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1  MATERIAL AND FRACTURE TESTS 

1.1  Determination of tensile strength from a three point 
bending test (TPBB) 

 
Keywords:  plain concrete, softening, fracture localization, prescribed-force/prescribed-

displacement boundary condition, Newton-Raphson method, rotating/fixed 
crack model 

 
Input files:  TPBB\TPBBF.cc2 (fixed crack) 

TPBB\TPBBR.cc2 (rotated crack) 

1.1.1  Introduction 

 Tensile strength of concrete may be indirectly determined from the result of a 
three point bending test on an unreinforced beam. The CEB-FIP MC90 model code [1] 
gives a formula, which relates the tensile strength to the measured flexural strength 
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Here 
fct,fl flexural strength (MPa) 
fctm tensile strength (MPa) 
hb  beam depth (mm) 
ho  100 (mm) 
fl  coefficient, which depends on brittleness of concrete (value 

recommended by CEB-FIP MC90 is 1.5) 
 
 In this example, we verify validity of the above formula by simulating a three 
point bending experiment on a beam with known properties. The computed flexural 
strength is then compared to that obtained with Eq. (1.1). 

1.1.2  Comments on FE model preparation 

 The analyzed beam geometry and support and loading conditions are shown in 
Figure 1-1. The input data for ATENA program are prepared through the ATENA 2-D 
graphical user interface (GUI) preprocessing window. Following are notes for each data 
block. 

1.1.2.1 Materials 

 Concrete is modeled employing the ‘Sbeta Material’ model. Relevant material 
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properties used in the analysis are given in Table 1.1-1. The cubic compressive strength 
of 40 MPa is assumed, and the remaining parameters are left at their default values 
suggested by the ATENA program. The analysis is performed with both rotating and 
fixed crack model. 

1.1.2.2 Topology 

 When specifying the problem topology, we place joints not only at the beam 
corners but also at the locations of supports and point loads to facilitate prescription of 
boundary conditions. The problem is modeled by a single macroelement, which is 
discretized by CCQ10SBeta type elements. To ensure good accuracy of the analysis, 
there should be at least 10 elements along the beam height. To this end, we specify 
element size 0.02 m. 

1.1.2.3 Loads and supports and Solution parameters 

 Since the beam is unreinforced, we may expect that failure occurs at relatively 
low levels of load and reactions in supports. Thus, we may directly specify concentrated 
supports and loads, without a danger that these would cause local compressive crushing. 
 Our objective is to trace the load-displacement curve up to the post-failure 
softening regime. To this end, we may prescribe loading in terms of forces and use the 
arc-length method, which automatically changes the sign of load increment once a peak 
is attained. Alternatively, we may control displacement. Since displacement will keep 
on increasing even after the beam fails, we can employ either the Newton-Raphson 
method or the arc-length method. Due to its better stability, we opt for the Newton-
Raphson solution method. (Note that, for large or brittle beams, a snap-back behavior 
may occur, in which case both displacement and force increments at the loading point 
change their sign upon failure. In such a situation, the arc-length solution is the only 
applicable method.) 
 To speed up convergence of the solution, we employ the full Newton-Raphson 
method, with tangent stiffness updated in each iteration. To automatically adjust the 
speed of analysis according to the nonlinearity of the response, we utilize the line search 
method. For this purpose we have to create a new set of ‘Solution Parameters’ (named 
N-R w/ LS), in which we set the appropriate options and parameters as summarized in 
Table 1.1-2. 

1.1.2.4 Analysis steps 

 The load at which first cracking takes place can be estimated from the analytical 
elastic solution as 11.2 kN. Since the beam’s response up to this load is certainly elastic 
(and stable), we apply the first loading increment by prescribing force of 10 kN (load 
case LC2). In the following steps, we prescribe displacement increments at the loading 
point (load case LC3). The increment size is 0.01 mm. To accurately estimate the peak 
load (flexural strength), the increment size is further refined to 0.0025 mm around the 
peak. 

1.1.2.5 Monitoring points 

 To facilitate the retrieval of load-displacement curves, we set up three 
monitoring points in the vicinity of the loading point. The first point monitors 
deflection, the second the applied force (associated with LC2) and the third the reaction 
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force at the load point (associated with LC3). 

