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Abstract

This paper presents the comparison of advanced semi-probabilistic methods

for the design and assessment of concrete structures represented by mathemat-

ical models solved by non-linear finite element methods. The special attention

is given to the advanced methods focused on the estimation of the coefficient

of variation of structural resistance. Numerical examples represent a replica-

tion of laboratory experiments of beams with different failure modes. The

obtained results are discussed with respect to the accuracy of the employed

methods and the influence of the assumed statistical correlation among basic

variables. Simplified methods give a good estimation of the design values,

though their accuracy is dependent on the type of the failure mechanism.

Moreover, it is shown that mutual correlations among random variables may

significantly affect the design value of resistance, and they should be carefully

defined and modeled.
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1 | INTRODUCTION

The determination of a design value of resistance ensur-
ing a target level of structural reliability represents a key
task for engineers. Design codes like Eurocodes offer a
clear background for that, making it possible to separate
structural resistance and action effect in most design situ-
ations. A relative importance of resistance and of the load
effect is expressed through the respective sensitivity fac-
tors whose recommended values commonly ensure rea-
sonably conservative design solutions. As structural
analysis can then be fully focused on resistance, the
approach is called semi-probabilistic.

Various procedures to determine the design value of
resistance are generally termed as safety formats. They
are elaborated at different levels of simplification and
accuracy. Safety formats according to Eurocodes fully rely
on the partial factor method; also the EN 1992-2:20051

approach belongs to this category. The design value of
resistance is obtained by one calculation of the computa-
tional structural model using the design values of basic
variables. While this approach performs well and is fully
justified for linear computational models, its use for non-
linear models is questionable and can lead to an over-
conservative design resistance2,3 or may even fail.4 In
contrast, it is well known that the probabilistic analysis
in combination with a non-linear finite element analysis
offers a significant added value over the standard linear
analysis and semi-probabilistic approach implemented in
Eurocodes,5 and researchers are highly motivated to
develop novel techniques coupling the accuracy of the
non-linear finite element analysis (NLFEA) with a realis-
tic description of the basic variables by probabilistic
modeling.

The only general tool for probabilistic analysis is
represented by the Monte Carlo simulation (MC), simu-
lating uncertainties with their complete probability distri-
bution and statistical correlation. For a large number of
simulations, the approach leads to the complete informa-
tion about the distribution of resistance, but the number
of simulations is often limited, and the design value of
resistance is estimated based on the estimates of the
mean value and coefficient of variation (CoV). The accu-
racy depends on the quality of these estimates. Even if
the advanced stratified sampling such as Latin
Hypercube Sampling (LHS)6 is used, a number of simula-
tions may range from tens to hundreds. There are more
advanced and computationally demanding MC
techniques,7 but their implementation is usually far more
complicated, and thus they are typically utilized for sci-
entific applications only. The computational burden of
MC represents the main obstacle of the approach for
time-consuming mathematical models like NLFEA, since

it is not computationally feasible for industrial applica-
tions. Significant efforts have been made to reduce the
computational cost of the estimation of statistical
moments and its dependency on number of input ran-
dom variables. Recently, promising results were obtained
by high-dimensional model representation method8 and
its later modifications, such as the Maximum Entropy
Multiplicative Dimensional Reduction Method.9

Although these methods represent a significant improve-
ment for general estimating of statistical moments, it is
still necessary to perform tens of numerical simulations.

That is why alternative techniques focused on the
Estimation of Coefficient of Variation (ECoV) of struc-
tural resistance have been developed. They represent a
compromise between the simple and, in most cases, the
conservative approach of partial factors and MC. They
consider uncertainties in the form of N basic (input) ran-
dom variables, but under several simplifying assump-
tions, they reduce the computational model calculations
to a very low number acceptable in practice:

•ECoV according to fib Model Code 201010—2
numerical calculations for any N,

•Eigen ECoV11—3 numerical calculations for any N,
•ECoV based on Taylor Series Expansion12,13—N + 1

or 2 N + 1 numerical calculations, i.e. only three calcula-
tions when the concrete compressive strength and the
yield strength of the reinforcement are modeled as sto-
chastic variables for the whole structure, but an exces-
sively increasing number when random material
properties are modeled at various locations at the struc-
ture, or when the stochastic model contains additional
random parameters.

The ECoV methods commonly simplify an estimation
of the mean value of resistance as a result of the calcula-
tion of the computational model using the mean values
of input variables. This assumption is strong (particularly
for highly nonlinear models), though it can be accepted
in many applications where ECoV methods achieve suffi-
cient accuracy.14–17 The second strong simplification
common for all ECoV methods is assuming a lognormal
distribution of resistance.

Note that LHS can be used as an ECoV technique for
the estimation of the mean value and CoV.17 In particular,
for a low number of simulations (tens), the assumption of
lognormal distribution is necessary, as a reliable estima-
tion of distribution of resistance generally requires a
higher number of simulations. A similar situation applies
to the methods based on numerical quadrature,18 how-
ever, they are extremely computationally expensive for
increasingN, and thus are rarely employed in industry.

This paper presents a summary of the available
approaches and the comparison of the semi-probabilistic
methods for practical examples of NLFEA. In contrast to
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the review of ECoV methods,19 a special attention is given
to the verification of the recently proposed adapted Taylor
series expansion (TSE), and a special case of TSE refer-
enced as Eigen ECoV, which does not bring a significant
additional computational burden, but extends the range of
applicability of ECoV according to fibModel Code 2010.

