2153006
0.926*exp 7.98 0.7771ln 1.69 0.000116 2.24corr t Ci C R t

T

− 
= + − − + 

 
 (4.91)

where icorr is corrosion current density [µA/cm2], Ct is total chloride content [kg/m3 of concrete]

on reinforcement which is determined from 1D nonstationary transport, T is temperature at the

depth of reinforcement [K] and Rc is ohmic resistance of the cover concrete [Ω] (Liu, 1996) and t

is time after initiation [years]:

 ()exp 8.03 0.549ln 1 1.69C tR C= − +   (4.92)

The average corrosion rate in radial direction is determined further when plugging(4.93),(4.94)

to (1). The total amount of corroded steel in radial direction stems from (2) and the effective bar

diameter from (3).

The cracking of concrete cover for both carbonation and chlorides can be estimated from

DuraCrete model, which provides realistic results (DuraCrete, 2000). The critical penetration

depth of corroded steel xcorr,cr is formulated as:

 , 1 2 3 ,corr cr t ch

ini

C
x a a a f

d
= + + (4.95)

272

where parameter a1 is equal 7.44e-5 [m], parameter a2 is equal 7.30e-6 [m], a3 is

[-1.74e-5 m/MPa], C is cover thickness of concrete [m], dini initial bar diameter [m], ft,ch is

characteristic splitting tensile strength of concrete [MPa].

The critical penetration depth of corroded steel xcorr,sp for both carbonation and chlorides is

calculated from (DueaCrete, 2000) as:

 0
, ,

d

corr sp corr cr

w w
x x

b

−
= + (4.96)

where parameter b depends on the position of the bar (for top reinforcement 8.6 µm/µm and

bottom 10.4 µm/ µm), wd is critical crack width for spalling (characteristic value 1 mm), w0 is

the width of initial crack (known from previous ATENA computation) and xcorr,cr depth of

corroded steel at the time of cracking [m].

After spalling of concrete cover, corrosion of reinforcement takes place in direct contact with the

environment. To determine the rate of corrosion of reinforcement after spalling, (Spec-net, 2015)

gives rates of reinforcement corrosion.

Table 2: Corrosion rates of steel under atmospheric exposition

Corrosivity zone (ISO 9223) Typical environment Corrosion rate for first year (µm/yr)

Category Description Mild steel Zinc

C1 Very low Dry indoors ≤1,3 ≤0,1

C2 Low Arid/Urban inland >1,3 a ≤25 >0,1 a ≤0,7

C3 Medium Coastal and

industrial

>25 a ≤50 >0,7 a ≤2,1

C4 High Calm sea-shore >50 a ≤80 >2,1 a ≤4,2

C5 Very High Surf sea-shore >80 a ≤200 >4,2 a ≤8,4

CX Extreme Ocean/Off-shore >200 a ≤700 >8,4 a ≤25

273

In most concrete, aggregates are more or less chemically inert. However, some aggregates react

with the alkali hydroxides in concrete, causing expansion and cracking over a period of many

years. This alkali-aggregate reaction has two forms: alkali-silica reaction (ASR) and alkali-

carbonate reaction (ACR).

Alkali–silica reaction (ASR), one of those common deleterious mechanisms, consists of a

chemical reaction between "unstable" silica mineral forms within the aggregate materials and the

alkali hydroxides (Na, K–OH) dissolved in the concrete pore solution. It generates a secondary

alkali-silica gel that induces expansive pressures within the reacting aggregate material(s) and

the adjacent cement paste upon moisture uptake from its surrounding environment, thus causing

micro cracking, loss of material's integrity (mechanical/durability), and, in some cases,

functionality in the affected structure.

Several aggregate types in common use, particularly those with a siliceous composition, may be

attacked by the alkaline pore fluid in concrete. This attack, essentially a dissolution reaction,

requires a certain level of moisture and alkalis (leading to high pH) within the concrete to take

place. During the reaction, a hygroscopic gel is produced. When imbibing water, the gel will

swell and thus cause expansion, cracking, and in the worst case, disruption of the concrete

(Lindgart 2012).

Thus, the degree of reaction of an aggregate is a function of the alkalinity of the pore solution.

For a given aggregate, a critical lower pH-value exists below which the aggregate will not react.

Consequently, ASR will be prevented by lowering pH of the pore solution beneath this critical

level where the dissolution of alkali-reactive constituents (silica) in the aggregates will be

strongly reduced or even prevented, as discussed in (Rodriguez at.al, 1996). No "absolute" limit

is defined because the critical alkali content largely depends on the aggregate reactivity [3], but

from many experimental tests we can estimate threshold value (Lindgart 2012), (Poyet , 2003).

Many studies carried out over the past few decades have shown that ASR can affect the

mechanical properties of concrete as a "material." Usually, ASR generates a significant reduction

in tensile strength and modulus of elasticity of concrete. These two properties are much more

affected than compressive strength, which begins to decrease significantly only at high levels of

expansion.

Several ASR models were developed over the years to predict expansion and damage on both

ASR affected materials (microscopic models) (Multon at.al., 2009), (Bazant, Steffens, 2009),

(Comby-Perot, 2009) and ASR affected structures/structural elements (macroscopic models)

(Ulm at.al., 1999), (Saouma, Perotti,2006), (Comi, Fedele, Perego, 2009). The first group has a

goal of modeling both the chemical reactions and the mechanical distress caused by ASR or even

the coupling of the two phenomena. The second group aims at understanding the overall distress

of structures/structural concrete elements in a real context, simulating their likely in situ behavior

(Farage et al.,2000) seems to have finally bridged the gap between scientific rigor and practical

applicability to real structures.

In terms of mechanical effects, it is known that ASR expansions occur over long time periods.

During this process, ASR-affected concretes are subjected to a progressive stress built up that is

very likely to cause creep on the distressed materials.

274

AAR depends on the availability of three factors: alkalis liberated from cement during hydration,

siliceous minerals present in certain kinds of aggregates, and water. Several microscopic and

random factors are involved in AAR expansion, such as concrete porosity, amount and location

of reactive regions in the material, and permeability (Farage et al.,2000). These parameters,

added to concrete's intrinsic heterogeneity, turn simulating the AAR expansion into a rather

complex task.

Even though the AAR process has not been well explained so far, the commonly accepted theory

for describing it is two distinct phases that need to be considered: gel formation and water

absorption by the gel, causing expansion. According to this mechanism, the reaction does not

always lead to expansion. As long as there is enough void space to be filled by the gel, i.e., pores

and cracks, concrete volume remains unchanged.

Due to the lack of a model, which is able to incorporate effects of relative humidity, alkali/silica

content in the mixture, ambient temperature, authors suggest to combine ASR kinetics proposed

by (Ulm et. al., 1999) with the influence of moisture, published by (Léger et al., 1996) and

influence of alkali/silica content proposed by Multon et al.

Implementation of modeling expansion due to ASR consists of modeling engeinstrains in time-

steps t on the entire structure. Function for volumetric eigenstrain reads

 () () MFcalASR t t = (4.97)

where cal  is the volumetric strain of ASR swelling at infinity time, () 0,1t  is the chemical

extent of ASR, and FM is the coefficient reflecting moisture influence. It is described later in the

text. In the case of varying the relative humidity, eq. (4.97) changes to the incremental form, for

time it

 () () () ()()1 1
1

M
2

Fi i cal i
i i

ASR ASR it t t t
t t

   

−
−

−=
+ 

 


+


− (4.98)

For the complete 3D constitutive model, we consider the first-order reaction

 ()c1 ξ ,ξ ξt − = (4.99)

where ()c 0,ξ /dt k A = is the characteristic time. It has been found that tc depends on

temperature []K and the ASR extent ξ . Referring to (4.99) the implementation of the

chemoelastic material law in the constitutive laws is relatively straightforward and a suitable

integration scheme is given in (Ulm ea., 1999).

Consider an isothermal stress-free ASR expansion test carried out at constant temperature

0 = . In this test, the volumetric strain ASR is recorded as a function of time that and ASR

extent is calculated as

 ()
()

()
ξ

ASR

ASR

t
t




=


 (4.100)

275

For macroscopically stress-free sample, (4.99) in (4.100) yields

() () ()
()

()

() () () ()

() () () ()

c

c

c

(1 ξ) ,ξ

ξ ,ξ

,ξ

ASR

ASR ASR

ASR

ASR ASR ASR

ASR ASR ASR

t
t

t t

t t t


  



   

   

 − = 


 −  =

 − =

 (4.101)

With ()ASR t and ()ASR t being measurable functions of time, the characteristic time tc can be

determined from a stress-free expansion test. In a recent extensive series of stress-free expansion

tests carried out at different constant temperatures(Larive, 1998), tc has been found to depend on

both temperature []K and reaction extent ξ [-] in the form

 () ()c , ct     = (4.102)

 ()
() ()

() ()

1 exp /
,

ξ exp /

L C

L C

   
  

   

+ −  =
+ −  

 (4.103)

In this experimentally determined kinetics function, ()c  is a characteristic time [day] and

()L  is a latency time [day]. The use of (4.103),(4.102) in (4.101) yields after integration

 ()
()

()

1 exp /
ξ

1 exp / /

C

C L C

t
t

t



  

− −
=

+ − +
 (4.104)

For variable temperature, cracking etc., it is difficult to solve for ()ξ t analytically and numerical

integration is needed. A suitable solution scheme is derived in (Ulm at.al., 2006), which is

implemented in in ATENA. Fig. 6-6 shows the shape of (4.100), together with the time

constants, c C and L , which stand for the characteristic time and the latency time of ASR

swelling, respectively. Furthermore, proceeding as in physical chemistry (Atkins, 1994), we

explore the temperature dependence of the time constants c C and L from stress-free

expansion tests carried out at different constant temperatures. The plots of ln()c C nd ln()L

against 1/  C are given in Fig. 6-7. It is remarkable that the experimental values align (almost)

perfectly along a straight line, matching the Arrhenius concept.

 () ()C C 0 c

0

1 1
exp U   

 

  
= −  

   
 (4.105)

 () ()L L 0 L

0

1 1
exp U   

 

  
= −  

   
 (4.106)

where

 C L5400 500 ; 9400 500 U K U K=  =  (4.107)

276

It is explored (Atkins, 1994) that the temperature dependence of the time constants c C nd

L carried out at different constant temperatures (23, 33, 38, and 58 °C), see Fig. 6-6. Default

values are ()C τ 311,15K ays and (311.15 C) 145L  = days [20], see Fig. 6-8. , Fig. 6-9.

According to Larive's experimental data from water-saturated tests [14] ()Cτ 288,15K days and

()Lτ 288,15K ays, ()Cτ 281,15K ys and ()Lτ 288,15K ays. Under drying conditions, the values for

LτL roughly increase by a factor of 4; and
C by 2.5 (Larive , 1998), (Ulm at.al, 1999)

Cτ Lτ

277

 Lτ Cτ

ξ () ()/ t

Cτ

Lτ

 cal 

cal 
 [-] is the predicted volumetric expansion at infinity time obtained by model proposed by

(Multon et al., 2008). It is calculated based on reactive aggregates, amount of reactive silica in

the aggregates, and value of measured stress-free expansion test done in Poyet's study (Lindgart ,

2012) on samples containing reactive particles only. cal 
 is defined as follows

278

 () C
cal F

R

A
t s p AC

A
  =    (4.108)

where F [m3/kg] is measured ASR strain expansion per kg of aggregate in m3 of the concrete

mixture on samples containing reactive particles only with enough sufficiency of alkali.

Typically it ranges in 8.93e-7 ... 1.34e-5 [m3/kg]. See Table 3 for more details. CA kg/m3

Na2Oeq] and RA kg/m3 Na2Oeq] are amounts of consumed and required alkali, respectively. AC is

total aggregate content in [kg/m3]. One of the main assumptions of the model is that the

maximum expansion of mortar is achieved if there is enough alkali to react with all the reactive

silica of the mixture. This amount of required alkali content RA kg/m3 Na2Oeq] is defined as

 RA r s p AC=    (4.109)

where s is the proportion of quantity of soluble silica [-], p is the proportion of reactive aggregate

[-]. r states for the amount of required alkali per kg of reactive silica, and it is a constant value r

= 15.4 %. Value CA s defined as min RA (, AA s the available amount of alkali for ASR reaction.

AA s defined as the difference between the initial amount of available alkali TA kg/m3 Na2Oeq]

and alkali content threshold 0A kg/m3 Na2Oeq] when ASR reaction starts.

 0A TA A A= − (4.110)

It should be noted that this model does not consider any alkali flow through boundaries inside

the structure during the service life. By default, 0A s equal to 3.7 kg/m3 Na2Oeq (Poyet, 2003), but

other values in the range of 3 – 5 kg/m3 Na2Oeq can be found in the literature (Lindgart, 2012)

.

Value of p depends on the mix ratio of reactive aggregate. Value s depends on amount of

reactive silica in aggregates, moreover common values are: p = 11,1% (Multon, 2008) 0or 9,4%

and 12,4% (Multon, 2009).

6.5.4 Influence of moisture FM

Approximately 75% relative humidity (RH) within concrete is necessary to initiate significant

expansion, which is assumed to vary linearly between 75% RH and 100% RH as shown in Fig.

6-10.

279

The coefficient MF eflects influence of moisture h. The function for FM is approximated as

 min

min

1
()

1
()M h

h
F hh = −

−
 (4.111)

where hmin is relative humidity threshold where ASR begins to appear, 0.75 by default. Other

variables will be explained in further text.

Expansion of free concrete specimens due to ASR has been summarized in (Červenka, Jendele,

Šmilauer, 2016). It predicts ASR under unrestrained conditions, i.e., under free expansion. The

expansion model takes into account reaction kinetics, alkali content, reactive amount of

aggregates, relative humidity, and temperature. The model has been validated on 4 examples

found in the literature.

Degradation of material due to ASR reaction (Saouma, 2016, eqs. 18,19)

 () () ()0, 1- 1- ,EE t E t    =   (4.112)

 () () (),0, 1- 1- ,t t ff t f t    =
 

 (4.113)

 () () (),0, 1- 1- ,f f GG t G t    =   (4.114)

280

where βE,f,G are residual values of E/E0, f/f0, Gf/Gf0. Default values are 0.1E = ,

0.6f = (Esposito, Hendriks, 2012) and 0.6G = is estimated.

The general equation for the incremental volumetric AAR strain is given by (Saouma, 2016, (5))

() () () ()

() () () () () ()
Only considered in implementation

, , , , , ,

V I II III

t c c M cal t c c M cal t c M

t t t t

f F h t f F h t f F

   

       

= + + =

    +  +  (4.115)

where c reflects the effect of compressive stresses (Saouma, 2016, eq. 10), t accounts for the

influence of tensile cracking (assumed here as 1), MF is the effect of relative humidity, which is

already accounted for in (4.111) and equals to one. (4.115) considers further only the most

relevant first term and is rewritten in incremental form as

() () () () ()()

1
1 1,

((1)) / 2

i
iV i t c c M cal i ii

t f F h t t

i i i

    
−


− −

 =       −

= + −
 (4.116)

Reduction c due to compressive stress is considered as follows:

 ()

1 0

1 <0
1 1

3

c

I II III

c

if Tension

e
if Compresion

e

f












  


 


 =  +
 + −


+ +
=



 (4.117)

where the shape factor  is -2 by default (Saouma, 2016, Tab.2) and '

cf is the compressive strength.

Under constrained conditions, ASR expansion develops depending on the stress state. It is

known that compressive stress beyond approximately -10 MPa stops ASR expansions, which

needs to be reflected for strain redistribution into the principal directions. Similarly to (Saouma,

2016, Fig. 5), weight factors are assigned to three directions. Let us assume that directions of

principal stresses σI, σII, σIII are known. Expansion is then assigned to each principal stress

direction according to the weight factors W1
 ', W2

 ', W3
 '. When compressive stress reaches -0.3

MPa, the weight factor decreases until maximum stress -10 MPa is reached in that direction.

This situation is depicted in Fig. 6-11.

281

For compressive stress σi under -0.3 MPa, the following decay function is used, according to

(Leger, Coté, Tinawi, 1995), where σL ≈ -0.3 MPa and σu ≈ -10 MPa, see Fig. 6-11. :

 ()
()

1
1 log / 0.3

log

1 0.3

i L i

i i u

L

i

for MPa
W

for MPa

  
 





 
 
 −  − =  

  
   

  −

 (4.118)

Weight factors need to be normalized as

'

3 '

1

i
i

ii

W
W

W
=

=


 (4.119)

Three principal strains from ASR are assigned as

 (),ASR i i V iW t  =   (4.120)

This new approach simplifies the procedure outlined by (Saouma, 2016, Fig. 5) where several stress
state cases were treated individually.