1.1.3  Results 

 The computed load-deflection curves obtained with the rotating and fixed crack 
model are shown in Figure 1-1. These data are retrieved by printing out the values at 
monitoring points. Note that the applied force monitored by point no. 2 changes only 
during the first step, when the loading is applied directly as the concentrated force. In 
the remaining steps, the loading is applied by prescribing displacement at the load-
point, thus the additional loading force is obtained as the reaction in this point. The total 
applied load is then obtained as the sum of the force applied in step 1 and the reaction 
from the remaining steps. 
 Figure 1-2 shows, that the overall responses computed with the rotating and 
fixed crack models show almost no difference up to the tail of the post-peak part of the 
load-displacement curve. Crack patterns also slightly differ, especially in the final stage. 
 The flexural strength estimated by Eq. (1.1) with fl=1.5 and fctm=2.807 MPa, is 
3.959 MPa. The computed peak load is 15.180 kN with the rotating crack model and 
14.951 kN with the fixed crack model, which corresponds to flexural strengths of 3.795 
MPa and 3.738 MPa, respectively. The computed results differ from the estimated 
strengths by 4.1% and 5.6%, respectively. 
 

fct,fl  from Eq. (1.1)  fct,fl  computed (rotating c.) fct,fl  computed (fixed c.) 
3.959 (MPa) 3.795 (MPa) 3.738 (MPa) 

 
 Closer inspection of the results by displaying cracks at individual steps of 
analysis in ATENA post-processing GUI also reveals that initially numerous vertical 
cracks form at the bottom of the beam. However, later cracking localizes and the beam 
fails by a single crack. Such a behavior is consistent with that observed in experiments. 

1.1.4  References 

[1] FIB, Structural Concrete, Textbook on Behaviour, Design and Performance. 
Updated Knowledge of the CEB/FIB Model Code 1990, Vol. 1, FIB, 1999 
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Table 1.1-1 Material properties 
Material type  SBETA material  
    
Elastic modulus Ec 34.03 GPa 
Poisson’s ratio  0.200 - 
Compressive strength fc 34.000 MPa 
Tensile strength ft 2.807 MPa 
Type of tension softening  Exponential  
Fracture energy Gf 70.18 N/m 
Crack model  Fixed/Rotating  

 

Table 1.1-2 Solution parameters 

Solution method Newton-Raphson  
Stiffness/update Tangent/each iteration  
Number of iterations 50  
Error tolerance  0.010  
Line search on, with iterations  

 

Table 1.1-3 Finite element mesh 
Finite element type Quadrilateral, CCQ10SBeta  
Element shape smoothing on  
Optimization Sloan  
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Figure 1-1: Geometry and boundary conditions of three-point bending beam 
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Figure 1-2: Computed load-displacement curve for a beam under three-point bending.
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1.2  Simulation of fracture energy measurement (GFM) 
 
Keywords:  plain concrete, softening, prescribed-displacement boundary condition, 

Newton-Raphson method, mesh refinement 
 
Input files:  GFM\GFM1.cc2  (shorter notch) 

GFM\GFM2.cc2  (longer notch) 
 

1.2.1  Introduction 

 Fracture energy of a quasi-brittle material can be measured by conducting two 
fracture tests on double cantilever beam (DCB) specimens, with identical dimensions 
but slightly different initial notch lengths a1 and a2. Fracture energy of the tested 
material is then obtained as the area enclosed by the two specimens' load-displacement 
curves, divided by the initial notch area difference a.b. 
 

  
ba

WW
G f .

21




  (1.2) 

 
 In this example, we reproduce this measurement method by FE analyses. The 
measured fracture energy is compared with the fracture energy, which is input as a 
material parameter. The tested specimen dimensions and material properties are taken 
from Okada and Horii [1]. 

1.2.2  Comments on FE model preparation 

1.2.2.1 Topology 

 The analyzed beam geometry and support and loading conditions are shown in 
Figure 1-3. The specimen thickness b0 is 120 mm; however, to ensure a straight crack 
propagation, the specimen contains on both sides ten-millimeter-deep grooves along the 
symmetry plane. Consequently, the area weakened by the guides is represented by a 
separate macroelement with thickness b=100 mm. In order to achieve sufficient 
accuracy of the analysis, finite element mesh is refined around the expected crack path, 
so as to discretize the ligament by at least 20 elements. 
 Two specimens with different initial notch lengths a1=100 mm and a2=105 mm 
are analyzed. Thus the difference, a, is equal to 5 mm.  