The aim of the paper is to contribute to the discussion
and clarify the recommendations provided by the nearly
complete drafts of fib MC 2020 and prEN 1992-1-1.20 The
general theoretical background of the semi-probabilistic
approach, PSF, and selected ECoV methods are described
in Section 2. Note that there is a strong reasoning for the
selection of these particular simplified ECoV methods,
since they are based on the general formulation of TSE.
The purpose of this section is thus not only to summarize
the selected methods, but also to clarify their similarities
and assumed simplifications. Besides the simplified ECoV
methods and PSF, a brief summary of stratified sampling
is also presented, since we use this method for a reference
solution of the numerical examples. Section 3 describes
selected case studies and the methodology of the numeri-
cal examples, i.e. our strategy for a proper comparison of
the selected methods. Besides the comparison of the
ECoV methods, we also present their theoretical charac-
teristics regarding the correlation among input random
variables. The case studies are represented by three math-
ematical models replicating laboratory experiments from
the literature. Each model exhibits a different failure
mode, and thus a different influence of correlation
among material parameters. Section 4 contains an
extended discussion of the obtained results reflecting the-
oretical assumptions of the selected methods and their
limitations. Moreover, in the second part of the discus-
sion, we present an artificial analytical example present-
ing some of these limitations in the case of models with
multiple failure modes. In the last section, Section 5, the
main findings of this paper are summarized and the
importance of the correlation among the material charac-
teristics of concrete is emphasized.

2 | SEMI-PROBABILISTIC
APPROACH

Structural reliability represents a crucial topic of civil engi-
neering globally implemented into the design codes using
semi-probabilistic approaches. The semi-probabilistic
approaches assume the separation of two random vari-
ables, structural resistance R and action effect E, through
their design values:

Rd ¼F�1
R �αRβð Þ, ð1Þ

and

Ed ¼F�1
E �αEβð Þ, ð2Þ

where F�1 represents the inverse cumulative distribution
function, α is a sensitivity factor originally derived from
First Order Reliability Method (FORM), and β is the tar-
get reliability index. The paper is focused on the estima-
tion of Rd when the function of structural resistance r(X)
of input random vector (X being a vector of N basic vari-
ables) is solved by an NLFEA. The recommended value
of αR ¼ 0:8 is then utilized, typically with a lognormal
distribution of R. Based on these assumptions, the proba-
bility distribution is fully described by the mean value
and CoV, and the reliability analysis reduces to the esti-
mation of the first two statistical moments—the task of
the ECoV methods.

2.1 | Partial safety factors

Although NLFEA has been employed for the design and
assessment of structures more frequently in recent
decades, it is still insufficiently included in Eurocodes,
and its potential for a wide application in the industry is
thus limited. Specifically, there is the Partial Safety Fac-
tors (PSF) method, and the global factor method for
NLFEA of concrete structures according to EN
1992-2:20051 implemented in Eurocode. Unfortunately,
both methods may provide only crude estimates in the
cases with a strongly non-linear behavior, multiple fail-
ure modes, or when the assumptions adopted by these
approaches do not apply.

Although the PSF implemented into Eurocodes was
originally not intended for NLFEA applications, it is
often employed due to its simplicity. To estimate the
design value of resistance Rd in Equation (3), only one
calculation must be computed with the design values of
basic variables The design values of input variables are
typically derived from the characteristic values using par-
tial factors γM ¼ γRd

γm, which reflect the uncertainties in
the material and the geometrical properties, and model
uncertainties:

Rd ¼ r X1,k=γM ,X2,k=γM ,…ð Þ¼ r f ck=γC, f yk=γS,…
� �

: ð3Þ

where Xk denotes a characteristic value of the basic vari-
able X, γM is the partial factor for a material property, fc
is the concrete compressive strength, and fy is the yield
strength of steel reinforcement.

Note that the design values used in the PSF method
might be very low, which might lead to unrealistic
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results, since non-linear material models are often cali-
brated to specific ranges of input values only (closer to
their mean and/or characteristic values). Therefore, it is
beneficial to calibrate the partial factors with respect to
real laboratory experiments involving material and struc-
tural measurements.21

Another approach for the derivation of PSF with the
explicit definition of the model, material, and geometrical
uncertainties was recently introduced in Annex A to prEN
1992-1-1:2021.20 The main idea is to account for the biases
and CoVs of various basic variables directly in the model
of resistance, not only the material itself. Such an
approach leads to a considerable simplification of the
modeling of the geometrical uncertainties, which may be a
difficult task in NLFEA. Disregarding now the model
uncertainties—treated separately later by a model uncer-
tainty factor γRd specific to the case under consideration—
allows for an unambiguous comparison of all the pre-
sented safety formats and semi-probabilistic methods
(Section 3). The general formula for the definition of PSF
according to the new Eurocode proposal is then:

γc ¼
exp αR β vRcð Þ

μRc
¼

exp αR β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2fcþ v2ηþ v2Ac

q� �
f cm
f ck

μη μAc
ð4Þ

γs ¼
exp αR β vRsð Þ

μRs
¼

exp αR β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2fyþ v2d

q� �
f ym
f yk

μd

where Xm and vX denote the mean and the coefficient of
variation of the basic variable X, Rc and Rs are model
resistances related to concrete crushing and yielding of
reinforcement respectively, and μ in Equation (4) is a bias
in the basic variable X—the systematic deviation of ran-
dom values of the variable from its characteristic (nomi-
nal) value, expressed as the ratio of the mean to the
characteristic (nominal) value.

Equation (4) assumes that concrete resistance Rc, typi-
cally governing the resistance of non-slender columns,

and reinforcement resistance Rs, typically governing the
flexural resistance, are random variables that are lognor-
mally distributed, obtained as a linear product of the rele-
vant resistance parameters; see Tables 1 and 2 taken
from Annex A to prEN 1992-1-1:2021.20

In the case of a bending failure governed by reinforce-
ment, geometrical uncertainties relate to the most impor-
tant parameter—the effective depth d as described in
Table 1, along with a relevant material property and
model uncertainties. In the case of compressive failure
with dominating concrete strength, the CoV of resistance
is similarly affected by a geometrical uncertainty through
the concrete area Ac, but the uncertainty of in-situ
strength is also additionally affected by the conversion
factor η (see Table 2).