The following Fig. 2-12 and Fig. 6-13 validate experimental data for free expansion. The

following material parameters were used, summarized in Table 6.5-4.

Variable Symbol Value Source

REQUIRED ALKALI PER REACTIVE

SILICA
r 15.4 %

(Multon, Cyr,

Sellier,

Leklou, &

Petit, 2008)

282

PROPORTION REACTIVE SILICA s 21.8 %

(Multon, Cyr,

Sellier,

Leklou, &

Petit, 2008)

PROPORTION REACTIVE PARTICLES

IN SAND
p 30 %

(Multon, Cyr,

Sellier,

Leklou, &

Petit, 2008)

SAND MASS AC 833 kg/m3

(Kagimoto,

Yasuda, &

Kawamura,

2014)

ASR MEASSURED ASR STRAIN ƐF 0.0525 %/kg (Poyet, 2003)

AMOUNT OF REQUIRED ALKALI AR 8.39 kg/m3 (Poyet, 2003)

TOTAL ALKALI IN MORTAR for Ca-5.4

(for Ca-9.0)
AT 5.4 (9) kg/m3

(Kagimoto,

Yasuda, &

Kawamura,

2014)

THRESHOLD ALKALI IN CONCRETE A0 3.7 kg/m3 (Poyet, 2003)

CHARACTERISTIC TIME τC 20 day

LATENCY TIME for Ca-5.4 (for Ca-9.0) τL 55 (45) day

ELASTIC MODULUS E

27 GPa

(Kagimoto,

Yasuda, &

Kawamura,

2014)

COMPRESSIVE STRENGTH fc

26 MPa

(Kagimoto,

Yasuda, &

Kawamura,

2014)

283

Table 6.5-4. Summarized parameters for validation.

Fig. 6-12. Validation of free expansion (Kagimoto, Yasuda, & Kawamura, 2014)

Fig. 6-13. Validation of free expansion, (Kagimoto, Yasuda, & Kawamura, 2014)

Differential Equation (4.99) represents kinetics of development of ASR extent ξ . In the case of

constant temperature  in the structure, it can be solved analytically, see (4.104). Otherwise, it

must be solved numerically. The following lines and equations describe the procedure to solve ξ

that is implemented in ATENA.

Let's start from (4.99) and rewrite the equation into its differential form. We expect to now all at

the time i and solve for time 1i + . We do it in an iterative manner, i.e., we know all at iteration

k and compute ξ at iteration 1k + :

284

 ()
1

11
, 1 1

1

ξ ξ
 1 ξ = 0

k
k ki i
c i i

i i

t
t t

+
++

+ +

+

−
− −

−
 (4.121)

The unknown 1

1ξk

i

+

+ ASR extent is searched for in the form 1

1 1ξ ξ ξk k

i i +

+ += + , where ξ is the

correction of ξ resulting from the k -th iteration. Denoting 1i it t t+ − =  and 1ξ ξ ξk

i i+ − =  the

above equation can be written

 () (), 1 1 ξ ξ 1 ξ ξ = 0k k

c i it t + ++  −  − − (4.122)

from which, after some mathematical manipulation, we can calculate ξ

(), 1 1

, 1

ξ 1 ξ
ξ

k

c i i

k

c i

t t

t t


+ +

+

 −  −
= −

+ 
 (4.123)

and 1

1 1ξ ξ ξk k

i i +

+ += + . Note that in (4.121) thru (4.123) we used
, 1

k

c it +
although 1

, 1

k

c it +

+
should be

employed, as (,)c ct t  = is a nonlinear function. Therefore, after each iteration, 1k + we update

, 1

k

c it +
to 1

, 1

k

c it +

+
and recalculate (4.122)

 () ()1 1

, 1 1 ξ ξ 1 ξ ξ =k k k

c i it t E + +

+ ++  −  − − (4.124)

It yields an error 1kE + that is further compared against some maximum acceptable error. If it is

too high, the next iteration is carried out; otherwise, the iteration process is finshed.

Note, however, that for the sake of convergency speed, the third and further iterations are in

ATENA computed in a different way. Using linear interpolation between iteration k and 1k +

requiring error
2 0kE + = in iteration 2k + value 2

1ξk

i

+

+ is calculated by

() ()

() ()

2 1 2 2 1

1 1 1 11

1 1

1 2 2 1

1 1 1 1

1 1
2 1 1

1 1

1
ξ ξ ξ ξ 0

ξ ξ

ξ ξ ξ ξ 0

ξ ξ
ξ

k k k k k k k

i i i ik k

i i

k k k k k k

i i i i

k k k k
k i i
i k k

E E E

E E

E E

E E

+ + + + +

+ + + ++

+ +

+ + + +

+ + + +

+ +
+ + +
+ +

 = − + − →
 −

− + − =

+
=

+

 (4.125)

and checked by (4.124) written for iteration 2k + . The iterating process continues this (latter)

way until a sufficient accuracy is obtained.

The time step t is input by the user, but it is automatically limited by 0.01 ct t  requirement

to ensure reasonable accuracy and convergence of the solution.

ASR loading results in the development of ASR strain and deterioration of material properties

like Young modulus E, tension strength ft, and fracture energy Gf. For each step i, we can write

 1 1 1 1 1() ()i i i i i i i iE E E    − − − − −= + − + − (4.126)

285

The above equation calculates stress i at (current) time step i based on stress
1i −
from the

previous time step and current changes of Young modulus E and strains  . The strains 

represents "mechanical strains," i.e., strains producing stresses in an unrestrained material. They

are total geometrical strains minus initial strain that corresponds to ASR expansion strains ,ASR i .

The differential formulation corresponds to the incremental solution used in Atena and the case

of linear elastic material law. (More advanced materials are treated in a similar way). Using

0 ()ASR

k E kE E cf = , (4.126) can be written

ASR ASR

1 0 E 1 1 0 E 1

ASR ASR ASR

1 0 E 1 1 1 0 E E 1

ASR
ASR ASR E

1 0 E 1 1 1 0 E 1 ASR

E 1

1

cf () cf (,)

cf ()() (cf () cf ())

cf ()
cf ()() cf () 1

cf ()

i i i i i i i

i i i i i i i i

i
i i i i i i i

i

i i

E E

E E

E E

E

      

       


      



 

− − − −

− − − − −

− − − − −

−

−

+  + 

+ − + −

 
+ − + − 

 

+
ASR

ASR E
0 E 1 1 1 ASR

E 1

cf ()
cf ()() 1

cf ()

i
i i i i

i


   


− − −

−

 
− + − 

 

 (4.127)

Note that strains  are strains that are facilitated in material law, i.e., geometrical strains after

subtracting ASR swelling strains. The ASR strains are implemented by initial element strains,

and the term
1

1

1i
i

i





−

−

 
− 

 
 is incorporated in the solution in the form of element initial stresses.

Also, at each step, we update ft and Gf.

An alternative solution to (4.127) is

ASR ASR ASR

1 0 E 1 1 1 0 E E 1

ASR
ASR ASR E

1 0 E 1 1 1 0 E 1 ASR

E 1

ASR
ASR E

1 0 E 1 1 1 ASR

E

cf ()() (cf () cf ())

cf ()
cf ()() cf () 1

cf ()

cf ()
cf () (1

cf (

i i i i i i i i

i
i i i i i i i

i

i
i i i i i i

i

E E

E E

E

       


      




     



− − − − −

− − − − −

−

− − − −

−

= + − + −

 
= + − + − 

 

= + − − −
1)

  
  
   

 (4.128)

The term
ASR

E
1 ASR

E 1

cf ()
1

cf ()

i
i

i





−

−

 
− 

 
 is then added to ASR swelling initial element strains (4.120)

calculated earlier. For linear material law, both equations (4.127) and (4.128) are equivalent. For

the case of nonlinear law, they can slightly differ. By default, Atena prefers approach according

to (4.128).

For the sake of simplicity, the above derivation has been presented for uniaxial stress-strain

conditions. Its extension to 3D conditions is obvious.

The proposed model is derived from free expansion tests. The model works in 2D and 3D stress

state by limiting expansion when a compressive load is present in a principal direction. In the

286

case of hydrostatic compression above -10 MPa, no ASR expansion occurs, and no reduction of

mechanical properties happens (E, ft, Gf). This is justified by the fact that ASR gel grows into

cracks and no macroscopic cracks occur.

The majority of structures are exposed to the thermal field; hence ASR usually proceeds faster

close to the surface due to higher average temperature. Since the surface is often unloaded, the

main expansion happens perpendicular to the surface, which induces a small compressive load

and delamination of layers.

Atkins, P. W. (1994). Physical chemistry, 5th Ed., Oxford University Press, Oxford, U.K.

Berra, M. et al., Influence of stress restraint on the expansive behavior of concrete affected by

alkali-silica reaction, Cement and concrete research 40, 1403-1409, 2010

Bazant, Z.P., Steffens, A. Mathematical model for kinetics of alkali–silica reaction in concrete.

Cem Concr Res 2000;30:419–28.M. S. Darmawan & M. G. Stewart, Effect of Pitting

Corrosion on Capacity of Prestressing Wires, Magazine of Concrete Research, 59(2),

131-139, 2007.

Collepardi, M., A. Marcialis, et al. (1972). "Penetration of Chloride Ions into Cement Pastes and

Concrete." Journal of the American Ceramic Society 55: 534-535.

Comby-Perot, I., Bernard F., Bouchard P.O., Bay, F., Garcia-Diaz, E. Development and

validation of a 3D computational tool to describe concrete behaviour at mesoscale.

Application to the alkali–silica reaction. Comput Mater Science 2009;46(4):1163–77.

Červenka, J, Jendele, L., Šmilauer, V: Report I-05-01-2016 TAČR - TA04031458, 2016

Comi, C., Fedele, R., Perego, U. A chemo–thermo-damage model for the analysis of concrete

dams affected by alkali–silica reaction. Mech Mater 2009;41:210–30.

III, T. E. U. B. E. (2000). DuraCrete Final Technical Report. General Guidelines for Durability

Design and Redesign. Doc. BE95-1347/R17, 2000

Esposito, R., Hendriks, M.A.N., Degradation of the mechanical properties in ASR-affected

concrete: overview and modeling, Strategies for Sustainable Concrete Structures, 2012

Farage, M. C. R. Modelagem e implementaca˜o nume´rica da expansa˜o por reaca˜o a´lcali–

agregado do concreto, DSc thesis, Department of Civil Engineering, COPPE,

Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2000 (in Portuguese).

J. A. Gonzales, C. Andrade, C. Alonso & S. Feliu, Comparison of Rates of General Corrosion

and Maximum Pitting Penetration on Concrete Embedded Steel Reinforcement, Cement

and Concrete Research, 25(2), 257-264, 1995.

Kwon, S.-J. and U.-J. Na (2011). "Prediction of Durability for RC Columns with Crack and Joint

under Carbonation Based on Probabilistic Approach." Int. Journal of Concrete Structures

and Materials 5(1): 11-18.

Kwon, S. J., U. J. Na, et al. (2009). "Service Life Prediction of Concrete Wharves with Early-

aged Crack: Probabilistic Approach for Chloride Diffusion." Structural Safety 31(1): 75-

83.

287

Larive, C. (1998). ‘‘Apports combinés de l’expérimentation et de la modélisation á la

comprehension de l’alcali-reaction et de ses effets mécaniques.’’ Monograph LPC, OA

28, Laboratoires des Ponts et Chaussées, Paris (partially translated into English).

Leger, P., Coté, P., Tinawi, R., Finite element analysis of concrete swelling due to alkali-

aggregate reactions in dams, Computer and structures, 1995

Léger, P., Coté, P. and Tinawi, R. (1996) Finite Element Analysis of Concrete Swelling due to

Alkali-aggregate Reactions in Dams, Comparers & Structures Vol. 60. No. 4. pp. 601-

611.

Lindgart, J., (2012), Alkali–silica reactions (ASR): Literature review on parameters influencing

laboratory performance testing. Cement and Concrete Research, 42, 223-243.

Liu Y, Weyers R.E., Modeling the Dynamic Corrosion Process in Chloride Contaminated

Concrete Structures, Cement and Concrete Research, 28(3), 365-367, 1998.

Liu Y., Modelling the Time-to-corrosion Cracking of the Cover Concrete in Chloride

Contaminated Reinforced Concrete Structures, Ph.D. dissertation, Virginia Polytechnic

Institute, 1996.

Luping, Tang, et al. (2007). Chloride Ingress and Reinforcement Corrosion in Concrete under

De-Icing Highway Environment – A Study after 10 Years' Field Exposure, SP Sveriges

Tekniska Forskningsinstitut. Vol. SP Report 2007:76.

Multon, S., Cyr, M., Sellier, A., Leklou, N., Petit L. (2008) Coupled effects of aggregate size and

alkali content on ASR expansion, Cement and Concrete Research 38, 350-359.

Multon, S., Toutlemonde, F. (2010) Effect of moisture conditions and transfers on alkali silica

reaction damaged structures, Cement and Concrete Research 40, 924–934.

Multon, S., Sellier, A., Cyr, M. Chemo–mechanical modeling for prediction of alkali silica

reaction (ASR) expansion. Cement Concrete Research 2009;39:490–500.

Lindgart, J., (2012), Alkali–silica reactions (ASR): Literature review on parameters influencing

laboratory performance testing. Cement and Concrete Research, 42, 223-243.

Papadakis, V. G. (2000). "Effect of Supplementary Cementing Materials on Concrete Resistance

Against Carbonation and Chloride Ingress." Cement Concrete Research 30(2): 291-299.

Papadakis, V. G. and S. Tsimas (2002). "Supplementary Cementing Materials in Concrete. Part

I: Efficiency and Design." Cement and Concrete Research 32(10): 1525–1532.

Page CL, Nature and properties of concrete in relation to environment corrosion, Corrosion of

Steel in Concrete, Aachen, 1992.

S. Poyet, Etude de la dégradation des ouvrages en béton atteints par la réaction alcali-silice:

Approche expérimentale et modélisation numérique multi-échelles des dégradations dans

un environnement hydro-chemomécanique variable, Ph.D. Thesis (in French), Université

de Marne-La-Vallée, 2003

J. Rodriguez, L. M. Ortega, J. Casal & J. M. Diez, Corrosion of Reinforcement and Service Life

of Concrete Structures. In Proc. of Int. Conf. on Durability of Building Materials and

Components, 7, Stockholm, 1:117-126, 1996.

Saouma, V., Perotti, L., 2006, Constitutive model for alkali-aggregate reaction. ACI Material

Journal 103, 194-202.

Spec-net, Corrosivity zones for steel construction [online] available from: http://www.spec-

net.com.au/press/1014/gaa_081014/Corrosivity-Zones-for-Steel-Construction-

Galvanizers-Association, 2015.

http://www.spec-net.com.au/press/1014/gaa_081014/Corrosivity-Zones-for-Steel-Construction-Galvanizers-Association
http://www.spec-net.com.au/press/1014/gaa_081014/Corrosivity-Zones-for-Steel-Construction-Galvanizers-Association
http://www.spec-net.com.au/press/1014/gaa_081014/Corrosivity-Zones-for-Steel-Construction-Galvanizers-Association

288

Ulm, F. J., Coussy, O., Li, K., Larive, C. Thermo–chemo–mechanics of ASR expansion in

concrete structures. J Eng Mech 1999;126(3):233–42. Saouma, V., Perotti, L.

Constitutive model for alkali-aggregate reactions. ACI Mater J 2006;103(3):194–202.

289

As pointed out in the previous section, creep material behavior of concrete strongly depends on

moisture and temperature conditions. Some constitutive models for creep in ATENA can pay

regards to these factors and based on previously computed moisture and temperature histories

within the structure they can predict concrete behavior more accurately. This section describes a

module called CCStructuresTransport that is used to calculate the histories. A more accurate

creep analysis then typically consists of two steps: firstly execute CCStructuresTransport

module and calculate the moisture and humidity histories of the structure and secondly execute

CCStructuresCreep module to carry out the actual static analysis. Of course, for both analyses,

we have to prepare an appropriate model. Export/Import of the results between the modules is

already done by ATENA automatically.

To be exact, both the transport and static analysis should be executed simultaneously, but as

moisture and temperature transport does not depend significantly on structural deformations, i.e.,

coupling of the analyses is low, the implemented “staggered” solution yields sufficiently

accurate results.

The governing equations for moisture transport read (for representative volume REV] :

()

()e n
w

w ww
div J

t t

 +
= = −

 
 (5.1)

where:

w is total water content defined as a ratio of weight of water at current time t to weight of

water and cement at time 0 0t = in REV, [mass/mass], e.g. [kg/kg]

,e nw w = stands for the amounts of free and fixed (i.e. bound) water contents, [mass/mass],

wJ = moisture flux, [length*mass/ (time*mass)]. e.g. [m/day],

t =time, [time], e.g., [day].