1.2.2.2 Materials 

 Concrete is modeled by the ‘Sbeta Material’ model. Relevant material 
properties used in the analysis are taken from Okada and Horii [1] and are listed in 
Table 1.2-1. The rotating crack model is used. 
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1.2.2.3 Loads and supports and Solution parameters 

 Since we need to trace the load-displacement curve up to the post-failure 
softening regime, we prescribe loading by controlling the displacements at the loading 
points and employ the Newton-Raphson solution method. The full Newton-Raphson 
method, with the tangent stiffness updated in each iteration, is used together with the 
line search technique. Relevant options and parameters as summarized in Table 1.2-2. 

1.2.2.4 Analysis steps 

 Due to the presence of a notch, cracking starts at a very low load. Thus, a fine 
stepping has to be used from the very beginning of the analysis. The load-point 
displacement increment is kept constant, 0.003 mm. 

1.2.3  Results 

 Figure 1-4 shows the load-displacement curves for the specimens with different 
initial notch lengths. The curves are numerically integrated to obtain the energies: 
 W1 = 0.935 Nm (shorter notch a1) 
 W2 = 0.873 Nm (longer notch a2) 
With a = 5 mm and b = 100 m, Eq. (1.2) yields the value of Gf = 124.591 N/m. This 
value is only slightly higher than the inputted fracture energy (122 N/m), which proves 
validity of the measurement method. The slight overestimation results from the fact that 
cracking takes place not only on the main crack plane (as it is assumed in Eq. (1.2)), but 
some fine cracks also occur in directions almost perpendicular to the main crack.  
 

Gf computed (N/m) Gf input (N/m) 
124.591 122 

 
 

1.2.4  References 

[1] Okada T. and Horii, H., Effect of Specimen Size and Loading Rate on the 
Tension-Softening Curve Obtained by Back Analysis Method, in Fracture 
Mechanics of Concrete Structures – Proc. of FRAMCOS-3 (Reinhardt and 
Naaman eds.), AEDIFICATIO Publishers, 1998, pp. 89-100  

 



 8 

 

Table 1.2-1 Material properties 

Material type  SBETA material  
    
Elastic modulus Ec 27.6 GPa 
Poisson’s ratio  0.21 - 
Compressive strength fc 26.4 MPa 
Tensile strength ft 2.06 MPa 
Type of tension softening  Exponential  
Fracture energy Gf 122.0 N/m 
Crack model  Rotating  

 

Table 1.2-2 Solution parameters 

Solution method Newton-Raphson  
Stiffness/update Tangent/each iteration  
Number of iterations 50  
Error tolerance  0.010  
Line search on, with iterations  

 

Table 1.2-3 Finite element mesh 
Finite element type Quadrilateral, CCIsoQuad  
Element shape smoothing on  
Optimization Sloan  
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Figure 1-3: Configuration and FE mesh of the double cantilever beam specimen 
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Figure 1-4: Load-displacement curves of DCB specimens 
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1.3  Uniaxial compression test (UAC) 
 
Keywords:  plain concrete, compressive softening, fracture localization, prescribed-

displacement boundary condition, Newton-Raphson method 
 
Input files:  UAC\UAC050.cc2  (50 mm specimen) 

UAC\ UAC100.cc2  (100 mm specimen) 
UAC\ UAC200.cc2  (200 mm specimen) 
 

1.3.1  Introduction 

 This example shows how ATENA treats compressive softening and the 
localization of fracture, which is associated with it. 
 Van Mier [1] conducted uniaxial compression tests on concrete prisms with 
identical cross-sections but various heights 50, 100 and 200 mm. The experiments 
indicated that all the specimens failed by formation of inclined planes of localized 
fracture. While in the 200 mm high prism, there was a large continuous failure plane, 
the 100 and 50 mm prisms shoved several intersecting planes. However, the 
experiments revealed that the amount of energy required for fracturing a specimen was 
independent of its height (in a similar way as under uniaxial tension). Furthermore, the 
experiments showed that, if displacement corresponding to elastic deformation was 
subtracted from the post-peak part of each load-displacement curve, the resulting curves 
were almost identical for all three specimens. 
 ATENA allows treating these phenomena by directly inputing the compression 
softening stress-displacement relationship as a material property, in a similar manner as 
it is done for tension. Use of the concept is demonstrated by reproducing the van Mier’s 
experiments in this example. 