Non-linear material models of concrete typically con-
sider additional material characteristics, such as tensile
strength f ct, and fracture energy Gf of concrete. An iden-
tical philosophy as in the case of compressive strength
was adopted in order to derive the statistics for the PSF
and ECoV methods. Specifically, the values according to
Table 3 are taken into account.

The CoV of f ct is set to v¼ 0:18 in compliance with
prEN 1992-1-1.20 Note that the variability of Gf is
assumed to be identical as for f ct . The characteristic value
of tensile strength is obtained from compressive strength
according to prEN 1992-1-120 as [in MPa]:

f ct,k ¼ 0:7 0:3 f c,k
2=3

� �
ð5Þ

and fracture energy according to the 2021 draft of Model
Code 2020 as follows [in MPa]:

Gf ,k ¼ 85 f c,k
0:15 ð6Þ

Note that values from Tables 1–3 are further utilized for
derivation of mean and characteristic values used in
advanced semi-probabilistic methods as described in the
next subsection.

TABLE 1 Parameters assumed for

the derivation of a partial factor for

reinforcement

Parameter CoV Bias factor

Yield str. f y vf y ¼ 0:045 f y,m=f y,k ¼ exp 1:645vf y

� �
Model unc.a vθ ¼ 0:045 μθ ¼ 1:09

Effect. depth db vd ¼ 0:05 μd ¼ 0:95

Resistance characteristics vf y ,R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0452þ0:052

p
¼ 0:067 μf y ,R ¼ f y,m=f y,k�μd ¼ 1:02

Abbreviation: CoV, coefficient of variation.
aModel uncertainties are reflected in this study by γRd

and are determined separately for each numerical
example.
bValid for d = 200 mm. For other effective depths: vd ¼ 0:05 200=dð Þ2=3 and μd ¼ 1�0:05 200

d

� �2
3:
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2.2 | Simplified methods for estimation
of coefficient of variation

Besides PSF, there are alternative methods published in
scientific papers and international documents such as fib
Model Code 2010.22 The ECoV methods under consider-
ation were developed in order to effectively estimate the
first two statistical moments of function of random vari-
ables from simple formulas. Simplified ECoV methods
are often applied in practical design and the assessment
of structures without the knowledge of their theoretical
background. However, it is essential to respect their limi-
tations to avoid making crude estimates of the design
resistance.

2.2.1 | ECoV according to fib model code

Probably the most frequently used method is the one
developed by Červenka7 and implemented into fib
Model Code 2010.22 It is based on a simplified for-
mula for the estimation of a characteristic value cor-
responding to a lognormal variable with the mean
value μR and CoV of the model resistance vR: Based on
two numerical simulations—one with the mean values of
the basic variables, Rm, and the other using the character-
istic values (5% fractile for material parameters) of basic
variables, Rk—the following simplified formula was
derived:

vR ¼ 1
1:645

ln
Rm

Rk

� �
ð7Þ

Based on the conventional models for basic variables pro-
vided in Tables 1–3, one can derive the mean and charac-
teristic values summarized in Table 4. Note that the
characteristic values X�

k in Table 4 reflect the uncertainty
in the basic variables assumed for the derivation of PSF.

Since there are only two numerical calculations used in
Equation (7), it can be shown that ECoV according to fib
Model Code 2010 implicitly assumes a full correlation among
basic variables (including fc, fy or geometrical parameters).11

Moreover, the simplified Equation (7) for the fractile of a log-
normal distribution should be applied for a low CoV only.
According to prEN 1990:202123 and prEN 1992-1-1:2021,20

this approximation may be used for a coefficient of variation
of less than 0.2; the exact formula for the fractile provided in
prEN 1990:202123 leads to lower values of vR.

2.2.2 | ECoV based on Taylor series
expansion

The standard method for a statistical analysis of functions
of random variables is the Taylor Series Expansion (TSE).
The most significant advantages of ECoV based on TSE
are its versatility and adaptability. TSE is generally an
infinite series which must be truncated to a finite number
of terms considering the non-linearity of the

TABLE 2 Parameters assumed for

the derivation of a partial factor for

concrete

Parameter CoV Bias factor

Compr. str. f c vf c ¼ 0:1 f c,m=f c,k ¼ exp 1:645vf c
� �

Conversion fact. η vη ¼ 0:12 μη ¼ 0:95

Conc. area Ac vAc ¼ 0:04 μAc
¼ 1:0

Model unc.a vθ ¼ 0:06 μθ ¼ 1:02

Resistance
characteristics

vf c ,R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:12þ0:122þ0:042

p
¼ 0:16 μf c ,R ¼ 1:18�0:95�1:0¼ 1:12

Abbreviation: CoV, coefficient of variation.
aModel uncertainties are reflected by γRd

determined separately for each numerical example.