The moisture flux is computed by

 w w eJ D w= −  (5.2)

where

wD is moisture diffusivity tensor of concrete [m2/day],

 is gradient operator.

Note that in (5.2) only diffusion of water vapor is considered. Moisture advection is negligible.

The equations (5.1) and (5.2) can also be written as being dependent on w or relative moisture h .

A relationship between h and w is given by

 ()w w h= (5.3)

 Using (5.3) Equation (5.2) can be written as follows

 w hJ D h= −  (5.4)

290

A special attention must be paid to the calculation of the above time derivatives and integration

of the governing equations. For example, in the case of usual Gauss integration and use of exact

time derivatives the solution may suffer from mass losses. To remedy the problem the

CCStructuresTransport module integrates the structure, i.e., all the individual finite elements in

nodes and time derivatives are calculated numerically (Jendele 2001). This integration is similar

to use of finite volume method, which is also known to be robust against the mass losses.

Heat transfer is governed by similar equation

 ()() ()T ref T T

Q T
C T T C div J

t t t

  
= − = = −

  
 (5.5)

where

Q is total amount of energy in a unit volume [J/m3]

TC is heat capacity [J/(K.m3)],

TJ is heat flux [J/(day.m2)].

If hydration we want to add heat ()hQ t , which expr
t



 t



 t



 t




esses amount of hydration heat

within unit volume i.e
3

,h

J
Q

m

 
 
 

, Equation (5.5) changes to

 ()() ()h
T ref h T T

QT
C T T Q C div J

t t t

 
− + = + = −

  
 (5.6)

Heat flux
2

,T

J
J

m s

 
 
 

 is calculated by

 ()T TJ K grad T= − (5.7)

and
TK stands for heat conductivity, e.g. [J/(day.m.K)].

Note that Equation (5.5) accounts for heat transport due to conduction only. Heat advection is

negligible. In (5.5) we can also neglect hydration heat because in large times, its impact for heat

transfer is small. On the other hand, we cannot neglect concrete moisture consumption due to the

hydration process. According to (Bazant and Thonguthai 1978; Bazant 1986) hydration water

content hw can be calculated by:

1

3

0.21 e
n h

e e

t
w w c

t

 
=   

+ 
 (5.8)

where

e = 23 days, et is equivalent hydration time in water at temperature 25 0C that corresponds to

the same degree of hydration subject to real age, moisture and temperature conditions of the

material. The parameter c relates to the amount of cement and is calculated by(5.53). If

temperature ranges from 0 to 100 0C , et is computed by

291

 e h Tt dt =  (5.9)

where dt is time increment after the mold has been removed and coefficients ,T h  are

calculated by

4

1

1 (3.5 3.5)
h

h
 =

+ −
 (5.10)

0

1 1
exp h

T

U

R T T


  
= −   

   

 (5.11)

In the fraction hU

R
 the symbol hU stands for the activation energy of hydration and R is gas

constant. According to (Bazant 1986) 02700hU
K

R
= . 0,T T are real and reference concrete

temperature is expressed in 0K . The reference temperature is given by

 0 273.15 25T = + (5.12)

The following figure depicts the relationship between real t and equivalent time et for the case

of constant temperature 015T C= and moisture 0.8h = . In practice, this relationship is rarely

linear because with increase of time the amount of fixed water (due to hydration) hw is

increasing as well and it involves a gradual decrease of relative moisture h .

292

The amount of water that was needed for hydration of concrete according to Equation (5.8) for

the case of 300c = kg is shown below:

The transport governing equations for a typical engineering problem are too complex for

analytical solution. Hence, similar to other ATENA engineering modules, the finite element

method is also used for the CCStructuresTransport module. The transport problem gets spatially

and temporarily discretized and then the resulting set of nonlinear algebraic equations is solved

by a special iterative solver. This section is dedicated to the detailed description of the former

type of discretization.

The solution is based on Equations (5.1) thru(5.7). Note that the unknown variables are

 (); (); (,); (, ,)h hh h t T T t w w h T w w h T t= = = = (5.13)

and they are to be discretized. Let the left-hand side part of (5.1) and (5.4) is denoted

,h TLHS LHS , respectively. The subscript h and T indicates moisture and temperature fluxes.

Similar subscripts are also used for the right-hand-side of the equations, ,h TRHS RHS . Notice

that RHS expressions do not include the divergence operator!

 ()h hLHS w w
t


= +


 (5.14)

 h
T T

QT
LHS C

t t


= +

 
 (5.15)

293

 h w hRHS J J= − = − (5.16)

 T TRHS J= − (5.17)

 The strip over an entity in the above equations means that the entity is vector. (Scalar entities do

not have the strip). The fluxes w hJ J= are identical, i.e., the subscript w indicates also moisture

phase. Using the above notation Equations (5.1) and (5.5) can be written as follows

()

()

h h

T T

LHS div RHS

LHS div RHS

=

=

 (5.18)

The hLHS includes time derivative of moisture. It is computed using the following expressions:

()h h e

e
h T

h h e h
h T

e e

w w t

t

t

w w t w

t t t t

 

 

=


=



   
= =

   

 (5.19)

For the next derivation, let us write Equations(5.14), (5.15) in a general form:

0

0

h hh hw hT h

T Th Tw TT T

h w T
LHS c c c c

t t t

h w T
LHS c c c c

t t t

  
= + + +

  

  
= + + +

  

 (5.20)

 and equations(5.16), (5.17)

     

     

0

0

h hh hw hT h

T Th Tw TT T

RHS k h k w k T k

RHS k h k w k T k

=  +  +  +

=  +  +  +

 (5.21)

where square bracket indicates that the enclosed entity is a matrix [].

Comparing (5.20) with (5.1) and (5.5) we find that

0

0

0; 1; 0

0; 0; 0

hh hT hw h

h
Th Tw TT T

c c c c

Q
c c c c

t

= = = 


= =  = 



 (5.22)

294

The parameter
TTc is in ATENA an input material parameter, 0hc is computed from(5.19), i.e.

0
h

h h T

e

w
c

t
 


=


. The solution also includes expressions 0;

w w

h T

 


 
. Their values depend on a

constitutive model being used in the solution. For more information, please refer to Section

Material Constitutive Model.

For right-hand sides, we can write in a similar manner:

       

       

0

0

0 ; 0; 0

0 ; 0; 0

hw hT hh h

Th Tw TT T

k k k k

k k k k

= =  =

= =  =

 (5.23)

The parameter  TTk is a material input parameter,  hhk is calculated from a constitutive model,

see the next section.

For the next derivation, let us assume discretization of the unknown variables as follows.

Remind that these are in the governing equations integrated in finite nodes, (Celia, Bouloutas et

al. 1990; Celia and Binning 1992).

;

;

;

TT

TT

TT

h N h h N h

w N w w N w

T N T T N T

 =  =  

 =  =  

 =  =  

 (5.24)

where

 , ,h w T stands for vectors of the corresponding entities. The vectors have dimension n equal

to number of finite nodes of the problem.

 N is vector of interpolation, (i.e., shape) functions,

1 2

1 2

1 2

...

...

...

n

T
n

n

NN N

x x x

NN N
N

y y y

NN N

z z z

  
 

  
 

  
  =     

 
  

    

Using (5.24) Equations (5.20) and (5.21) can be written in the form

295

0

0

T T T

h hh hw hT h

T T T

T Th Tw TT T

h w T
LHS c N c N c N c

t t t

h w T
LHS c N c N c N c

t t t

  
= + + +

  

  
= + + +

  

 (5.25)

 and

     

     

0

0

T T T

h hh hw hT h

T T T

T Th Tw TT T

RHS k N h k N w k N T k

RHS k N h k N w k N T k

     =  +  +  +     

     =  +  +  +     

 (5.26)

 The resulting set of equations are solved iteratively using finite element method, see

(Zienkiewicz and Taylor 1989), (weak formulation, in which the shape functions N are used as

weight function):

()

()

() 0

() 0

h h

V

T T

V

N LHS div RHS dV

N LHS div RHS dV

− =

− =





 (5.27)

where V is volume of the analyzed structure. Each of the above equations represents a set of

equations with dimension equal to number of finite nodes n. Note that ()hdiv RHS and

()Tdiv RHS are scalars !

In the next derivation, the two parts of (5.27) are dealt with separately.

()

   

0

0

0

...

...

T T T

h hh hw hT h

V V

T T

hh hw h

V V V

hhh hw

h w T
N LHS dV N c N c N c N c dV

t t t

h w
c NN dV c NN dV c NdV

t t

h w
cc cc cc

t t

   
= + + + = 

   

 
+ + =

 

 
+ +

 

 

   (5.28)

()

   

0

0...

T T T

T Th Tw TT T

V V

TTh Tw

h w T
N LHS dV N c N c N c N c dV

t t t

h w
cc cc cc

t t

   
= + + + = 

   

 
+ +

 

 

 (5.29)

and the matrices  cc are calculated by

296

   

   

0 0

0 0

; ; ...

; ; ...

T T
hhh hh hw hw h

V V V

T T
TTh Th Tw Tw T

V V V

cc c NN dV cc c NN dV cc c NdV

cc c NN dV cc c NN dV cc c NdV

= = =

= = =

  

  

 (5.30)

The second part of (5.27) are calculated using Green theorem (5.36):

() ()

     ()

     ()

0

0

() T

h s h h

V S V

T T TT

s hh hw hT h

S

T T T

hh hw hT h

V

N div RHS dV N n RHS dS N RHS dV

N n k N h k N w k N T k dS

N k N h k N w k N T k dV

 − = − +  = 

     = −  +  +  + +     

       +   +  +  +       

  





 (5.31)

where S is the structural surface (with possibly defined boundary conditions).

In the case of heat transfer, we can derive all the equations in a similar way. In analogy to (5.30)

let us introduce matrices  kk

   

   

   

0 0

0 0

...

T

hh hh

V

T

hw hw

V

h h

V

T

TT TT

V

T T

V

kk N k N dV

kk N k N dV

kk N k dV

kk N k N dV

kk N k dV

   =     

   =     

 =  

   =     

 =  











 (5.32)

and also

297

   

   

   

0 0

0 0

...

TT

hh s hh

S

TT

hw s hw

S

TT

TT s TT

S

T

h s h

S

T

T s T

S

J N n k N dS

J N n k N dS

J N n k N dS

J N n k dS

J N n k dS

 =  

 =  

 =  

=

=









 (5.33)

Using (5.28) to (5.33) the original governing equations (5.27) can be written as follows:

           

     

           

     

0 0

0

0 0

0

h hhh hw hT hh hw hT

hhh hw hT

T TTh Tw TT Th Tw TT

TTh Tw TT

h w T
cc cc cc cc kk h kk w kk T kk

t t t

J h J w J T J

h w T
cc cc cc cc kk h kk w kk T kk

t t t

J h J w J T J

  
+ + + + + + + =

  

= + + +

  
+ + + + + + + =

  

= + + +

 (5.34)

After sorting the unknown variables ,h T by finite nodes into a single vector , Equation (5.34)

will read

    0 0 0cc kk cc kk J J
t


 


+ + + = +


 (5.35)

The right-hand side (5.35) is non-zero only for non-zero prescribed boundary conditions and

hence it has character of “load” vector in a static analysis.

In (5.31) we used Green theorem. It states:

()

()

T

s

V S V

T

s

V S V

u div v dV u n v dS u v dV

u div v dV u n v dS u v dV

 = −  

 = −  

  

  

 (5.36)

 where

298

1 1 1

2 2 2

...

n n n

u u u
u

x y z

u u u

x y z

u u u

x y zu

u u u

x y z

   
  =       

   
   
 
   

     =   
 
 
   

     (5.37)

The heat and moisture transfer governing equations (5.35) can be written in the form:

 ()t t t t t J
t

 + + + + +
=



t t t t t
K + C (5.38)

where t+t
K , t+t

C = are unsymmetrical problem matrices defined in the previous section,
t J+t =vector of concentrated nodal fluxes (both moisture and heat) and t +t is the vector of

unknown variables. All of these apply for time t t+  . Equation (5.38) is solved iteratively. i.e.,

the vector
t t+

 is searched for in the incremental form:

() (1) ()t t t t i t t i t t i   + + + − += = +  (5.39)

where index ()i indicates the number of iteration and
()t t i +  is the increment of the unknowns

for time t t+  and iteration ()i :

() (1) ()t t i t t i t t i J+ + − + = -1K (5.40)

The matrix and vector (1)t t i+ − -1
K and ()t t i J+ is derived from (1) (1),t t i t t i+ − + −-1 -1K C and t based

on temporal integration method being used:

CCStructureTransport module currently supports  Crank Nicholson (Wood. 1990) and Adams-

Bashforth (Diersch and Perrochet 1998) integration scheme. The former scheme is linear, i.e.,

it’s a first-order integration procedure. The latter scheme is a second-order integration procedure.

It is supposed to be more accurate; however, it is also more CPU and RAM expensive and it is

more difficult to predict its real behavior. Hence, the  Crank Nicholson scheme is typically

preferred. It has been more tested and verified in the CCStructureTransport module, and thereby

it is more recommended.

299

 

This scheme comprises a number of well established integration procedures. It depends, what

value of the parameter  is used. The set of equations (5.38) is solved for time t t +  ,

whereby the vector of unknown variables is calculated as a linear combination of the

corresponding vectors at a time t and t t+  . Hence

 (1)t t t t t   + += − + (5.41)

 Depending on a particular value of the parameter  we get the well known Euler implicit

integration (for  =1), trapezoidal Crank Nicholson scheme (for  =0.5), Galerkin integration

method (for  =2/3) or even Euler explicit scheme (for  =0), which is only conditionally stable.

Solution predictor:

t

t t t t
t


 + 

= + 


 (5.42)

Solution corrector:

 ()
1t t

t t t

t t


 

+
+

= −
 

 (5.43)

Using the above, after some mathematical manipulation, we derive final expressions for JK, .

These read:

 ()() ()

()
1

1

1
1t t t t t t

t

J J
t

J



     



+ +

−

 
+ 

 

= − + − − −


 =

K = K C

K C

K

 (5.44)

Solution predictor:

 2
2

tt
prevt t t

prev prev

t t t

t t t t


 +

      
= + + −         

 (5.45)

where

index prev indicates that the entity comes from time preceding time t Note that we assume that all

entities from time t are already known and we solve for their values at time t t+  .

Solution corrector:

 ()
2t t t

t t t

t t t

 
 

+
+ 

= − −
  

 (5.46)

300

t tt t t t
prev prev

prev prev prev

t t

t t t t t t t

   +   −  − 
= +       +    +     

 (5.47)

Similar to (5.44) we have here for JK, :

() ()()

() ()()
()() () ()() ()()

() ()()

()

1 1 1

2 2

1 1

2 2 2 2

1 1 1 1

2 2

1 1

1

2

2 2

n n n n n n

t t

n n n n

t t t t t

n n n n n n n n

n n n n

t t t t t t

J t t t t

t t t t t t t t

J t t t t

J



  



− − −

+

− −

+ −

− − − −

− −

−

   +  +  + 

= −   +   +

+ −   +  +   +  +  − 

+   +  

 =

K = K C

K

C

K

 (5.48)

The transport governing equations are prone to suffer from oscillations. As reported in (Jendele

2001) this can be improved by introducing a sort of Line Search method damping  . The basic

idea is that Equation (5.39) gets replaced by

() (1) ()t t t t i t t i t t i    + + + − += = +  (5.49)

where  is a new damping factor. The factor is typically set to something in range 0.3...1 

depending on the current convergence behavior of the problem.

The previous section referred to a material constitutive model, i.e., it was assumed that we know

how to compute material diffusivity matrix hD , (see(5.4)), and material capacity ()w w h= ,

(see(5.1). Calculation of these entities is described here.

Currently, ATENA has only two constitutive models available for transport analysis. The first

one, i.e., CCModelBaXi94 is characterized as follows and the second one, i.e.,

CCTransportMaterial is briefly described later in this section.

CCModelBaXi94

For heat transport, a simple constant linear model is implemented. For moisture transport, a

nonlinear model based on the model (Xi, Bazant et al. 1993; Xi, Bazant et al. 1994) has been

developed.

It can be used for temperatures in range 05 ...75T C=  and moisture 0 ...1H =  . It is

important to note that the model was originally written only for mortar; hence, it is inaccurate for

concrete with an aggregate having higher permeability (i.e., diffusivity) and/or absorption. The

model has the following main parameters

301

• Type of cement

• Water-cement ratio
w

wc
c

=

As already pointed out, the model does not account for aggregate, i.e., it predicts moisture move

only in pores filled by water-cement paste.

The main entity of the model is water content (, , ,)
w

w w h t T
c

= . It is defined as follows:

,0

w

w c

G
w

G G
=

+
 (5.50)

 where

wG is the water content in mortar at time t ,
3

kg

m of morter

 
 
 

,

,0wG is the water content at time zero,
3

kg

m of morter

 
 
 

,

cG is the amount of cement at time zero,
3

kg

m of morter

 
 
 

.

Mortar here stands for a mixture of water and cement. If concrete material is to be considered,

then w can be calculated by

,0

,0

concrete
w

wmortar

w cconcrete concrete
w c

mortar mortar

V
G

V G
w

V V G GG G
V V

=
++

 (5.51)

where concrete

mortar

V

V
 is the ratio of total volume to (only) volume of mortar (i.e., water and cement) and

G are corresponding amounts of water and cements in concrete, (i.e., not only in

mortar!)
3

kg

m of concrete

 
 
 

.

The model itself already accounts for moisture used by the hydration process. i.e., 0
w

t





. As a

result, hw according to (5.19) need not be implemented.

On the other hand, if moisture losses due to hydration are to be computed by the model based on

(5.19), it is important to fix 0
w

t


=


 and to modify hw , so that it predicts “relative” moisture

content w used throughout whole derivation CCStructuresTransport. The original function for

hw was written for absolute weight of water and hence, for “relative” content of water Equations

(5.8) must be rewritten into

302

1

3

1 1

3 3

,0 ,0 ,0

0.21

0.21 0.21

e
c

ce e e c e
h

w c w c e e w c e e

t
G

t t G tG
w

t G G tG G G G



 

 
 

+     = = =   
+ + ++ +    

 (5.52)

and the constant c from (5.8) becomes equal to

,0,0

cc

w cw c

G G
c

G G G G
= =

+ +
 (5.53)

More detailed description of the model is beyond the scope of this document and the reader is

referred to in (Xi, Bazant et al. 1993; Xi, Bazant et al. 1994).

CCTransportMaterial

CCTransport material is a simple constitutive law that allows users to enter laboratory-measured

moisture and heat characteristics. Referring to Equations (5.1) and (5.5) heat and moisture flow

governing equations can be written in the following general form:

()

()

:

() () ()

:

() () ()

Th TT Tw Tt Th TT Tw Tgrav

wh wT ww wt wh wT ww wgrav

Heat

Q h T w
C C C C K grad h K grad T K grad w K

t t t t x

Moisture

w h T w
C C C C D grad h D grad T D grad w D

t t t t x

    
= + + + = − + + +

    

    
= + + + = − + + +

    

 (5.54)

The parameters ThC , TTC … wgravK are calculated as:

303

0

0

0

0

0

0

0

() () ()

() () ()

() () ()

() () ()

() () ()

() () ()

Th Th Th

TT TT TT

Tw Tw Tw

Tt Tt Tt

wh wh wh

wT wT wT

h T t

Th Th C C C

h T t

TT TT C C C

h T t

Tw Tw C C C

h T t

Tt Tt C C C

h T t

wh wh C C C

h T t

wT wT C C C

ww ww

C C f h f T f t

C C f h f T f t

C C f h f T f t

C C f h f T f t

C C f h f T f t

C C f h f T f t

C C

=

=

=

=

=

=

=

0

0

0

0

0

() () ()

() () ()

() () ()

() () ()

() () ()

() () ()

ww ww ww

wt wt wt

Th Th Th

TT TT TT

Tw Tw Tw

Tgrav Tgrav Tgrav

h T t

C C C

h T t

wt wt C C C

h T t

Th Th K K K

h T t

TT TT K K K

h T t

Tw Tw K K K

h T t

Tgrav Tgrav K K K

f h f T f t

C C f h f T f T

K K f h f T f t

K K f h f T f t

K K f h f T f t

K K f h f T f t

D

=

=

=

=

=

0

0

0

0

() () ()

() () ()

() () ()

() () ()

wh wh wh

wT wT wT

ww ww ww

wgrav wgrav wgrav

h T t

wh wh D D D

h T t

wT wT D D D

h T t

ww ww D D D

h T t

wgrav wgrav D D D

D f h f T f t

D D f h f T f t

D D f h f T f t

D D f h f T f t

=

=

=

=

 (5.55)

and the constant parameters 0

ThC thru
0

wgravD and functions ()
Th

h

Cf h thru ()
wgrav

T

Df T are input

parameters, (to be possibly obtained from some experiments). The functions are defined as

multilinear functions and only their ids are input into CCTransportMaterial model definition.

Note that gravity terms in RHS of (5.54) have a little physical justification in heat and moisture

diffusion gathered transports; nevertheless, they are included to allow using this material law for

the solution of other kinds of transport problems.

CCTransportMaterialLevel7 material

CCTransport materialLevel7 is an extension of the above CCMaterialTransport material in the

way it automatically computes moisture and temperature capacity and conductivity/diffusivity

incl. "sink" terms regarding hydration (i.e., rate of hydration heat and moisture consumption

during concrete hydration). In terms of the above nomenclature, this upper material level

calculates ,, , , ,TT TT Tt wh wh wtC K C C D C . As already mentioned, the presented material adds on its

bottom level, i.e., CCMaterialTransport. All parameters and characteristics from the bottom

level, (i.e., those from CCMaterialTransport) can still be input and used. They typically serve for

a refinement/addition of parameters generated by the upper material level. The result from the

bottom and upper levels are simply added to form the final characteristics of the material model

CCTransportMaterialLevel7. Note that default values of ,, , , ,TT TT Tt wh wh wtC K C C D C in the bottom

level are by default set to zero.

Hydration heat and affinity hydration model

304

The most important part of the presented model is the computation of the concrete hydration maturity

factor. It is accompanied by the calculation of generated hydration heat and consumed hydration

moisture. The analysis is based on the affinity hydration model, which provides a framework for

accommodating all stages of cement hydration.

Consider hydrating cement under isothermal temperature 25oC a relative humidity 1h = . At this

temperature, the rate of hydration maturity factor , 0...1   can be expressed by chemical affinity

25 25()A A = :

 25A
t


=


 (5.56)

where A stands for the chemical affinity, [1s−], The expression already includes coefficient

exp aE

RT

 
− 

 
. Hence

25A is not normalized and refers to temperature 25oC. For different

temperatures it is replaced by A , see (5.60). R is gas constant
J

8314.41
kmolK

, T is

temperature, [K] and aE is 40 kJ/mol. It is worthy to note the incorporation of the maturity

method into (5.56). A characteristic time might be introduced to express an affinity A (Bernard,

Ulm et al. 2003).

 The affinity property can be obtained experimentally or analytically. Using experimental

approach, heat flow ()q t that corresponds to the hydration heat ()h hQ Q t= is measured by

isothermal calorimetry.

Alternatively, the hydration material parameters are computed by an analytical micro-scale

model that accounts for the majority of underlying chemical reactions as well as the topology of

cement grains (with the consequence to hydration kinetics). The solution stems from (Smilauer

and Bittnar 2006), and it employs discrete hydration model CEMHYD3D (Bentz 2005), allowing

to account for the particle size distribution of cement, the chemical composition of cement,

temperature and moisture history in concrete, etc.

Having history of hQ (for 273.15 25, 1T = + =), the approximation of  parameter is given by

,

h

h pot

Q

Q
 (5.57)

 25

,

1 h

h pot

Q
A

Q t t

 
 =

 
 (5.58)

where ,h potQ is potential hydration heat, [J/kg]. Hence the normalized heat flow
,

h

h pot

Q

Q
under

isothermal 25oC equals to chemical affinity
25A .

Cervera et al. (Cervera, Oliver et al. 1999) developed an analytical form of the affinity which

was refined in (Gawin, Pesavento et al. 2006). A slightly modified formulation is proposed here

305

 ()2
25 1 exp

B
A B


   

 


 

   
= + − −   

   
 (5.59)

where 1

1 2,[],B s B− , [-] are coefficients to be calibrated, 
 is the ultimate hydration degree, [-],

and  represents microdiffusion of free water through formed hydrates, [-]. The parameters in

(5.59) express isothermal hydration at 25◦C.

When hydration proceeds under varying temperature, maturity principle expressed via Arrhenius

equation scales the affinity to arbitrary temperature T

25

1 1
exp

273.15 25

a
r

T r

E
A

R T

A A A

  
= −  

+  

=

 (5.60)

For example, simulating isothermal hydration at 35oC means scaling
25A with a factor of 1.651

at a given time. This means that hydrating concrete for 10 hours at 35oC 35◦C releases the same

amount of heat as concrete hydrating for 16.51 hours under 25◦C. Note that setting 0aE =

ignores the effect of temperature and proceeds the hydration under 25◦C.

Gawin et al. (Gawin, Pesavento et al. 2006), among others, added the effect of relative humidity.

The extension of (5.58) leads to

,

1 h
T h

h pot

Q
A

Q t t




 
 =

 
 (5.61)

()

4

1

1
h

a ah
 =

+ −
 (5.62)

where ()h h h = accounts for the reduction of capillary moisture. h is relative humidity r,

(Bazant and Najjar 1972). a is material parameter, typically 7.5a = . Depending on curing

conditions  is calculated as follows:

Sealed curing:

/

, 1
0.42

w c
  =  (5.63)

Saturated curing:

/

, 1
0.36

w c
  =  (5.64)

/w c is the water-cement ratio.

Substituting (5.59) and (5.62) into (5.61) yields final equation to predict the development of

hydration heat. As it is difficult to express  function analytically (from (5.59), (5.61)), the

above equations are integrated numerically.

306

25 25

25 25

()
()

() () ()
end

start

r h

t

end start r h
t

t
A t A

t

t t A A d




    


=



= + 

 (5.65)

Substituting 25 r hd A d  =

25,

25
25 25 25() () ()

end

start

t

end start
t

t t A d   = +  (5.66)

If the function 25 25() ()DoH t t= at reference temperature is known, (e.g. it was meassured in a

calorimeter), r hA  is constant within 25 25...start endt t  and it is acceptable to use linear (Taylor)

approximation of 25 25 25 25 25 25

25

() () ()start startt t t t
t


 


= + −


 within 25 25...start endt t  , we can write:

 
25,

25

25 25
25 25

25

25 25
25 25 25 25 25

25

()
()

()
() () () ()

end

start
start

t

end start t end start
t

t
A t

t

t t d t t



 
     




=




= + = + −



 (5.67)

In the above 1

25 25 25 25(), ()start start end start end start r ht t t t t A  −= = + − are equivalent time for the case

of reference temperature. 1

25 (...) − is inverse function to 25(...) so that 1

25 25(())   − = .

Note that hQ is calculated in the same unit as is entered the parameter ,h potQ . If the governing

equations are written for unit volume and ,h potQ is given per cement unit weight, then hQ must

be multiplied by fraction of cement mass cementm and total volume of concrete totV .

Heat capacity

The model assumes the following components of concrete: aggregate, filler, water, and cement.

The total mass of concrete in one cubic meter results from individual masses of components:

concr aggregate filler paste

paste cement water

m m m m

m m m

= + +

= +
 (5.68)

where concrm is the mass of concrete per a unit volume. Similarly, for the mass of aggregate

aggregatem , the mass of filler fillerm , the mass of water waterm , and mass of cement cementm .

Corresponding volumes are /aggregate aggregate aggregateV m = , /filler filler fillerV m = etc. i stands for

the mass density of the phase i. Having total volume concr aggregate filler water cementV V V V V= + + + , we

can calculate phase fractions /aggregate aggregate concrf V V= and similarly for the remaining phases.

Heat capacity and its evolution of cement paste (cement+water) were studied in (Bentz 2007) at

230C for w/c between 0.3 and 0.5. The capacity of fresh cement paste yields

307

 ˆ
concrete aggregate aggregate filler filler pasteC f C f C C= + + (5.69)

where concreteC is the concrete capacity (per unit volume) and akin for aggregate, filler, and cement

paste. The last term, i.e., pasteC also depends on the degree of hydration  and is calculated by

 ()ˆ () 1 0.26(1 exp(2.9))paste cement cement water waterC f C f C = + − − − (5.70)

where cementC is cement capacity at time zero.

The heat capacity of structural concrete spans the range between 0.8 and 1.17 Jg-1K-1. A former

Czech standard CSN 731208 declares 840 and 870 Jkg-1K-1
 for dry and saturated mature concrete,

respectively. aggregateC is approximately 840 Jkg-1K-1
 for basalt and limestone, 790 Jkg-1K-1

 for

granite, 800 Jkg-1K-1
 for sand. cementC is about 750 Jkg-1K-1

 and waterC is 4180 Jkg-1K-1
 .

Heat conductivity

The thermal conductivity of cement paste was found to remain in the range 0.9-1.05 Wm-1K-1
 for

an arbitrary degree of hydration, for both sealed and saturated curing conditions, and for w/c

from 0:3 to 0.4 (Bentz 2007). Water in the capillaries has a thermal conductivity 0.604 Wm-1K-1

(Bentz 2007). The thermal conductivity of hardened concrete varies between 0.85 and 3.5 Wm-

1K-1 (Neville 1997) p.375, depending strongly on an aggregate type.

Thermal conductivity also depends on the saturation state of concrete. For example, a structural

concrete made from normal-weight aggregate with a unit mass of 2240 kg/m3
 yields  = 1.696

Wm-1K-1 for protected and 1.904 for weather-exposed conditions (Neville 1997), p. 376.

Figure 7-1 summarizes thermal conductivities for ordinary concrete depending on concrete unit

mass and saturation conditions, according to (Neville 1997) and a former Czech standard CSN

308

731208. The latter considers 1.5 for a dry concrete and 1.7 Wm-1K-1 for a water-saturated

concrete.

Faria et al. (Faria, Azenha et al. 2006) applied the evolution of concrete conductivity with

regards to 

 ()0 1.0 0.248  = −

where  is the conductivity of fully hardened concrete, i.e., in infinite time.

The model implemented in Atena, i.e., CCTransportMaterialLevel3 stems from homogenization

theories. Consider conductivity of cement paste paste and aggregates aggregate such that

paste aggregate  . Corresponding volume fractions are ,paste aggregatef f . Hashin-Shtrikman lower

,concrete low and upper bounds ,concrete upper are (Bentz 2007)

()
()

()
()

, ,

, ,

3

3

3

3

aggregate paste aggregate paste

concrete low paste

paste paste aggregate paste

paste aggregate paste aggregate

concrete upper aggregate

aggregate aggregate paste aggregate

f

f

f

f

  
 

  

  
 

  





−
= +

+ −

−
= +

+ −

 (5.71)

The presented model uses average conductivity, i.e.

 (). , , ,
1.33 0.33

2

concrete low concrete upper

concrete

 
 

 +
= − (5.72)

Figure 7-2 considers paste =1.0 Wm-1K-1 and aggregate = 2.0 Wm-1K-1 . Volume fraction of

aggregates varies from 0 to 1. Important thermal conductivities: limestone 1.26 - 1.33, sandstone

1.7, granite 1.7 - 4.0 Wm-1K-1 .

The above equations for homogenization are written for phases paste-aggregates. In ATENA, the

homogenization is carried out as follows:

1. homogenize phases cement - water -> phase paste.

2. homogenize phases paste - filler -> phase paste with filler

3. homogenize phases paste with filler - air -> phase paste with filler and air

4. homogenize phase paste with filler and air - aggregates -> concrete

Note that filler and aggregate are in this case treated as one component, and the same applies for

water and cement (being the component paste). The volume averaging technique is used to

calculate the corresponding properties of paste and mixed aggregate.

309

thermal conductivities of concrete from bounds.

Moisture consumption due to hydration

It is assumed that 1 kg of cement (in concrete) approximately consumes during the full hydration

process about ,w potQ of water. Typically ,w potQ =0.42 kg of water per 1 kg of cement. Thus, e.g.

concrete mixture with 300kg cement per 1m3 of concrete needs 300*0.42=126kg o water per 1m3 of

concrete. Assuming linear dependence of water hydration consumption hw on concrete hydration

level  , (0 = for fresh concrete and 1 = for fully hydrated concrete) the water sink term due to

hydration is

 ,
h h

h t

w w
C

t t





  
= =

  
 (5.73)

 , ,[kg]h w potw Q c= (5.74)

where c stands for weight of cement in 1m3 of concrete.