TABLE 3 Additional parameters

assumed for the derivation of a partial

factor for concrete

Parameter CoV Bias factor

f ct ,Gf v¼ 0:18 f m=f k ¼ exp 1:645vð Þ
Conversion fact. η vη ¼ 0:12 μη ¼ 0:95

Conc. area Ac vAc ¼ 0:04 μAc
¼ 1:0

Model unc.a vθ ¼ 0:06 μθ ¼ 1:02

Resistance
characteristics

vX ,R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:182þ0:122þ0:042

p
¼ 0:22 μX ,R ¼ 1:34�0:9�1:0¼ 1:28

Abbreviation: CoV, coefficient of variation.
aModel uncertainties are reflected by γRd

determined separately for each numerical example.
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approximated function. In engineering applications, it is
common to use TSE truncated to linear terms, and thus
with μR ≈Rm and CoV:

vR ≈
1
Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

∂r Xð Þ
∂Xi

σXi

� �2
s

, ð8Þ

where the partial derivatives can be numerically com-
puted by various differencing schemes.13 The simplest
scheme is one-sided backward differencing:

∂r Xð Þ
∂Xi

¼Rm�RXiΔ

ΔXi

: ð9Þ

RXiΔ is the result of a numerical simulation using the
mean values of all random variables except the value of
the i-th random variable, which is reduced by ΔXi . Natu-
rally, one can derive various differencing schemes adapted
for different situations. Specifically, for ECoV based on
TSE, the methodology based on linear and quadratic TSE
was recently proposed, providing for three levels of com-
plexity and accuracy.13 The balance between efficiency and
accuracy is achieved by the second level based on linear
TSE and the following advanced differencing scheme:

∂r Xð Þ
∂Xi

¼
3Rm�4RXi

Δ
2
þRXiΔ

ΔXi

, ð10Þ

where the middle term RXi
Δ
2
is obtained by evaluating the

mathematical model with a reduced i-th variable
XiΔ2

¼ μXi
�ΔXi=2 and with the mean values of all the

other variables.
The adaptivity of TSE is enhanced by introducing a

step size parameter c used for defining the difference
ΔXi ¼ μXi

�XiΔ, where XiΔ¼F�1
i Φ �cð Þð Þ. F�1

i is an
inverse cumulative distribution function of the i-th vari-
able and Φ is the cumulative distribution function of the
standardized normal distribution. Schlune et al.12 pro-
posed to consider ¼ αRβð Þ= ffiffiffi

2
p

. Occasionally, it brings

additional computational burden when analyzing differ-
ent limit states with different β, since it is necessary to
calculate N+ 1 (Equation (9)) or 2 N+ 1 (Equation (10))
simulations for each limit state. It might be recom-
mended to use c¼ 1:645 irrespective of the type of the
investigated limit state, which is in accordance with the
ECoV according to fib Model Code 2010.

2.2.3 | Eigen ECoV

The recently proposed Eigen ECoV11 is derived directly
from TSE. However, in contrast to TSE suitable for arbi-
trary correlation structures, Eigen ECoV assumes fully
correlated input random variables similarly to ECoV
according to fib Model Code 2010. Therefore, the number
of simulations is significantly reduced in comparison to
TSE. The reduction of the number of simulations is
achieved by the projection of the differencing scheme
into the fully correlated space, i.e. Eigen ECoV is based
on the idea of projecting the input random vector on 1D
eigen distribution Θ with the variance equal to the first
eigenvalue of input covariance matrix σ2Θ ¼P

σ2Xi
¼ λ1,

and the mean value is simply obtained as:

μΘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
μXi

� �2r
: ð11Þ

In the original proposal, there are three levels of Eigen
ECoV.11 The most promising Eigen ECoV formula for the
estimation of vR offering a balance between the efficiency
and accuracy (derived directly from Equation (10)) is:

vR ≈
3Rm�4RΘΔ

2
þRΘΔ

ΔΘ
�

ffiffiffiffiffi
λ1

p
Rm

, ð12Þ

where the simulation RΘΔ ¼ r XΘΔð Þ with the coordinates
of the input realization XΘΔ ¼ X1Δ,…,XNΔð Þ and
RΘΔ

2
¼ r XΘΔ

2

� �
with the coordinates XΘΔ

2
¼ X1Δ2

,…,XNΔ
2

� �
are depicted together with an illustration of the Eigen
ECoV method in Figure 1.

TABLE 4 Input random variables

and the defined values for safety

formats and ECoV methods

Parameter Mean value Characteristic value

Yield strength
(Table 1)

f y,m ¼ μf y ,R� f y,k f �y,k ¼ f y,m� exp �1:645 vf y ,R
� �

Compressive strength
(Table 2)

f c,m ¼ μf c ,R� f c,k f �c,k ¼ f c,m� exp �1:645 vf c ,R
� �

Tensile strength
(Table 3)

f ct,m ¼ μf ct ,R�0:7� 0:3f c,k
2=3

� �
f �ct,k ¼ f ct,m� exp �1:645 vf ct ,R

� �

Fracture energy
(Table 3)

Gf ,m ¼ μGf ,R�85� f c,k
0:15 f �c,k ¼Gf ,m� exp �1:645 vGf ,R

� �

Abbreviation: ECoV, estimation of coefficient of variation.
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For the sake of clarity, the input vectors consisting of
reduced values of input random variables are
XiΔ ¼F�1

i Φ �cð Þð Þ, and the intermediate coordinates are
as follows:

XiΔ2
¼ μXi

�μXi
�XiΔ

2
¼ μXi

þXiΔ

2
: ð13Þ

ΔΘ represents the distance between μΘ and the desired
quantile F�1

Θ Φ �cð Þð Þ obtained as:

ΔΘ ¼ μΘ�μΘ � exp �c �
ffiffiffiffiffi
λ1

p
μΘ

� �
: ð14Þ

The Eigen ECoV combines the versatility and adaptabil-
ity of TSE through various differencing schemes and the
step size parameter c, together with the efficiency of
ECoV according to fib Model Code 2010. Note that more
theoretical details can be found in the original proposal
of Eigen ECoV including additional formulas based on
other differencing schemes or higher TSE, which is suit-
able for input variables with high CoV.11 Similarly, as for
ECoV according to Model Code 2010, c¼ 1:645 in numer-
ical examples, which leads to XiΔ ¼X�

i,k and μXi
¼Xi,m as

summarized later in Table 4.