Moisture capacity

The moisture content at unit volume -3,[kgm]w is calculated a simple expression

()1

f

b h
w w

b h

−
=

−
 (5.75)

where
-3,[kgm]fw is the free water saturation and b is the dimensionless approximation factor,

which must always be greater than one. It can be determined from the equilibrium water content

80w at relative humidity 0.8h = by substituting the corresponding numerical values in equation

(5.75):

80

80

()f

f

h w w
b

w h w

−
=

−
 (5.76)

310

Moisture capacity -3, kgmC    is calculated as derivative of moisture content with respect to h :

()

()
2

1f

h

w b bw
C

h b h

−
= =

 −
 (5.77)

The above expression is applicable for analyses using reference unit volume. If reference unit

weight of the structure is preferred, then we employ moisture capacity  / , kg/kgC C = , where

 is concrete density, 3kg/m   .

Moisture diffusion

The present model accounts for the diffusivity mechanism of moisture transport. It is valid for

dense concrete, which has not mutually connected pores and moisture convection thru pores

(being driven by water pressure) can be neglected. Hence, moisture flux
2

,h

kg
q

m s

 
 
 

 is calculated

by the equation h hq h= − D , where total moisture diffusivity ,h

kg
D

m s

 
 
 

 is calculated as sum of

water w

hD and water vapor wv

hD diffusivity:

 w wv

h h hD D D= + (5.78)

Water liquid diffusivity w

hD is calculated

 w w

h w

w
D D

h


=


 (5.79)

where water diffusivity 2, /w

wD m s   is

()

1
2

2

3.8 1000 f

w

w

w

w

f

A
D

w

 
 − 
 
 

= (5.80)

and A is the water absorption coefficient
2 0.5

kg

m s

 
 
 

 .

Water vapor permeability is computed from water vapor pressure-driven diffusivity

kg
,

ms Pa

wv

pD
 
 
 

:

 wv

pD



= (5.81)

 where  is the water vapor diffusion resistance factor and  is the vapor diffusion coefficient

in air
kg

ms Pa

 
 
 

311

()

1.81
0.00002306 273.15

273.15
273.15

a

a

w

p T

R
T p

M


+ 

=  
 +

 (5.82)

Atmospheric pressure 101325Paap = , gas constant -1 -18314.41Jkmol KR = and molar mass of

water is -118.01528kgkmolwM =

 As in the presented model, relative humidity h is the primary variable used to analyze moisture

transport, wv

pD must be transformed to wv

hD . This is done by:

()wv wv wv wvsat

h p p p sat

p hp
D D D D p

h h


= = =

 
 (5.83)

Any expression to calculate the pressure of saturated water vapor can be used. The presented

model uses

  0611 , Pa

aT

T T

satp e

 
 

+ = (5.84)

In the above T is temperature [o C] and the remaining parameters are

0 00 : 234.18 , 17.08; 0 : 272.44 , 22.44o oT T C a T T C a = =  = =

Some guidelines towards the model's parameters

Fitted parameters for cement paste hydration need to be considered for each concrete separately.

Due to high cement variability, it is impossible to assign one particular cement to one concrete

grade. The user needs first to select the cement parameters from the following table:

The above table is based on fitting predicted results from CEMHYD3D analysis by (5.59), see

Table 7.3-5 and Figure 7-3. The simulations were carried out on CEMHYD3D’s microstructures

50 × 50 × 50 µm and with the activation energy 38.3 kJ/mol. Saturated curing conditions were

312

assumed since sealed conditions will be obtained from coupling with moisture transport. Table

7.3-5 specifies input data for selected Portland cements.

The majority of concretes is produced from blended cements (CEM II - CEM V); hence it is

necessary to scale down Q pot by approximately 30 %. This is a common Portland clinker

substitution in the majority of blended cements in Europe.

There are other default parameters, which are not specified here: QW POT= 0.42, TH INIT = 0,

ALPHA INIT = 0, TEMPERATURE INCR MAX =0.1, H80 = 0.8, TEMP0 = 234.18, A WV =

17.08, TEMP0 ICE = 272.44 ,A WV ICE = 22.44

The parameter A ≈ 7.5 expresses hydration slow-down with regards to relative humidity. The

hydration practically stops at  ≈ 0.8.

Parameters in Figure 7-1 are computed for saturated state. When  = 1, the hydration proceeds

as there is saturated water environment around concrete. Under standard circumstamces,

hydration consumes water, which decreases relative humidity in the calculation. Three

parameters are related to moisture transport and are given for ordinary structural concrete:

• W80 expresses total mass of free water at  =80%. Standard value is 50 kg/m 3 for

structural concrete.

• A W is water absorption coefficient, whose value spans the range 0.25-0.846 kgm− 2 h

0.5].

• MI WV is the water vapor diffusion resistance factor, spanning 210-260 [-] for structural

concrete.

313

Parameters specifying specific heat capacity for concrete components are summarized in Table

7.3-2. Values are obtained from http://www.engineeringtoolbox.com/density-solids-

d_1265.html, http://www.engineeringtoolbox.com/specific-heat-solids-d_154.html

Parameters specifying specific heat conductivity for concrete components are summarized in

Table 7.3-3. Sources from http://www-odp.tamu.edu/publications/192_SR/109/109_5.htm

Concrete strength classes strongly depend on the amount of cement in concrete. Table 7.3-4

specifies approximate compositions for major concrete classes used in EN 206-1. The

calculation assumes 5 % of entrained air in the concrete, cement density 3220 kg/m 3 and

aggregate density 2800 kg/m 3 .

Ready-mix concrete is assumed, which requires rather higher w/c due to workability and

pumping issues. The parameters CEMENT DENSITY, WATER DENSITY, AGGREGATE

DENSITY, FILLER DENSITY are provided in Table 7.3-2 in the units [kg/m 3].

314

315

316

When undertaking heat transfer calculations, it is important that relevant thermal properties of

materials and heat transfer coefficients at the boundaries are defined for the entire temperature

interval of the load.

Hydrocarbon fires are those sustained by hydrocarbon-based products, such as chemicals, gas,

and petroleum. Depending on the heat load, different HC-curves can be derived in accordance

with Equation (5.85). The magnitude of the maximum temperature of the radiation source (1T) is

crucial for the time temperature development. The nominal HC-curve is represented by the heat

load 200 kW/m2 and reaches maximum temperature of 1100 °C. The curve representing 345

kW/m2 is called the "modified" or "increased" HC-curve for tunnel applications. It reaches at

maximum 1300 °C.

 0.167 1.417 15.833

1() (1 0.325 0.204 0.471)t t tT t T e e e− − −= − − − (5.85)

where:

()T t = temperature of radiation source as function of time [°C],

1T = maximum temperature of radiation source [°C] according to (5.85)

t = time [minutes]

Time development of temperature of the radiation source is depicted in the figure below. For

time 0t → Equation (5.85) yields (0) 0T = and hence, it is necessary to supplement (5.85) by

requirement ,() ambiant iniT t T , where ,ambiant iniT is initial ambient temperature prior the fire broke

up, (typically something about 20 °C).

317

The nature of the structural ambient conditions is essential for the determination of the

temperature fields. Depending on the geometry, view factors, and ambient conditions, various

types of boundary conditions may be considered.

Fire exposed boundary

The heat is transferred from the fire gas to the exposed structure through radiation and

convection. At high temperatures, the radiation dominates. The radiation is expressed by the

resulting emissivity factor, which takes into account the emissivity of the fire source  , and

absorptivity of the heated surface  . The convection is calculated from the temperature

difference between the structure and ambient gas, depending on the gas velocity. Emissivity and

convection factors used for exposed surfaces are shown below

2

0.56, []

50,

r

c

W
h

m K

 = −

 
=  

 

 (5.86)

The convection and emissivity heat flux on a boundary exposed to fire is calculated as follows:

4 4() ()n c g b r g bq h T T T T = − + − (5.87)

where

 = Stefan-Boltzmann constant [5.67x10-8 W/m2 K4],

gT = absolute temperature of radiation source [K],

bT =boundary temperature of the structure,

r = resulting emissivity factor of the radiation source and the heated surface [-],

nq = heat flow at the fire exposed boundary [W/m2],

ch = convection heat transfer coefficient [W/m2K].

Adiabatic boundary

Adiabatic boundary surface refers to a boundary surface, where no heat can pass in (and/or out)

the structure. Structural symmetry lines and areas are good examples of this boundary

conditions.

The described fire boundary load conditions are ATENA modeled by

CCFireElementBoundaryLoad load. It is essentially an element boundary load that applies the

heat flow nq at the element boundary, i.e., at a surface exposed to fire. Unlike other loads in

ATENA (that are of incremental nature and constant within one load step), this load is

considered variable and has kind of a total load.

Four types of heat source definitions are implemented:

318

• Nominal HV fire – Temperature of the heat source is calculated by (5.85) and 1T (unless

it is manually inputted as temp_g_ref) is set to 1100 [°C].

• Modified HC fire – This definition is much the same as the above with the only

difference that default value for 1T is 1300 [°C].

• Generic fire (also refered to as User curve fire) - Temperature of the heat source is

assumed constant and is set value of temp_g_ref . If temp_g_ref is not inputted, then

1100 [°C] is used.

In any case, the generated (or directly inputted) curve for ()T t can be additionally modified in

time by a user-supplied function time_id. The function takes one parameter, which is time of the

fire and it specifies a coefficient by which the generated initially (or inputted) boundary

conditions should be multiplied. Of course, load variation in space can be modified by coeff_x,

coeff_y coefficients etc. in the same way as for any other generated element load, (for more

details see Atena Input file manual).

This type of boundary load is used for modeling heat and moisture fluxes from the structure to

the ambient environment. Hence, it is typically applied as a boundary element load on the

external surfaces of the structure. It resembles the fire boundary load described above and is

implemented in a similar way. Although the moisture-heat boundary condition allows the

prescription of both moisture and heat boundary fluxes, it can be reduced to prescribe only one

of them.

The heat flux consists of two parts.

4 4

1

2

1 2

() ()T cT g b rT Kg Kb

T h we

T T T

q h T T T T

q q h

q q q

 = − + −

=

= +

 (5.88)

The first part of the heat flux Tq represents the usual flux due to heat convection and radiation.

Its computation resembles (5.87). cTh stands for heat convection coefficient of the concrete-air

interface
2

W

m K

 
 
 

 , rT is heat emissivity coefficient [-], ,Kg KbT T are ambient and surface

temperatures in Kelvins, and  is the Stephan-Boltzmann constant ,
2 4

5.67 8,
W

E
m K


 

= −  
 

.

The second part in (5.88) accounts for the heat flux due to the evaporation/condensation based

on the moisture flux hq and thus can be accounted for this component only if there is a moisture

boundary flux included in the analysis (see below). By default 2270,we

kJ
h

kg

 
=  

 
is assumed for

the heat of water vaporization.

319

The moisture flux consists of three parts.

()

,1

,2

2.5 2.5

2

,3

,1 ,

9

2 ,3

()

()

[kg/3 m
9 9

1.38 2 32 1 .]0 9
5 5

h cw g b

h g b

h Cb g Cg

h h h h

q h h h

q x x

q E T h T v s

q q q q

−

= −

=  −


+

   
         

= +

= + − +

+

 (5.89)

Although the numerical implementation sums up the three fluxes in (5.89), in practical

applications, only one component is typically used; however, for specific applications, one main

moisture flux can be selected for the calculation and the remaining fluxes can be used as

correction terms.

The first part ,1hq represents a moisture boundary flux between concrete and the external

environment driven by the gradient of relative humidity on the solid surface bh and the ambient

relative humidity gh . cwh stands for the moisture convection coefficient of the concrete-air

interface. The second part ,2hq can be used for the calculation of water evaporation from an open

water surface. It is driven by the gradient between the maximum humidity ratio of saturated air

gx and the humidity ratio in the ambient air bx . The evaporation coefficient  is given by

2
(25 19),

kg
v

m s

 
 = +  

 
, where v is ambient air velocity, [m/s]. For more information, see

http://www.engineeringtoolbox.com/evaporation-water-surface-d_690.html.

The humidity air ratio, [-] is calculated as follows (i reflects conditions in ambient air, i.e., i=g,

or in the surface of the structure i.e., i=b):

, ,wv i wv i

i

a a

m
x

m




= = (5.90)

It is calculated at state variables ,i ih T , i.e., relative humidity and temperature at i conditions.

In the above , ,, , ,wv i wv i a am m  are the mass and density of water vapor in REV corresponding to

i conditions and mass and density of dry air, [kg/m3], respectively.

(273.15)

a
a

i

a

p

R
T

M

 =

+

 (5.91)

where aM is the weight of 1 kmol of dry air (assumed 28.96aM kg/kmol). R is gas constant,

(R=8313JK-1), Ti is the temperature in oC. ap is the partial pressure of dry air, [Pa]

 .a i vw satp p h p= − (5.92)

320

Here p stands for total air pressure (typically normal air pressure p=101325Pa), hi is relative

humidity and .vw satp is the partial pressure of saturated water vapor at Ti, (see

http://en.wikipedia.org/wiki/Density_of_air)

7.5

237.3

, 610.78 10

i

i

T

T

wv satp

 
 

+ = (5.93)

The density of water vapor at i th conditions is calculated similar to (5.91):

 ,

,

(273.15)

wv sat

wv sat

i

wv

p

R
T

M

 =

+

 (5.94)

In the above
wvM is the weight of 1kmol of saturated water vapor, assumed 18.06aM kg/km.

The third part in (5.89) is moisture flux evaporated from concrete calculated by CEMSTONE. It should be
noted that this method is applicable for fresh concrete (Uno 1998). The implementation in ATENA yields
nearly the same values as provided by ACPA calculator; see

http://www.apps.acpa.org/apps/EvaporationCalculator.aspx. In (5.89) ,Cg CbT T are the ambient and

surface temperatures in Celsia.

Both moisture and heat fluxes are typically computed using only their first or second part. Therefore,
the related ATENA input commands allow reading some boolean flags that specify, which parts of the
above fluxes should be accounted for and which should be skipped. For more information, refer to the
ATENA input file manual.

BAZANT, Z. P. (1986). Mathematical Modelling of Moisture Diffusion and Pore Pressure,

Chapter 10. Concrete at High Temperature. Z. P. Bazant: 198-237.

BAZANT, Z. P. and W. THONGUTHAI (1978). Pore Pressure and Drying of Concrete at High

Temperature. Proceedings of the ASCE.

CELIA, M. A. and P. BINNING (1992). "A Mass Conservative Numerical Solution for Two-

Phase Flow in Porous Media with Application to Unsaturated Flow." Water Resour. Res

28(10): 2819-2828.

CELIA, M. A., T. BOULOUTAS, et al. (1990). "A General Mass-Conservative Numerical

Solution for the Unsaturated Flow Equations." Water Resour. Res 27(7): 1438-1496.

DIERSCH, H. J. G. and P. PERROCHET (1998). On the primary variable switching technique

for simulating unsaturated-saturated flows, http://www.wasy.de/eng/prodinfo/flow/

swpool/swpool.htm#fef_manuals.

HUGHES, J. R. (1983). Analysis of Transient Algorithms with Particular Reference to Stability

Behaviour. Computational Methods for Transient Analysis, Elsevier Science Publishers

B.V.

JENDELE, L. (2001). ATENA Pollutant Transport Module - Theory. Prague, Edited PIT, ISBN

80-902722-4-X.

JENDELE, L. and D. V. PHILLIPS (1992). "Finite Element Software for Creep and Shrinkage

in Concrete." Computer and Structures 45 (1): 113-126.

http://www.apps.acpa.org/apps/EvaporationCalculator.aspx

321

REKTORYS, K. (1995). Přehled užité matematiky. Prague, Prometheus.

SEAGER, M. K. and A. GREENBAUM (1988). A SLAP for the Masses, Lawrence Livermore

National Laboratory.

UNO, P. J. (1998). Plastic shrinkage cracking and evaporation formulas. ACI Materials Journal

95: 365-375.

WOOD., W. L. (1990). Practical-Time Stepping Schemes. Oxford, Clarenton Press.

XI, Y., Z. P. BAZANT, et al. (1993). "Moisture Diffusion in Cementitious Materials, Adsorbtion

Isotherms." Advn. Cem. Bas. Mat. 1: 248-257.

XI, Y., Z. P. BAZANT, et al. (1994). "Moisture Diffusion in Cementitious Materials, Moisture

Capacity and Diffusivity." Advn. Cem. Bas. Mat. 1: 258-266.

ZIENKIEWICZ, O. C. and R. L. TAYLOR (1989). The Finite Element Method, Volume 1:

Basic Formulation and Linear Problem. London, McGraw-Hill, 4th edition.

322

323

ATENA software support four methods to execute dynamic analyses. These are:

• Newmark's  method,

• Hughes  method (Hughes 1983),

• Wilson 

• Modified Wilson  .

Note that Hughes  method with 0 = reduces to Newmark's  method and Modified Wilson

 is just an extension to Wilson  .

The governing equations for dynamic analysis read:

()() ()() ()

Hughes method:

1 α α 1 α α 1 α α

Newmark method:

(Modified) Wilson method:

t t t

t t

t t

t t t t t t t t

t t t t t t

t t t t t t

R R

R

u u u u u

u u u

u u u R   







++ + +

+ + +

+  +  +



+

+ 

+ + − + + − = + − 

+ + =

+ + =

M C K

M C K

M C K

 (5.95)

where

, ,t t t t t tu u u+ + + is acceleration, velocity, and displacement at a time t t+  , (similar for time t

and t t+ ),

 , ,M C K is mass, damping, and stiffness matrix, respectively,

R is the vector of external forces, i.e., concentrated loads,

 is the Hughes damping parameter.

They are is solved for displacement at time t t+  . The displacement, acceleration and velocity

at time t t+  is calculated as functions of (already known) , ,t t tu u u and displacement

increments
t tu u+ +  . If l-th iteration is solved, then we solve for displacement increment

u and
1

l
t t

k

k

u u+

=

 = 

324

()
()

()2 2

2 2

2

2β γ 2 2

Hughes method:

Newmark method:

Modified Wilson method:

Wils

2 γ1 1
1 γ

2 β 2 β

1 2 β 2

o

2 2

n

2 β

t t t t t

t t t

t t t t

t t t t t
t t

u u u u

t t u t u u
u t u u

t t

u t u t u t u u
u

t









+ +

+

+

+
+

== +  + 

  −  −  +  + 
 = +  − + +
  
 

 −  −  +  + 
=



2 2

3 1 3

method:

()
2

2

6 6 _ 6()
2

t t t t t

t t t t
t t t t

t t t t
t t t

u u u u

u u u u
u u u t

t t

u v t u u u
u u

t t t

+ +

+
+

+
+

= +  + 

+  + 
= − − −  +

 

+  + 
= − − − +

   (5.96)

Substituting (5.96) into (5.95) and after some mathematical manipulation, the requested

displacement increment at iteration l can be calculated:

 inv

eff effu R = K (5.97)

where (for using structural damping M K = +C M K) effective stiffness and RHS vector are:

1 2 1 2

0() ()

eff M K

eff M M K KR

 

    

= +

= + + + +

K M K

M K
 (5.98)

The coefficients above are calculated using the following expressions. They are summarized (by

solution method):

325

()
()

()

()
()

2

1 1
α γ

1 α γ1 12 2
α 1 1

β 2β β β

α γ

β β

1 1
α γ

1 α γ2 2

Hughes method

α 1
β

:

β

M
Mt t

M M M

t t t tt t
M

K
Kt t

K K K

t u u
t

u uu

t t

tu u




  








  

+ ++

   
+    +    = + − −  − + + − + − 

    
  
  

−  − 
+

 

  
+   −+   = + − −  + − + 

   
 
 

()

()
()

()

()
()

1

2

2

1

α γ

β

1 1
α γ

1 α γ1 12 2
α 1 1

β 2β β β

αγ γ 1

β

1 1
α γ

1 α γ2 2
α 1

β β

t t t t

K

M
Mt t

M M M

t t

M M

M

K
Kt

K K K

u u

t

t u u
t

u t t

t

tu






  

 





  

+ +

+

 − 



   
+    +    = + − −  − + + − + 

    
  
  

  +  +
= −



  
+   +   = + − −  + − 

   
 
 

()2

0

1 α γ

β

(1 α) α (1+α)+ α

t

t t

K

K

t t t t t t

u

u

t

R R F F






+

+ +

 +
= −



= + − −

 (5.99)

()

()

2

1

γ 1 γ 1
1

2β 2β β β

γ

β β

γγ γ

2β β β

γ

N

1 γ 1
1

2

ewmark method:

β 2β β

t tM M
M M M

t tt t
M

t t

Kt tK K
K K K

tM M
M M M

t u u
t

uu

t t

u
tu u

t

t u
t

 
  



 
  

 
  



++

+

    
= −  − + + − + −    

    

−
+

 

−   
= −  + − +   

   

  
= −  − + + − +  

  

()2

2

1

2

0

β

γ 1

β

γ γ

2β β

γ

β

t

t t

M

M

t tK K
K K K

t t

K
K

t t t t

u

u t

t

tu u

u

t

R F




 
  






+

+

+ +

 
 
 

  +
= −



   
= −  + −   

   


= −



= −

 (5.100)

326

() ()

()

() ()

2 2

2 2

1

3 3 2 3

2

2 2

2 3 2 2

1

3 3

Wilson method and Modified Wilson method:

3 6

θ θ

3
1

θ

3θ 2θ 6θ 21 6θ 2 1 6 1

2 θ 2 θ θ 2 θ

3 θ 2

θ

3θ 2θ θ θ1 1

2 θ 2 θ

M
M

K
K

M Mt t

M

t t

M

M

K

K

t t

t

t
u u

t

u t

t

t t

 







 








+

= +
 

= +


   −  −−
   = + + +
   
   

  +
= −



 −  − 
 = +
 
 

() ()2 3

3 3

2

0 2 2 3 3

0 3 3

6θ 2 2θ 2θ1 1

2 θ 2 θ

3

θ

Wilson method :

1 1 1
1

θ θ θ θ

Modified Wilson method

1 1

θ θ θ θ

Kt t

t t

K
K

t t
t t t t

t t t t
t

t
u u

u

t

R
R F F

F R
F

 














+

+
+

+  + 

 − − 
 + +
 
 


= −



   
= + − + − + −   

   

 
= − − + 

 

 (5.101)

The parameters ,  are the integration parameters used by Newmark  and Hughes 

method. Their value is essential for convergence of this time marching scheme. It can be shown

that
1 1

,
2 6

 = = corresponds to linear acceleration within the time step. Values
1 1

,
2 4

 = =

yield constant acceleration. The integration scheme is unconditionally stable, if

21 1
, 0.25()

2 2
    + and it is only conditionally stable for

21 1
, 0.25()

2 2
    + provided

that the stability limit is fulfilled:

1
2 2

21 1

2 2 2

2

critt


    






    
− + − + −    

      =
 

− 
 

 (5.102)

where  is the modal damping parameter.

The above defines the condition for time increment t for a linear conditionally stable case:

327

1

2
2

3

0.551

n

t

T
 




−



 (5.103)

As for Wilson  and Modified Wilson  method, they use  parameter. Its value is 1  and

the scheme is unconditionally stable for 1.4  . It essentially specifies the time, for which time

we calculate the governing equations (5.95), i.e t t+  . For 1 = Wilson  and Modified

Wilson  method yield the same solution expressions and equations, and these are also the same

as those for Newmark and Hughes methods with
1 1

, , 0
2 6

  = = = .

Modified Wilson  method assembles the governing equations for time t t+  . As a result, all

Von Neumann boundary conditions must be given for t t+  , (e.g., concentrated load, load by

MASS_ACCELERATION etc.). It does not apply to Dirichlet boundary conditions that are (as

usually) input for t t+  (e.g., prescribed displacement, acceleration etc.).

The fact that the Modified Wilson  method executes for t t+  also affects output/draw of

results in structural material points. Within iterations (e.g., for monitors at iterations), they are

printed/drawn for t t+  . After the iterations process has been completed, they are

printed/drawn for t t+  as usual. Internal forces are always printed for t t+  and the same for

external forces.

As described above Modified Wilson  method behaves in a bit nonstandard way. Particularly

input for t tR +  is unpractical. To alleviate these difficulties and inconvenience, Atena also offers

Wilson  method. Although it still solves the governing equations for time t t+  , it uses

several extrapolations (e.g., (), ()t t t t t t t t t t t tR R R R F F F F  +  + +  += + − = + −) so that it

suffices with t tR + and t tF + only. Consequently, it inputs all boundary conditions and

print/draw all result for t t+  akin to any other solution method for dynamic analysis. On the

other hand, it is at price of accuracy because the extrapolation is linear, whereby the loading and

internal forces are not!

Remind that for dynamic analysis, concentrated forces, element body/boundary load, etc., is

input in the incremental form, and it is "cumulated" in the structure. The same applies to

prescribed displacements.

Prescribed velocities, accelerations, etc., must be input as total load. MASS_ACCELERATION

must also be input in total values (and in each step, it is also recalculated from scratch).

More details on the methods' convergency can be found in (Hughes 1983) and (Wood. 1990).

As far as damping matrix C is concerned, Atena uses the well known proportional damping:

328

 M K = +C M K (5.104)

where ,M K  are user-defined damping coefficients. These coefficients can be directly set as

user input data, or they can be generated based on knowledge of modal damping parameters  .

The parameters  are defined by

 () 2T T

i i i M K i i i      = + =C M K (5.105)

where:

i is i-th structural eigenvector,

i is i-th structural eigenmode,

i is modal damping parameter associated with i and i .

Using the fundamental properties of eigenmodes 1,T T

i i iM K    = = , we can rewrite (5.105)

 2 2M K i i i    + = (5.106)

Equations (5.104) introduces 2 parameters for damping and, thus, if only 2 values of i are to be

used, they are directly substituted in (5.105), (resp. (5.106)) and solved for from this set of

equations.

However, in practice, structural damping is more complicated and some sort of compromise

must be done. In this case, structural damping properties are typically measured for more

eigenmodes, and optimal values of coefficients ,M K  are calculated by the least square method,

i.e., we are seeking a minimum of the expression ()
2

2 2i M K i i i

i

w      = + − . It yields the

following set of equations

2

2 4 3

0

0

2

2

i i i i i

i i i

M

K

M K i

i i i

M i K i i i

i i i

w w w

w w w





    

     


=




=



+ =

+ =

  

  

 (5.107)

 which is used to calculate the required damping parameters ,M K  .

There exist other assumptions to account for structural damping; however, their use is typically

significantly more complex and more costly in terms of both RAM and CPU.

329

A proper selection of the solution time increment dt is essential for each dynamic analysis. If it is

too large, the computed results will suffer from unacceptable inaccuracies. We will probably

miss some important peaks in the loading history, and the analysis as a whole may even diverge.

On the other hand, the use of a too-small value of dt will yield an analysis that is pointlessly

expensive in terms of execution time and its demands towards CPU/RAM resources. In addition,

its postprocessing is more laborious and prone to errors.

The spectral analysis described in this section is designed to assist the engineer in setting suitable

dt. The main idea of the procedure is based on approximation of the structural loading ()f t by

Fourier series ()FTf t , i.e. () ()FTf t f t , refer e.g., to http://en.wikipedia.org/wiki/Fourier_series

. Both (), ()FTf t f t have one independent variable, which is structural time t .

The function ()FTf t is assembled in the following form:

 0

1

2 2
() sin cos

2

N

FT n n

n

a
f t a nt b nt

T T

 

=

   
= + +   

   
 (5.108)

where N denotes the number of harmonics used for the approximation, n is harmonic-th id and

2
sin nt

T

 
 
 

 and
2

cos nt
T

 
 
 

 are n-th approximation functions, (i.e., n-th harminics). Eqn.

(5.108) is suitable for approximation of a function (e.g. ()f t) in interval 0...t T  . Its

Fourier coefficients are calculated as follows, see

http://stelweb.asu.cas.cz/~slechta/fourier/fourier.html ,

http://www.mathstools.com/section/main/fourier_series_calculator#.VCFKkhZIpKI:

0

0

0

0

2
()

2 2
()sin

2 2
()cos

T

T

n

T

n

a f d

a f n d
T

b f n d
T

 



  




  



=

 
=  

 

 
=  

 







 (5.109)

Now let us introduce a coefficient 2 2

n n nc a b= + and create a spectrum diagram of the loading.

For each harmonic from (5.108), plot a point, whose coordinates are '2
, nn c

T

 
 
 

. Such a point

330

shows how much important is the nth harmonic (i.e., the harmonic with circular frequency

2
n

T


) for the loading function, i.e., how much it is excited by the load function ()f t .

The recommended solution time increment should be set so that the highest important harmonics

are integrated in about 10 steps, i.e.,

 min()
10

significant

T
dt n (5.110)

By default, the FFT analysis uses a full modal spectrum, i.e., 1..n N= in (5.108). However, the

modal spectrum can be filtered, e.g. 1 1 2 2 1.. , .. ,... .. ,... ..k k Ln n m n m n m n m= . In this case, only values n

from within the L intervals are used. This technique can be used to filter out some noise signals,

etc.

Let's take an example: Assume a simplified ElCentro accelerogram loading conditions, whose

acceleration in time are depicted by the green line in the figure below:

Let's approximate this function by the Fourier series. In the first case, we use 300 harmonics, i.e.,

300N = . The approximated accelerations are shown by the blue line, as seen in the figure

above. In the second case, we use only 50 harmonics, and the corresponding approximation

function is drawn by the red line. Plotting the functions in more detail, it can be seen that the

approximation with 300N = is fairly accurate whilst the approximation with 50N = is rather

crude, see the figure below. This conclusion is endorsed by the calculated average relative

absolute error of the approximations. These are respectively 0.0314256 and 0.878789

331

The spectrum diagram below shows the contribution of individual approximation harmonics. It

detects what harmonics are or are not important. Looking at the diagram, we see that the highest

important harmonics is the one with log10() 1nT = − , i.e. min 0.1T = . Therefore, the recommended

solution time increment is min 0.01
10

T
dt  = . This dt should ensure reasonably accurate results

from dynamic analysis of a structure that is loaded by the investigated accelerogram.

332

The described spectrum analysis is fully supported by Atena (incl. all the plots). Its use is simple

as it requires only a few input commands. For more details, please refer to the examples of

commands for the input of a multilinear function (in the Atena input file documentation).

333

This section describes methods used by ATENA software to calculate structural eigenvalues

and eigenvectors. Good knowledge of eigenmodes of a structure is, in many cases, essential

for understanding its behavior and selection of a method for its further analysis. It applies to

statics and particularly to dynamic analyses, in which case it helps to choose a proper time

increment in subsequent loading steps. It also helps in avoiding or reducing oscillation of the

structure.

Currently, ATENA uses the Inverse subspace iteration method to compute the eigenvalues

and eigenvectors. The method is in detail described in (Bathe 1982), and hence, only its main

features are presented here. The current implementation can be used only for symmetric

matrices. The same applies to Jacobi and Rayleigh-Ritz methods that are mentioned later in

this section.

It consists of three methods; each of them is capable of solving the eigenvalue problem on its

own. However, if they are used simultaneously, they yield a very efficient scheme for solving

eigenvalues and eigenvectors of large sparse structural systems. The significant advantage of

this approach is that it is possible to search for a selected number of the lowest eigenmodes

only. The lowest eigenmodes are typically the most important for the behavior of the structure

because they represent the highest energy that the structure can absorb. On the other hand, the

highest eigenmode is of low importance, can be neglected, and thereby save a lot of CPU time

and other computational resources.

The Inverse subspace iteration consists of

• Inverse iteration method

• Rayleigh-Ritz method

• Jacobi method

It solves general eigenvalues and eigenvector problem of the following form:

2u u=K M (8.1)

where

K,M is stiffness and mass matrix of structure,

u is the vector of eigenvector’s nodal displacements,

 is circular eigenfrequency

We are looking for a non-trivial solution, so that we solve for
2 that comes from

 2det() 0− =K M (8.2)

334

This method is used to transform the original eigenproblem of dimension n into an associated

eigenproblem of dimension m<<n. The solution is to search in space
m nV V . Let vectors

k constitute linearly independent bases in
nV . An eigenvector

iu is computed as a linear

combination
ic of the base vectors

k , i.e.

i iu c= Ψ (8.3)

where

Ψ is the matrix of base vectors , 1..k k m = ,

ic is the vector of coefficients of the linear combination.

Rayleigh quotient is defined as

 ()
T

i i
i T

i i

u u
u

u u
 =

K

M
 (8.4)

It can be proved that ()iu converges from the upper side to the corresponding circular

frequency 2

i . The condition of a minimum of ()iu yields:

,

()
0, 1..i

i k

u
k m

c


= =


 (8.5)

where ,i kc is k component of the vector
ic

If we introduce

 ,T T= =A Ψ KΨ B Ψ MΨ (8.6)

the condition (8.5), after substituting (8.6), results in

 2

i i ic c=A B (8.7)

which is an equation of eigenproblem of matrices A,B. This problem has dimension m, which

is significantly smaller than the original dimension n.

Jacobi method is used for the solution of full symmetric eigensystems of lower dimension. In

the frame of the Inverse subspace iteration method, it is used to solve (8.7). (Note, however,

that that the eigenproblem (8.7) can be used by any other method).