2.3 | Stratified sampling for estimation
of coefficient of variation

The standard approach to the statistical analysis of com-
plex functions of random input variables is the MC

simulation consisting of a large number of repetitive
deterministic calculations with randomly generated reali-
zations of the input random vector. In order to improve
the efficiency of the crude MC method, a stratified sam-
pling (Latin Hypercube Sampling, LHS) was developed.6

Although the MC simulations lead to an accurate estima-
tion of the statistical moments, it is typically necessary to
perform tens to hundreds of simulations, which is often
not feasible in combination with NLFEA due to an enor-
mous computational burden. In contrast, LHS is the only
general tool for a complex stochastic analysis without
any simplifying assumptions (taking arbitrary correlation
into account), allowing for estimating statistical charac-
teristics from tens of simulations. This is why it will be
used as a reference in the following numerical examples.
Note that in order to obtain the consistency of the results
and the design values of resistance, we assume lognormal
distributions of input random variables with the mean
values and CoVs given in Tables 1–3.

3 | CASE STUDIES

The models developed in the ATENA Science software
based on non-linear fracture mechanics24 are used to rep-
licate the experimental results from the scientific litera-
ture. The nonlinear behavior of the concrete material is
modeled using the fracture-plastic material model.25,26

Specifically, three typical structural members, each fail-
ing in a different mode, are selected. The presented
advanced ECoV methods and PSF are compared to a ref-
erence LHS solution. Moreover, the specific values of
input material characteristics for each of the methods are
summarized in tables in order to simplify their practical
application or replication of the obtained results.

3.1 | Methodology for numerical
comparison of ECoV methods

The task of a probabilistic analysis is simplified to esti-
mating the first two statistical moments, and all the
described methods were employed for the comparison of
the obtained results in terms of the design resistances
determined by Equation (1) and considering αR ¼ 0:8 and
β¼ 3:8. Model uncertainties are included by an addi-
tional reduction factor γRd

obtained during the extensive
benchmark investigation specifically for the employed
ATENA Science software and for different failure
modes27 (assuming model uncertainty as a non-dominant
resistance parameter). Note that it is recommended to
perform Bayesian updating of the prior distribution of
the resistance model uncertainty given in the draft Model

FIGURE 1 Illustration of Eigen ECoV in standardized normal

space with coordinates of realizations of input random vector.11

ECoV, estimation of coefficient of variation
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Code 2020 as recently described by Engen et al.28; the
application of this updating is beyond the scope of this
paper.

For each example, three reference solutions provided
by LHS were obtained reflecting the assumed correlation
structure among basic variables. The first case corre-
sponds to the unit covariance matrix, i.e. the case with
independent basic variables, which is rather unrealistic
for concrete structures (though often assumed). The sec-
ond limit case represents the full correlation among all
input random variables. The full correlation does not rep-
resent real situations in physical systems, but it allows for
considerable simplifications11 and it could be considered
as another reference solution for the ECoV methods.
Both limit cases define the variance interval within
which the design values can range depending on the
actual correlation structure. The last case solved by LHS
represents a realistic correlation matrix inferred from
experiments.2 However, this information is commonly
unavailable, and thus not reflected in industrial applica-
tions. The realistic correlation matrix according to Slowik
et al.2 prescribes high positive Spearman correlation coef-
ficients only among concrete parameters as can be seen
in Table 5.

To sum up, the three cases solved by LHS represent
the reference solutions dependent on the correlation
among input random variables, i.e. addressing none, full,
and realistic correlation. It was recently shown that the
simplified ECoV methods implicitly assume full correla-
tion.11 In contrast to this method, the only method
designed for uncorrelated (and possibly arbitrary corre-
lated) variables is TSE, and thus its estimation should be
close to the second boundary of the defined correlation
interval. Note that TSE with advanced differencing deter-
mined almost identical design values as TSE with simple
differencing in the following examples, and thus the
results of the former are not presented.

In the following figures presenting the obtained
results, the reader can find load-deflection diagrams of
reference solutions consisting of 30 simulations generated
by LHS. In order to clearly show the influence of correla-
tion, three selected realizations are highlighted: the first
simulation, 15th (median), and the last realization of the
input random vector, where realizations are in an
increasing order of the compressive strength of concrete.

Besides the load-deflection diagrams and the correspond-
ing statistical values, one can see a comparison of the
design values estimated by simplified methods and the
defined correlation interval of design values (reference
solution). Note that if the estimated design value is out of
the interval, it is highlighted by green or red color indi-
cating whether it is conservative or non-conservative,
respectively.

For the sake of clarity, Table 4 summarizes the gen-
eral formulas for the determination of the mean values
and characteristic values f �k of all the basic random vari-
ables used for the ECoV methods in the following exam-
ples. Note that the characteristic values with the
superscript * are obtained as 5% quantiles of lognormal
distributions based on the conventional models adopted
for PSF (Section 2.1). Note that in all computations pre-
sented here, the nominal values of geometrical variables
are applied in NLFEA models. The influence of their bias
and CoV, μgeo and vgeo, is already reflected in the charac-
teristic values f �k.