The Jacobi method is based on the property that if we have a matrix A, an orthogonal matrix

C, and a diagonal matrix D, whereby

T =C AC D (8.8)

335

then the matrices A and D have identical eigenvalues, and they are diagonal elements of the

matrix D. The transformation matrix C is calculated in an iterative manner

1 2....... , 1..k k= = C S S S (8.9)

where the individual
kS has the following form

1 0 0 0

1

1

0 cos() 0 sin() 0

0 1 0

0 sin() cos() 0

0 0 0 1

kS  

 

 
 
 
 
 

= − 
 
 
 
 
 

 (8.10)

The entries cos(), sin()  are put in i,j rows and columns, and they are constructed in the

way that they will zeroize ija after the transformation. The other diagonal elements are equal

to 1 and the remaining off-diagonal elements are 0.

In the case of a general eigenproblem, the whole procedure of constructing
kS is very similar.

The matrices
kS now adopt the shape

1 0 0 0

1

1

0 1 0 0

0 1 0

0 1 0

0 0 0 1

kS a

b

 
 
 
 
 

=  
 
 
 
 
 

 (8.11)

Notice that the matrix
kS is not orthogonal anymore. The two variables a,b are calculated to

zeroize off-diagonal elements i,j of both matrices K and M. Eigenmodes of the problem are

then calculated as

'

2

'

ii
i

ii

a

b
 = (8.12)

where ' ',ii iia b are diagonal elements of transformed (and diagonalized) matrices A, B.

Eigenvectors of the problem are columns of the transformation matrix C.

Inverse iteration method is carried out as follows: Starting with an initial transformation of

eigenvector ,1iu , we calculate a vector of corresponding inertia forces (step 1)

336

,1 ,1i if u= M (8.13)

Knowing
,1if , we can compute a new approximation of

iu , (step 2)

 1

,2 ,1i iu K f−= (8.14)

and repeat the step 1. Hence, for iteration k we have

, ,

1

, 1 ,

i k i k

i k i k

f u

u K f−

+

=

=

M
 (8.15)

and the iterating is stop, when , 1 ,i k i ku u+  . The above-described algorithm tends to converge

to the lowest eigenmodes. If any of these are to be skipped, the initial eigenvector ,1iu must be

orthogonal to the corresponding eigenvectors. In practice, the vector ,i ku must be

orthogonalized with respect to the skipped eigenvectors even during the iterating procedure,

as the initial orthogonality may get (due to some round-off errors) lost.

Having briefly described the above three methods, we can now proceed to the actual solution

algorithm of the Inverse subspace iteration method itself:

1

1 1 1

1 1 1

1 1 1 1

1 1 1

Step1- Inverseiteration method:

Step 2-Raylegh quotient method:

Step3 Jacobi method:

Step 4-Correct theeigenvectors:

k k

T

k k k

T

k k k

k k k k

T T

k k k

+

+ + +

+ + +

+ + + +

+ + +

=

=

=

−

=

=

2

KU MU

A U KU

B U MU

A C B C Δ

U U C

 (8.16)

In the above

m is the number of projection eigenmodes (reasonably higher than the number of required

eigenmodes),

kU is the matrix of columnwise arranged m eigenvectors after k- th iteration,

1k +A , 1k +B are transformed stiffness and mass matrices of the problem, (having dimension

m<<n),

1k +C is the matrix of eigenvectors of 1k +A , 1k +B , see (8.9)

337

2
Δ is a matrix with eigenmodes (on its diagonal). Notice that eigenmodes for transformed and

the original eigenmode problem are the same.

The steps 1 thru 4 are repeated until the difference between the two subsequent operations is

negligible.

The solution algorithm (8.16) is in ATENA a bit modified in order to reduce CPU time and

RAM resources and is described below:

1

1 1

1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1

Step1- Inverseiteration method:

ˆ

ˆ

Step 2-Raylegh quotient method:

ˆ

ˆ

ˆ

Step3 Jacobi method:

Step 4-Corr

k k

k kk

T T

k k k k k

k k

T T

k k k k k

k k k k

+

+ +

+ + + + +

+ +

+ + + + +

+ + + +

=

=

= =

=

= =

−

= 2

U MU

KU U

A U KU U U

U MU

B U MU U U

A C B C Δ

1 1 1

ect theeigenvectors:

T T

k k k+ + +=U U C (8.17)

The advantage of this procedure over the one defined in (8.16) is that now you don’t need to

store the original and factorized form of the matrix K. Only the factorized form is needed

during the iterations.

A special issue in this method is how to set up the initial vectors 1U . This is what we do in

ATENA. The first vector contains the diagonal elements of M. The next vectors are

constructed in the way that they have zeros everywhere except one entry. This entry

corresponds to maximum ii

ii

m

k
 and is set to 1.

The procedure as it is (because of the Inverse iteration method) cannot solve for zero

eigenmodes. This may be a problem, especially if we want to analyze structural rigid body

motions or spurious energy modes. If this is the case, shift matrix K by an arbitrary value s ,

i.e., solve the associated eigenproblem

2()s s s su u − =K M M (8.18)

The original eigenvalues and eigenvectors are then calculated by

338

2 2

s

s s

u u

  

=

= −
 (8.19)

Another problem of Inverse subspace iteration is to compute multiple eigenvectors.

Unfortenatly, it is not that rare case and it happens, e.g., if the structure has an axis of

symmetry. The occurrence of multiple eigenmodes in the structure may yield non-orthogonal

eigenvectors, and thus, some eigenmodes can be missed. There are some techniques for

resolve this problem (Jendele 1987); however, they have not been implemented in ATENA

yet. Good news is that in reality, no eigenmodes are usually quite identical due to some

round-off errors. The case of multiple structural eigenmodes thus typically causes only some

worsening of accuracy and no eigenmode gets missed.

Nevertheless, if we want to be sure that no eigenmode was missed, we can assess it by Sturm

sequence property test.

This property says (Bathe 1982) that if we have an eigenproblem (8.1), perform a shift s and

factorize that matrix (i.e., D is a diagonal matrix, L is a lower triangular matrix),

 T

s− =K M L DL (8.20)

then the number of negative diagonal elements in D equal to the number of eigenvalues

smaller than the shift  . This way, we can simply test, whether we missed an eigenvalue

with the calculated set of m eigenmodes or not

There are other methods that can be used to compute eigenvalues and eigenvectors of large

sparse eigensystems. Particularly popular is e.g., Lanczosh method (Bathe 1982). There exist

also several enhancements for the present Inverse subspace iteration method. For instance,

using a shifting technique may significantly improve the convergency of the method

(especially if some eigenvalues are close to each other).

These improved techniques may be implemented in the future. In any case, the current

ATENA implementation of eigenmodes analysis proves to solve the eigenmodes problem in

most cases quite successfully.

BATHE, K. J. (1982). Finite Element Procedures in Engineering Analysis. Englewood Cliffs,

New Jersey 07632, Prentice Hall, Inc.

JENDELE, L. (1987). The Orthogonalization of Multiple Eigenvectors in Subspace Iteration

Method. IKM - XI. Internationaler Kongress ueber Anwendungen der Mathematik in

der Ingenieurwissenschaften, Weimar.

WOOD., W. L. (1990). Practical-Time Stepping Schemes. Oxford, Clarenton Press.

339

A unique feature of ATENA software is the way in which it implements Dirichlet boundary

conditions. It supports to constraint any degree of freedom (DOF) by a linear of any number

of other structural DOFs. The proposed method of applying and processing the boundary

conditions is computationally efficient and memory economical because all constraint degrees

of freedoms (DOFs) are eliminated already during assembly of structural global stiffness

matrix and load vectors. The adopted concept has a wide range of use, and several of its

possibilities are discussed. At the end of the Section, a few samples are given.

A crucial part of a typical finite element analysis (whether linear or nonlinear) is the solution

of a set of linear algebraic equations in the following form

1

, 1..
n

ij j i

j

K u r i n
=

= = (9.1)

where ijK is an element ,i j of a predictor matrix K, (i.e., usually structural stiffness matrix),

ir is an external force (or unbalanced force), applied into i-th structural degree of freedom

(DOF), and finally
iu is displacement (or displacement increment) at the same DOF. Such a

set of equations is always accompanied by many boundary conditions (BCs). They can be one

of the following:

Von-Neumann boundary conditions, (also called right-hand side (RHS) BCs). Number and

type of these BCs have no impact on dimension n of the problem (9.1). They are accumulated

in the vector r . This vector is assembled on the per-node basis for concentrated nodal forces

and/or per-element basis for nodal forces being equivalent to element loads.

The second type of boundary conditions are Dirichlet boundary conditions (also called left-

hand side (LHS) BCs). ATENA implementation of this type of BCs is now described. A

simple form of such BCs reads

0

0, 1,

, 1,

l

l l

u l n

u u l n

=  

=  
 (9.2)

These kinds of BCs typically represent structural supports with no displacements (the first

equation) or with prescribed displacements
0lu , (the second equation). Although most LHS

BCs are of the above form (and only a few finite element packages offer anything better),

there are cases when a more general LHS BC is required. Therefore, ATENA software

provides a solution for implementing a form of Dirichlet BCs, where each degree of structural

freedom can be a linear combination of any other degrees of freedom. Mathematically, this is

expressed by

 0

1,

, 1,l l lk k

k n

u u u l n
 

= +   (9.3)

340

There are many cases in which the above form of Dirichlet conditions proves helpful. Some

examples are discussed later in the Chapter. The important point about implementing

Equations (9.3) is that they are utilized already during the assembling of the problem (9.1). It

means that if we have m of these BCs, then the final dimension of the matrix K becomes only

()n m− . This fact significantly reduces requirements for computer storage.

In the following, we shall call such boundary conditions as “Complex Boundary Conditions”,

or CBCs, (see also ATENA Input file manual, where the same name is used).

The procedure of implementing Dirichlet BCs of the form (9.3) is now presented. Let us start

with just one BC equation (9.4). It says that
lu equals to a constant prescribed displacement

0lu plus
lk multiple of a displacement

ku .

0l l lk ku u u= + (9.4)

Substituting (9.4) into the Equation (9.1) yields

 0

1, 1,

() , 1..
n n

ij j il l ij j il l lk k i

j j l j j l

K u K u K u K u u r i n
=  = 

+ = + + = =  (9.5)

which after some manipulation can be simplified into the form

 () 0

1

, 1..
n

ij il lk kj j i il l

j

K K u r K u i n 
=

+ = − = (9.6)

The above set of equations could be already used to solve for the unknown displacements (or

displacement increments) ju . kj stands for .k j Kronecker delta tensor. The trouble is,

however, that even though the matrix K might be symmetric, the set of equations (9.6) is not

symmetric anymore. Thus, to preserve the symmetry, add an
lk multiple of the row l , i.e.,

 () ()0

1

n

lk lj ll lk kj j lk l ll l

j

K K u r K u   
=

 
+ = − 

 
 (9.7)

to the row k, i.e.,

 () 0

1

n

kj kl lk kj j k kl l

j

K K u r K u 
=

+ = − (9.8)

This results in the row k getting the form

()()

()()

()

1

1

0 0

n

kj kl lk kj lk lj ll lk kj j

j

n

kj lk lj kl lk lk lk ll kj j

j

k kl l lk l lk ll l

K K K K u

K K K K u

r K u r K u

    

    

 

=

=

+ + + =

+ + + =

− + −



 (9.9)

341

Hence, the final form of the governing set of equations will read

()

()

2

1

0 0

n

ij il lk kj ik lk lj ik kj lk ll j

j

i il l ik lk l ll l

K K K K u

r K u r K u

      

 

=

+ + + =

− + −


 (9.10)

The above equations can be written as

1

, 1..
n

ij j i

j

K u r i n
=

= = (9.11)

where

11 1 1 1 1 1

1

2

1 1

...

...

...

...

... ... 2

i k l lk j n

i ii ik il lk ij in

k lk l ki lk li kk kl lk kk kk lk ll kj lk lj kn lk

K

K K K K K K

K K K K K K

K K K K K K K K K K K





       

=

+

+

+ + + + + +

1

1

...

...

...

...

ln

j ji jk jl lk jj jn

n ni nk nl lk nj nn

K K K K K K

K K K K K K





 
 
 
 
 
 
 
 
 
 +
 
 
 + 

 (9.12)

()

1 1 0

0

0 0

0

0

...

...

...

...

l l

i il l

k kl l lk l ll l

j jl l

n nl l

r

r K u

r K u

r K u r K u

r K u

r K u



=

− 
 
 
 −
 
 
 − + −
 
 
 −
 
 
 − 

 (9.13)

Providing the original matrix K is symmetric, i.e. ij jiK K= , then the matrix K is now also

symmetric, i.e.
ij jiK K= .

The displacement
lu constrained by Equation (9.4) has a constant part

0lu and a variable part

lk ku , in which
lu depends only on a single

ku . A more general form of this BC would be if

lu depends on more displacements. It corresponds to the following form of the boundary

condition:

342

 0l l lk k

k

u u u= +  (9.14)

In this case, the displacement
lu is calculated as a constant part

0lu plus a linear combination

lk of displacements
ku . k can be any displacement, i.e. 1..k n  . Replacing BC defined

by Equation (9.4) by the above Equation (9.14), the equation will change to the form

()

()()

2

1 ,

0 0

,

n

ij il lk kj ik lk lj ik kj lk ll j

j k k l

i il l ik lk l ll l

k k l

K K K K u

r K u r K u

      

 

= 



 
+ + + = 

 

− + −

 


 (9.15)

10.1.2 Mul iple CBCs

The previous paragraph derived all the necessary relations for implementing a single

boundary condition. Now we will proceed to the case of multiple boundary conditions. Each

particular BC is again written in the form (9.14).

 0 1 2, 1, , { , ,... }l l lk k r

k

u u u l n l l l l= +   = (9.16)

The problem is, however, that displacements
ku in (9.16) need not be free but fixed by

another BC, k can also run through l, (resulting in a recursive formulation), more BCs can be

specified for the same
lu , a particular BC can be specified more times and in more forms etc.

For example, we may have a set of boundary equations that contains BCs

1 2 2 1,u u u u= = (9.17)

or it can contain

1 2 2 1 1, , 0.003u u u u u= = = (9.18)

Both of these are correct. Unfortunately, the set can also contain

1 2 2 2 1 1, 0.003, , 0.003u u u u u u= = − = = (9.19)

which is definitely wrong. Therefore, before any use of such set of BCs it is necessary to

detect and fix all redundant and contradictory multiple BCs present in it. It is easily done in

case of a simple set of BCs like the one above, but in real analyses with thousands of BCs in

the form (9.16), (some of them quite complex, i.e., k runs through many DOFs) the only way

to proceed is to treat (9.16) as a set of equations to be solved prior their use in (9.13).

Redundant BCs are ignored, and contradictory BCs are fulfilled after their summation. Let us

suppose that all structural constraints are specified in the set of equation (9.16). This can be

written in matrix form

0l l ku u u= + A (9.20)

The above relationship represents a system of algebraic linear equations. The system is

typically non-symmetric, sparse and has a different number of rows (i.e., the number of BCs)

and columns, (i.e., the number of master and slave DOFs). Moreover, it is often ill-

343

conditioned, with a number of equations being linear combinations of the others, e.g., see the

example in (9.17). In the beginning, it is often not known which DOF is dependent, (i.e.,

slave) and which is independent, (i.e., master), (e.g., see also (9.17)).

Based on the above properties, the following procedure has been developed to solve the

problem (9.20):

1. Allocate "columns" for all slave and master DOFs, i.e., loop through all BCs in (9.16)

and allocate DOFs for both slave (i.e., LHS) and master (i.e., RHS) displacements
iu .

2. Allocate storage for the matrix A and vectors
0,l lu u in (9.20). The matrix has

rl the

number of rows (see (9.16)) and
cl the number of columns.

cl is the dimension of the

DOFs map created in the point add. 1.

3. Assemble the matrix A and the vectors
0,l lu u .

4. Detect constant BCs, i.e.,
0l lu u= and swap rows of A so that the rows corresponding

to constant BCs are pushed to the bottom.

5. Detect constant fixed DOFs, i.e., those with 0lk = and variable fixed DOFs, i.e., that

are those dependent on other (master) DOFs and having 0lk  .

6. Swap columns of A , so that the former DOFs are pushed to the right and the latter

DOFs to the left. The operations described at the point 5 and 6 are needed to assure

order, in which the constrained DOFs are eliminated. This is important for later

calculation of the structural reactions.