3.2 | Experimental program by Bosco
and Debenardi

The first two examples are a replication of the tests done
by Bosco and Debenardi.29 The investigated structural
member is a simple beam failing in bending. The geome-
try and reinforcement arrangement of the analyzed
beams are described in Figure 2. Two tests with identical
beam geometry were selected for this comparison: the T8
test with a low reinforcement ratio, which exhibits a
bending failure due to reinforcement yielding, and the
T11 test with the reinforcement ratio exhibiting a bend-
ing failure due to concrete crushing (see Figure 3). The
reinforcement is modeled using the embedded approach
assuming a perfect connection to the surrounding

TABLE 5 Correlation matrix considered in the case studies2

f t f c Gf

f t 1 0.7 0.8

f c 0.7 1 0.6

Gf 0.8 0.6 1

FIGURE 2 Geometry of the beam specimens by Bosco and

Debenardi29
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concrete. It should be noted that this assumption is not
limiting since the bond failure can be captured quite well
by the cracking of the finite elements next to the ele-
ments with the embedded reinforcement. The typical
finite element mesh, shown in Figure 4, leads to an opti-
mal number of finite elements (affecting computational
costs) assuring the desired accuracy in the area of interest
where the cracks develop.

The characteristic values considered to determine the
mean values of strengths are f y,k ¼ 500MPa and
f c,k ¼ 25MPa. Note that the effective depth of the T8 and
T11 beams is d = 0.565m, and thus vd ¼ 0:05 200=dð Þ2=3
¼ 0:025 and μd ¼ 1�0:05 200=dð Þ2=3 ¼ 0:975. The impor-
tant quantiles for the application of the presented safety
formats and semi-probabilistic methods for the first two
numerical examples are summarized in Table 6, and the
results of NLFEA can be found in Table 7.

3.2.1 | The T8-A1 beam failing in bending

The obtained design values are further divided by
γRd

¼ 1:01 reflecting the model uncertainties in bending.27

In this simple example, all the utilized semi-probabilistic
methods lead to an identical design value of resistance,
Rd ¼ 40 kN. The experimental result from the original
publication was 50 kN.

As can be seen from the reference solutions in Figure 5
(top), there is a significant influence of correlation among
input random variables on the variance of the quantity of
interest (QoI)—the ultimate resistance of the structural
member represented by the peak of the Load-Deflection
diagram (LD). The highest variance is associated with the
case of full correlation among all input random variables.
One can see that the QoI of the highlighted LD realiza-
tions clearly corresponds to their rank since the correla-
tion assures that all material characteristics increase
proportionally. The second extreme case is the assumption
of uncorrelated input random variables, which leads to the
lowest variance of QoI, and the rank of realizations is not
related to their ultimate resistance. The realistic correla-
tion matrix leads to the variance close to the uncorrelated
case due to a low influence of the concrete material char-
acteristics on failure of this structural member, and thus it
can be expected that ECoV methods and PSF will be con-
servative in comparison to this realistic design resistance.

FIGURE 3 Finite element

model and failure modes of

theT8 beam (top) with

reinforcement failure, and T11

(bottom) with concrete crushing

failure

FIGURE 4 Typical mesh for the

beam specimens with the mesh size of

30 mm in the middle
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The comparison of design values determined by
ECoV methods and PSF can be seen in Figure 5 (bot-
tom). The non-linearity of this example (steel failure in
bending) is insignificant, and thus all the employed
methods lead to similar design values, and the absolute
differences are less than 10%. The highest design resis-
tance is determined by TSE, which is almost identical
to the reference uncorrelated solution. With respect to
the solution assuming a realistic correlation among

input random variables (the vertical gray line in
Figure 5), TSE is the most accurate, but also the most
expensive method. The ECoV methods estimated almost
identical design values inside of the correlation interval.
Finally, the most conservative method is PSF, though
the results of all the used methods are in close agree-
ment. This example shows the typical results of
semi-probabilistic methods in simple, almost linear
mathematical models.

TABLE 6 Input random variables

and the defined values for safety

formats and ECoV methods

Random variable Xi,d Xi,m XiΔ ¼Xik XiΔ2

Yield strength, f y [MPa] 449 525 482 504

Compressive strength, f c [MPa] 17.2 28 21.5 24.7

Fracture energy, Gf [MN/m] 9.02 e-5 1.76 e-4 1.23 e-4 1.49 e-4

Tensile strength, f ct [MPa] 1.2 2.3 1.6 1.9

Abbreviation: ECoV, estimation of coefficient of variation.

TABLE 7 Results of NLFEA utilized in the presented safety formats and ECoV methods

PSF

ECoV MC 2010 Eigen ECoV

Rm Rk Rm RΘΔ
2

RΘΔ

T8 beam [kN] 40.0 50.1 45.4 50.1 47.8 45.4

T11 beam [kN] 308 376 340 376 358 340

Abbreviations: ECoV, estimation of coefficient of variation; NLFEA, non-linear finite element analysis.

FIGURE 5 T8 beam—Three reference solutions obtained by LHS assuming different correlations (top) and comparison of design

resistances (bottom). LHS, Latin Hypercube Sampling
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3.2.2 | The T11-A1 beam failing in bending

The T11-A1 beam exhibits combined compressive crush-
ing and shear failure by the yielding of stirrups. There-
fore, the obtained design values are further reduced by
γRd

¼ 1:13 reflecting the model uncertainties of shear fail-
ure.27 Design resistances are depicted in Figure 6 together
with the reference solution (the distribution and design
quantile obtained by LHS). The experimental result from
the original publication was 380 kN.

In this example, the yield strength of the reinforce-
ment has the dominant influence on the ultimate
structural resistance, since the realistic correlation
matrix defining a strong correlation among concrete
material characteristics leads to the identical variance
as in an uncorrelated case. The comparison of the
design values determined by ECoV methods and PSF
can be seen in Figure 6 (bottom). Note that all the
methods are in good agreement with the LHS and
their results are according to expectations: ECoV
methods lead to design values near the fully correlated
boundary and TSE1 leads to the uncorrelated bound-
ary of the correlation interval. The most conservative
design value is obtained by PSF from a single simula-
tion, though it is very close to the defined reference
interval, and thus it may be seen as a very efficient
method.

3.3 | Experimental program by
Anderson and Ramirez

The third example is based on the experimental program
by Anderson and Ramirez.30 In this experiment, a beam
with the cross-section of 406 � 406 mm was subjected to
a four-point bending test with a shear span a = 0.91 m.
The beam was designed to fail in shear, i.e. to comply
with the condition for shear stress Vtest/(bwd) > 6. The
beam geometry and reinforcement are shown in Figure 7
and the finite element model in Figure 8. The shear rein-
forcement is composed of double stirrups no. 3 with ;
9.525 mm. The top longitudinal reinforcement consists of
5 bars no. 6 (; 19.05 mm) and the bottom reinforcement
of 5 bars no. 9 (; 28.65 mm).

The characteristic values used for the determination
of the mean values of material parameters are
f y,k ¼ 422MPa and f c,k ¼ 25MPa. The effective depth of
this beam is d = 0.344m, and thus
vd ¼ 0:05 200=dð Þ2=3 ¼ 0:034 and
μd ¼ 1�0:05 200=dð Þ2=3 ¼ 0:97. The important quantiles
for the application of the presented semi-probabilistic
methods are summarized in Table 8.

From the obtained results of NLFEA, the beam is failing
in shear (see Figure 9), and thus the obtained design values
are further reduced by γRd

¼ 1:13 reflecting the model
uncertainties of the shear failure.27 Numerical results of

FIGURE 6 T11 beam—Three reference solutions obtained by LHS assuming different correlations (top) and comparison of design

values (bottom). LHS, Latin Hypercube Sampling
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NLFEA for the ECoV methods and PSF are summarized
in Table 9. The experimental result was 460 kN.

The results of the semi-probabilistic methods are pre-
sented in Figure 10 (bottom). From the reference solutions
by LHS, one can see that there is a moderate influence of
correlation among concrete material characteristics since
the case with the realistic correlation matrix leads to a
slightly higher variance in comparison to the uncorrelated
case. The design values determined by the simplified
ECoV methods are in good agreement with the reference
solution. The estimate of the standard ECoV is close to the
uncorrelated boundary while it should be closer to the
fully correlated reference solution; the difference, how-
ever, is insignificant for practical applications. This can be
attributed to a significant non-linearity in this example.
Note that in contrast to the standard ECoV, an almost
identical estimate by TSE1 is in agreement with the theo-
retical expectations and the high accuracy of this method
is demonstrated by all the case studies. The additional sim-
ulation in Eigen ECoV significantly improves the estima-
tion of standard ECoV, and its result is close to its
reference solution (fully correlated). This is in agreement
with the previous theoretical results,11 since it should
achieve a higher accuracy in comparison to the standard
ECoV in the case of moderate non-linearity of the investi-
gated mathematical models. Note that PSF leads to a very
accurate estimation of design resistance, though it is not
typical in the case of shear failure.2–4

4 | DISCUSSION

4.1 | Effect of correlation

Statistical correlation among material characteristics
might play a crucial role, since it has a significant influ-
ence on the variance of QoI, particularly for concrete
structures. Nonetheless, the exact information about the
correlation matrix is usually unavailable and the recom-
mendations in scientific literature widely differ depend-
ing on the concrete mixture, strength class, etc.2,31,32 For
practical analyses of concrete structures, two extremes
may be important: fully correlated random variables and
uncorrelated random variables, which together define the

variance interval caused by insufficient information
about the correlation. The fully correlated random input
variables usually lead to a larger variance of QoI and con-
servative estimates of design values. The lower boundary
of the variance corresponding to the uncorrelated case
needs to be estimated by advanced probabilistic methods
such as LHS, or approximated by TSE. In both cases, the
number of calculations is significantly higher in compari-
son to the ECoV methods.

Based on the obtained results for the three structural
members failing in different modes, it can be concluded
that all the presented ECoV methods are well bounded
by the correlation intervals. One should keep in mind
that, Eigen ECoV and ECoV according to fib Model Code
2010 are based on the fully correlated case, and TSE cor-
respond to the uncorrelated case. The examples indicate
that Eigen ECoV provides better estimates for the fully
correlated case and one additional simulation may signif-
icantly improve the estimate by ECoV (according to fib
Model Code 2010). However, if only a single input ran-
dom variable fully describes the variance of QoI, the stan-
dard ECoV has a superior efficiency as shown by the
second example. In contrast, Eigen ECoV might be more
suitable for shear failures with a higher non-linearity.
The analysis of the obtained results and of the underlying
assumptions reveals that the accuracy of the ECoV
methods depends on a specific failure mode and assumed
correlation matrix. Moreover, the ECoV methods may
provide crude estimates in the case of multiple failure
modes as briefly discussed in the following subsection.

4.2 | Limitation of simplified ECoV
methods for multiple failure modes

Simplified safety formats are commonly devised to yield
adequate estimates of design resistances in most practi-
cally relevant applications, while, inevitably in some
cases, overconservative or unsafe approximations might
be obtained. Though a detailed study of such errors is
beyond the scope of this contribution, a fundamental
example is analyzed here to provide the first insights. It is
often argued that simplified safety formats may fail in the
cases with several local extrema as typically caused by
multiple failure modes. To verify this, two columns
exposed to compression without eccentricity, acting as a
series system, are analyzed (Figure 11).

The example is focused on a simple series system
whose resistance R is obtained as a minimum of resis-
tances of two identical RC columns:

R=Ac ¼ min f c1þρf y1, f c2þρf y2
� �

ð15Þ

FIGURE 7 Geometry of the W1 beam of Anderson and

Ramirez.30 Note that the dimensions are in [m], but the original

experiment was in imperial units
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where Ac denotes a concrete section area; and ρ is the
reinforcement ratio common to both columns. The rein-
forcement ratio is a study parameter, arbitrarily varied
disregarding practical constraints.