7. Using the Gauss method to triangulate the set of BC equations. The triangulation is

carried out in the standard way with the following differences.

a. Before eliminating entries of A located in column below
kka , check for a non-

zero entry in the row k. If all its entries are zero, then ignore this row and

proceed to the next one. (It is the case of multiple BCs having the same

content).

b. Check, whether the row k specifies BC for constant or variable DOF, (see

explanation in the point 5 above). In the former case push the row k to the

bottom and proceed to the next row.

c. Swap columns ... ck l  so that ()kkabs a becomes maximum.

d. If 0kka = , swap lines ... rk l  to find a non-zero entry in
kka . Thereafter,

swap columns ... ck l  to find maximum
kka .

e. Eliminate entries below
kka as usually.

As it was already mentioned, the matrix A is typically very sparse. Hence, a special storage

schemes are used that stores only non-zero entries of A. The data are stored by rows. Each

row has a number of data series, i.e., sequences or chunks of consecutive non-zero data

(within the row). The data are in a three-dimensional container. For each such chunk of data,

we also need to store its first position and length. This is done in two two-dimensional

containers.

344

As an example, suppose that we have the following matrix A:

11

22 23 26 27

33

42 44

55 56 57

62 66

77

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

a

a a a a

a

a a

a a a

a a

a

 
 
 
 
 

=  
 
 
 
 
 

A (9.21)

 It is stored as follows (.Adata stores the actual data, .Arowbase stores base indices for non-

zero entries in rows, .A rowlength contains dimension of non-zero data chunks; all arranged

by rows):

11

22 23 26 27

33

42 44

. (1)(1)(1)

. (2)(1)(1) , . (2)(1)(2) , . (2)(2)(1) , . (2)(2)(2)

. (3)(1)(1) ,

. (4)(1)(1) , . (4)(2)(1)

.......

. (1)(1) 1

. (2)(1) 2,

A data a

A data a A data a A data a A data a

A data a

A data a A data a

A rowbase

A rowbase A

=

= = = =

=

= =

=

= . (2)(2) 6

. (3)(1) 3

. (4)(1) 2, . (4)(2) 4

.....

. (1)(1) 1

. (2)(1) 2, . (2)(2) 2

. (3)(1) 1

. (4)(1) 1, . (4)(2) 1

rowbase

A rowbase

A rowbase A rowbase

A rowlength

A rowlength A rowlength

A rowlength

A rowlength A rowlength

=

=

= =

=

= =

=

= =

 (9.22)

A number of optimisation techniques are used to speed up the process of triangularization of

the matrix A. These are summarized below:

The data are stored by rows and the elimination is also carried out by rows. (Row-based

storage is also more convenient during assembling the A from (9.16)). All the operations

needed for the elimination are carried out only for nonzero data. Their horizontal position is

stored in .Arowbase and .A rowlength , hence it is no problem to skip all zero entries. A

typical total number of columns
cl , see (9.16), is of order from thousands to hundred

thousands DOFs. On the other hand .a rowlength is on average only of order of tens. This is

where the CPU savings comes from.

By the way, the same mapping of non-zero entries is also used for columns. This is achieved

by additional arrays .Acolumnbase and .A columnlength that are also included in the storage

scheme A. (Their construction is similar to .Arowbase and .A rowlength ; instead by rows

345

they are arranged by columns). These two additional arrays make possible to skip all zero

entries during column-base operations. The resulting significant increase of triangularization

speed pays off for a small amount of an extra RAM that is needed to store .Acolumnbase and

.A columnlength .

The adopted procedure of triangularization many times swaps lines and/or columns of A. In

view of the adopted storage scheme, it can be a quite expensive procedure. To alleviate this

problem, the storage scheme includes four additional arrays, namely .Arowindex ,

.Arowinverseindex , .Acolumnindex and .Arowinverseindex . In the

beginning, . ()A rowindex i i= and similarly . () , 1... cArowinverseindex i i i l= = . When a row
1r

should be swapped with a row
2r , the data in .Adata remains unchanged and we swap only

corresponding row indices in .Arowindex , (and accordingly also entries in the array for

inverse mapping .Arowinverseindex). The same strategy is used for swapping the columns.

As a result, any swapping operation does not require any moving of actual data (except of

swapping corresponding indices for mapping the rows and columns) and thus it is extremely

fast. On the other hand, in order to access ija we must use ' 'i ja , where ' ()i rowindex i= and

' ()j columnindex j= . The incurred CPU overhead is well acceptable, because the matrix A is

very sparse.

This section presents several examples where the developed Dirichlet boundary conditions are

advantageously used. In each case, the corresponding finite element model exploits the

general form of BC defined by Equation (9.16).

Suppose we need to refine a mesh as shown in Fig. 10-1. The mesh should refine from 5

elements per row to 10 elements per row. The figure depicts three possible techniques to

achieve the goal.

In the case A, the fine and coarse parts of the mesh (consisting of quadrilateral elements) are

connected by a row of triangular elements. This way of mesh refinement is used the most

often. However, mixing quadrilateral and triangular elements is not always the best solution.

In the case B, the refinement is achieved by using hierarchical finite elements, see (Bathe

1982). The coarse mesh near the interface employs five nodes hierarchical elements. This

refinement is superior to the others; however, it requires special finite elements and special

mesh generator; both of these rarely available in a typical finite element package.

In the case C, the fine and coarse parts of the mesh are generated independently. After the

generation of all nodes and elements, the interface nodes are connected by complex boundary

conditions. For example, we can use , , 0.5 0.5i m k n j m nu u u u u u u= = = + . The main advantage

of this approach is that it is simple for both finite element pre/postprocessor and finite element

modeler (namely its finite element library). Hence it is preferable!

346

Note that all the above techniques are supported in ATENA finite element package, the last

one requiring implementation of CBCs in the form (9.14).

This example demonstrates another advantage of using the proposed CBCs: It is possible to

generate meshes within sub-regions without requirement of nodes coincidence on their

interfaces. Because mesh structure on the sub-regions’ surfaces is not prescribed, this

approach provides more flexibility to mesh generation. This feature is heavily used by

ATENA 3D pre-processor.

Compatible meshes on the contact between the blocks

347

Incompatible meshes on the contact between the blocks using CBCs

In the above example, two blocks are connected to form a structure, where the top (smaller)

block is placed atop of the bottom (larger) block. The position of the top block is arbitrary

with respect to the bottom block. Unless the concept of CBCs is used, the meshes on the

interface of the two blocks must be compatible (see top of Fig. 10-2). On the other hand, the

proposed CBCs allow using of incompatible meshes (see the bottom of Fig. 10-2). In this

case, the mesh in each block is generated independently, which is significantly simpler. After

they are done, the proposed CBCs are applied to connect the interface nodes. (Typically, the

surface with the finer mesh is fixed to the surface with the coarse mesh). The latter approach

also demonstrates the possibility of a mesh refinement while still using well-structured and

transparent meshes. This is particularly useful in the case of complex numerical models.

In this example, the described boundary conditions are used to simplify the modeling of the

reinforced concrete beam, see Fig. 10-3. The procedure to create the model is as follows.

Firstly, the mesh for solids, i.e., concrete elements are generated. It poses no problem, as it is

a regular mesh consisting of 48 quadrilateral elements. At this point, no attention needs to be

paid to the geometry of reinforcing bars present in the beam. Thereafter, the reinforcing bars

are inserted and their meshes are generated based on the existing mesh of solid elements. The

first step is to find all nodes, where the bar changes direction. These nodes are called principal

nodes; see e.g., node n in Fig. 10-3. Then, the intersection of all straight parts of the bar with

underlying solid elements are detected, e.g., the nodes m,p. Thus, all end nodes of embedded

bar elements are defined. The last step is to link displacements of the nodes of the bar to the

underlying solid elements.

348

i j

l

n

p k
m

bar 1

bar 2

For example, if we want to connect the node n to the an embedding solid element, i.e., to

nodes i,j,k,l, see Fig. 10-3, we use the standard interpolation
4

1

(,) (,)i i

i

u r s h r s U
=

=  , where

(,),i ih r s U are element interpolation function and Ui are nodal displacements for the

underlying solid element, respectively. For displacement at the node n we can write
4

1

(,) (,)n n i n n i

i

u r s h r s U
=

=  . (,n nr s) are coordinates of the node n. Comparing this formula with

(9.3), it is obvious that
0(,), 0ni i n n nh r s u = = . Consequently, the bar DOFs are always

kinematically dependent on the DOFs of underlying solid elements.

This technique can also be applied when bond elements are inserted between solid and

embedded bar elements. This is treated in a separate paper by authors in ref. (Jendele, 2003).

Currently, ATENA software can generate discrete reinforcement to all 2D and 3D linear and

nonlinear elements (triangles, quads, tetrahedral elements, wedges, bricks…). The user only

draws the position of the principal nodes of reinforcement bars and the rest is done

automatically.

In the following text, another possible use of the present boundary conditions is presented. A

curvilinear nonlinear beam from Chapter 3.17 is discussed. A particular feature we would like

to point out here is that although it originally has only three displacements and three rotations

in the nodes 13,14,15, see Fig. 3-40, its implementation in ATENA has also 3 displacements

in the nodes 1 to 12. However, these DOFs are linked to the original DOFs in the nodes 13 to

15 by the proposed CBCs. This concept has several advantages.

• The beam finite element has native 3D geometry and its pre- and post-processing

visualization is more realistic than using its original 1D geometry.

• It is simple to connect such beam elements to any adjacent 3D finite elements, e.g.,

brick elements.

• Mesh generation is easily done by any 3D solid element generator that can pull off

nonlinear hexahedral elements. It suffices to generate only the nodes 1 to 12 (with 3

displacement DOFs) and the three original beam nodes (each beam node has 3

displacement and 3 rotation DOFs) are generated automatically. The pre-processor

need not to support rotational DOFs.

349

• The post-processing of this element and an ordinary nonlinear hexahedral element is

the same. Consequently, this element does not need any extra support for the

visualisation of the results. It makes its implementation and use simple.

Derivation of all ij coefficients and
0iu constants for all nodes 1 to 12 is beyond the scope

of this document. Nevertheless, a similar procedure is used, as it was in the previous example.

ATENA package also covers Ahmad element for curved shell structures, see Chapter 3.12.

The usual 2D shape of the shell element is in the same manner, replaced by geometry of a 3D

nonlinear hexahedral element. Originally, the shell element has 3 displacements and 2

rotations at each node located in the middle thickness of the shell. These 5 DOFs are in by use

of CBCs replaced by 3 displacements at the top and 2 displacements at the bottom at the

respective nodes from the hexahedron, (i.e., brick) geometry. Advantages of this approach

are the same as those in the case of the curvilinear beam above: simpler pre/post-processing,

simpler connection to the adjacent 3D elements, no need to support rotational DOFs during

pre/post-processing, no need for extra support for geometry of the shell element.

BATHE, K.J. (1982), Finite Element Procedures In Engineering Analysis, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey 07632, ISBN 0-13-317305-4.

JENDELE, L, CERVENKA, J, CERVENKA V., " Bond in Finite Element Modelling of

Reinforced Concrete", Proceedings Euro-C 2003, Computatinal Modelling of Concrete

Structures, Swets & Zeitlinger, Lisse, The Netherlands, ISBN 90 809 536 3, 793-8036

351

Adam-Bashfoth integration 299

axis

hydrostatic ... 38

biaxial ... 17, 25

boundary condition ... 12

complex ... 13

simple ... 13

Clapeyron divergent theorem 3

confinement .. 55

constitutive model .. 15

after peak behaviour 23

Bigaj... 74

CC3DCementitious 34

CC3DNonLinCementitious 34

CC3DNonLinCementitious2 34

CC3DNonLinCementitious2Fatigue............ 48

CC3DNonLinCementitious2User 34

CC3DNonLinCementitious2Variable 34

CEB-FIP 1990 ... 72

compressive failure 25

compressive stress 29

crack opening law .. 20

crack spacing ... 48

definition 15, 85, 219, 245, 289, 339

Drucker Prager ... 62

equivalent uniaxial law 18

fracture process .. 25

Hooke’s law ... 15

HORDIJK law ... 20

interface model .. 63

localization limiters 24

Microplane ... 76

peak stress .. 22

Rankine fracturing .. 35

reinforcement ... 67

reinforcement bond 72

SBETA model .. 17

SBETA model parameters 33

shear and stiffness in crack 29

size effect ... 24

smeared cracks ... 27

smeared cracks-fixed 27

smeared cracks-rotated 28

tensile failure .. 26

tension stiffening 30, 47

transformation .. 16

variants ... 44

Von Mises .. 59

constitutive tensor ... 6

constutive model

plasticity and crushing.................................. 38

convergence35, 42, 43, 80, 228, 229, 231, 235,

236, 250, 300, 326

convergency .. 327, 338

crack

fixed ... 48

rotated .. 48

cracking 17, 25, 35, 41, 53

Cracking ... 19

Crank-Nicholson integration 299

creep ... 245

basics .. 245

constitutive models 251

Dirichlet series ... 247

parameters needed by models 257, 259

retardation times ... 249

solution parameters 253

Step by Step Method 248

352

creep model

CCModelB3 ... 252

CCModelB3Improved 252

CCModelBP_KX 252

CCModelBP1_DATA 252

CCModelBP2_DATA 252

CCModelCEB_FIP78 252

CCModelCSN731202 252

CCModelGeneral 252

creep model

CCModelACI78 ... 252

damping 300, 323, 326, 327, 328, 329

Dirichlet conditions .. 339

discretisation

spatial ... 292

temporal ... 298

dynamic .. 323

eigenvalues333, 335, 337, 338

eigenvectors333, 336, 337, 338

equibiaxial .. 57

fatigue ... 48

fiber reinforced concrete 21, 52

finite element

Ahmad element .. 133

axisymmetric element 131

brick quadrilateral element 99

extwernal cable element............................. 120

hexahedral element 99

interface element .. 127

nonlinear 3D beam element 176

plane quadrilateral element 91

Q10 element ... 115

Q10Sbeta element 115

reinforcement bar with prescribed bond 122

shell element .. 133

spring element .. 113

triangular element .. 97

truss 2D/3D .. 87

Fire analysis .. 316

flux

heat ... 290

moisture .. 289

formulation ... 2

Euler ... 2

Lagrange....................................... 2, 7, 58, 152

Updated Lagrange .. 2

governing equations .. 7

Green theorem .. 297

heat ... 290

Heterosis element 133, 145, 152

hierarchical formulation.................................... 85

high performance fiber reinforced concrete 52

HPFRCC ... 52

hydration ... 290, 301

Hydrocarbon fires ... 316

integration points

CCBeamNL element 186

CCIsoBrick element 106

CCIsoQuad element 92

CCIsoTetra element 102

CCIsoTrianle element 99

CCIsoWedge element................................. 111

Q10/Q10Sbeta element 117

shell/Ahmad element 143

truss 2D/3D element 87

integration shell element-summart.................. 152

interpolation function 85

CCBeamNL element 178

353

CCIsoQuad element 92

CCIsoTetra element 101

CCIsoTriangle element 98

CCIsoWedge element 109

problem discretisation 9

Q10/Q10Sbetaelement 116

shell/Ahmad element 143

truss 2D/3D element 87

introduction .. 1

Inverse Iteration method 335

Inverse Subspace Iteration method 333

isoparametric formulation 85

Jacobi method ... 334

Lagrangian element 133, 144, 152

moisture .. 289

multiaxial .. 246

Multipoint constraint 339

Newmark .. 323

nonlinearity .. 1

types ... 1

nonlinearity classification................................... 1

oscilations ... 300

Palmgren-Miner hypothesis 49

plasticity ... 41

principle of virtual displacements 3, 6

principle of virtual forces 3

problem .. 2

configuration .. 3

FEM discretisation ... 9

formulation ... 2

general .. 2

Rayleigh Ritz method 334

Serendipity element 133, 144, 152

shape function ... 85

SHCC .. 52

S-N curve .. 48, 50

solver .. 219

Arc length ... 230

Arc Length step .. 236

Consistently Linearized Method 233

Crisfield Method .. 235

direct sparse.. 221

Explicit Orthogonal Method 234

Cholesky .. 220

iterative .. 221

linear .. 219

Linear search .. 236

Modified Newton Raphson 229

Newton Raphson .. 227

nonlinear... 227

Normal Update Method.............................. 233

 scaling parameter 237

strain ... 5

Almansi .. 6

engineering ... 5

fracturing .. 36

Green Lagrange .. 5

Strain Hardening Cementitious Composite 52

Strain Hardening Cementitious Composites 52

stress ... 4

2nd Piola-Kirchhoff 4

Cauchy ... 4

stress/strain smoothing 10

lumped .. 11

354

variational .. 11

Sturm sequence check 338

time equivalent ... 290

Transport analysis .. 289

triaxial .. 55, 57

uniaxial 17, 26, 39, 57, 59, 67, 121

Wöhler curve .. 50

Xi-Bazant model ... 300