Mutually statistically independent strengths fci and fyi
are described by lognormal distributions with the follow-
ing characteristics:

• fcm = 29.1 MPa, vfc = 15%, and fc0.05 = fck = 22.6 MPa
• fym = 455 MPa, vfy = 5.8%, and fy0.05 = fyk = 414 MPa

These assumptions are based on a more detailed
study focused on the performance of safety formats for
series systems.33 Uncertainty in geometrical variables is

ignored here to keep focus on the key aspects affecting
the performance of the simplified safety formats.

All the obtained design values are normalized to
those obtained by the probabilistic approach using the
numerical integration (Rd,prob). Besides Rd,PSF, all design
values are obtained as a fractile of the system resistance
corresponding to the probability of 1.12‰, resulting from
αR ¼ 0:8 and β¼ 3:8.Model uncertainty is not considered
in this section as it is typically treated separately, beyond
the application of a particular safety format. Note that
the justification of γC = 1.5 and γS = 1.15 according to
Eurocode 2 Commentary34 indicates that the model
uncertainty factors related to the recommended values in
EN 1992–2:20051 are very close to unity, and thus
γC = 1.5 and γS = 1.15 are adopted without any adjust-
ment in the following analysis, where model uncertainty
is ignored.

Figure 12 displays a variability of Rd,safety format/Rd,-

probab with a reinforcement ratio. For low ρ-values, the
resistance of a column is governed by the concrete contri-
bution, while the reinforcement contribution becomes
important with the increasing ρ, and the distribution of
column resistance attains a bimodal character. Figure 12

FIGURE 8 Finite element mesh for

the nonlinear analysis of the W1 beam

of Anderson and Ramirez

TABLE 8 Input random variables

and the defined values for safety

formats and ECoV methods

Random variable Xi,d Xi,m XiΔ ¼Xik XiΔ2

Yield strength, f y [MPa] 369 439 399 419

Compressive strength, f c [MPa] 17.1 28 21.5 24.7

Fracture energy, Gf [MN/m] 9.02 e-5 1.76 e-4 1.23 e-4 1.49 e-4

Tensile strength, f ct [MPa] 1.2 2.3 1.6 1.9

Abbreviation: ECoV, estimation of coefficient of variation.

FIGURE 9 Results from the nonlinear analysis of theW1 beam failing in shear

TABLE 9 Results of NLFEA utilized in the presented safety

formats and ECoV methods

PSF

ECOV MC 2010 Eigen ECoV

Rm Rk Rm RΘΔ
2

RΘΔ

W1 beam 307 387 351 387 367 351

Abbreviations: ECoV, estimation of coefficient of variation; NLFEA, non-
linear finite element analysis.
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also shows that ECoV based on TSE leads to nearly the
same design resistance as the probabilistic approach. All
the other simplified formats provide reasonably conserva-
tive estimates, with errors mostly between 2% and 6%.
Eigen ECoV (EE in the figure) performs slightly better
than PSF and ECoV, but the differences are negligible in
this case.

All the ECoV methods lead to conservative estimates
of vR as can be seen in Figure 13. As expected, the best
estimates are obtained by TSE based on the largest num-
ber of limit state function evaluations, then following
with Eigen ECoV and the standard ECoV.

What is interesting to observe is that TSE yields
Rd,TSE ≈ Rd,probab for any ρ > ρm while it systematically

overestimates vR (which should have led to Rd,TSE < Rd,

probab). A detailed analysis indicates that this safe-sided
error is nearly exactly outweighed by the failure in identi-
fying the type of distribution of system resistance, ignor-
ing the bimodal character of the distribution by TSE; this
is common to all ECoV methods. The skewness of the
bimodal distribution (reflected by the probabilistic

FIGURE 10 W1 beam—Three reference solutions obtained by LHS assuming different correlations (top) and comparison of design

resistances (bottom). LHS, Latin Hypercube Sampling

FIGURE 11 Illustration of the analyzed series system and

probability density functions (PDFs) of component and system

resistances

FIGURE 12 Variability of Rd,safety format/Rd,probab with ρ
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approach) tends to be lower than that of a lognormal dis-
tribution, and the ECoV methods thus make unsafe
errors here.

The presented limited analysis of the series system
with two failure modes indicates a number of directions
for further research:

• Most concrete structural systems are deemed to have
properties closer to parallel systems as they are often
indeterminate, providing for multiple load paths. The
preliminary results for parallel systems, already partly
presented,35 indicate that the ECoV methods perform in
a similar way as those observed here; the partial factor
method tends to be conservative for parallel systems.

• Positive correlations between failure modes are
expected to reduce the ECoV error for both types of
systems. In contrast, the errors may amplify with an
increasing number of failure modes of a similar impor-
tance. These counteracting effects should be investi-
gated further.

5 | CONCLUSIONS

The comparison of the selected advanced semi-
probabilistic methods is presented in three numerical
examples failing in different modes. The case studies
demonstrate how uncertainties in geometry can be com-
bined with those in material properties and considered in
NLFEA applications. The obtained results show that all
the employed methods lead to design values close to the
reference solution. The numerical differences become
more significant with an increasing non-linearity of the
failure mode. The theoretical behavior of the recently

proposed modification of Taylor Series Expansion (TSE)
and its adaptation Eigen ECoV is successfully verified by
realistic case studies. The correlation among input ran-
dom variables might play a crucial role in determining
the design values, and thus it might be beneficial to verify
two limit situations: a fully correlated case by ECoV
methods, and an uncorrelated case by TSE. For practical
applications, recommendations should be provided as to
when the examination of the two limiting situations is
needed and how to proceed when a large difference
between the design values is obtained.
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