1.3.2  Comments on FE model preparation 

1.3.2.1 Topology 

 We analyze three plain concrete specimens with heights 50, 100 and 200 mm 
and cross-section of 100x100 mm. Plane stress is assumed. An uniform mesh is used. 
The element size is 25 mm and is the same for all the specimens. To facilitate fracture 
localization, a band of material, which is slightly more brittle under compression, is 
inserted in each specimen (Figure 1-5). The height of this band may be arbitrary but 
should correspond to the height of a single element. 

1.3.2.2 Materials 

 Concrete is modeled by the ‘Nonlinear Cementitious’ material model. Relevant 
material properties used in the analysis are listed in Table 1.3-1. 

1.3.2.3 Loads and supports and Run 

 It is assumed that friction between loading plates and a concrete specimen is 
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perfectly removed. The bottom line of a specimen is fixed in vertical direction while the 
top line is loaded by prescribed uniform displacement. In addition, the bottom left 
corner is fixed horizontally. Since we control displacement, we may employ the 
Newton-Raphson solution method to trace the response up to the post-peak regime. 
Relevant options and parameters are summarized in Table 1.3-2. 

1.3.3  Results 

 In all three specimens we can observe almost uniform deformation taking place 
up to the peak load. After the peak, the axial deformation localizes into the horizontal 
band of more brittle elements. The deformation of this band further induces lateral 
tension to the adjacent elements, causing their splitting in the direction parallel with the 
applied load. The failure pattern is documented in Figure 1-9 for the 200 mm specimen. 
This cracking behavior differs from that reported by van Mier [1], who observed 
formation of inclined failure planes. Nevertheless, graphs in Figure 1-6, Figure 1-7, and 
Figure 1-8 show, that the present approach successfully captures the overall stress-strain 
behavior for specimens of various heights. 

1.3.4  References 

[1] Van Mier, J.G.M., Strain-softening of concrete under multiaxial loading 
conditions, Ph.D. Dissertation, Technical University of Eindhoven, 1984 
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Table 1.3-1 Material properties 

Material type  Nonlinear 
cementitious 

 

    
Elastic modulus Ec 38 GPa 
Poisson’s ratio  0.2 - 
Compressive strength fc 43.9 MPa 
Tensile strength ft 2.987 MPa 
Fracture energy Gf 74.67 N/m 
Plastic strain at strength fc cp 9.4x10-4  
Onset of non-lin. behavior in compression fc0 30 MPa 
Critical compressive disp. (loc. band) wd 5x10-4 m 
Critical compressive disp. (rest of spec.) wd 6x10-4 m 

 

Table 1.3-2 Solution parameters 

Solution method Newton-Raphson  
Stiffness/update Tangent/each iteration  
Number of iterations 50  
Error tolerance  0.001  
Line search on, with iterations  

 

Table 1.3-3 Finite element mesh 
Finite element type Quadrilateral, CCIsoQuad  
Element shape smoothing on  
Geometrical nonlinearity on  
Optimization Sloan  
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Figure 1-5: Finite element model of uniaxial compression specimen (200 mm high) 
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Figure 1-6: Overall stress-strain curves of 50 mm specimen 
 

 
Figure 1-7: Overall stress-strain curves of 100 mm specimen 
 

 
Figure 1-8: Overall stress-strain curves of 200 mm specimen 
 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

S
tre

ss
/P

ea
k 

st
re

ss
 (-

)

Strain (x0.001)

Analysis
Experiment

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

S
tre

ss
/P

ea
k 

st
re

ss
 (-

)

Strain (x0.001)

Analysis
Experiment

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
tre

ss
/P

ea
k 

st
re

ss
 (-

)

Strain (x0.001)

Analysis
Experiment



 15

 
 

 
Figure 1-9: Computed crack pattern and deformed shape of the 200 mm specimen after 

the peak 
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1.4  Interface failure test (NGAP) 
 
Keywords: concrete-concrete interface, contact 
 
Input files:  NGAP\NGAP.cc2 

 

1.4.1  Introduction 

 This is a numerical experiment which demonstrates how ATENA handles 
phenomena associated with interfacial failure and slip. The analyzed specimen consists 
of two concrete slabs bonded by a weak interface (Figure 1-10). The bottom slab is 
fixed in both horizontal and vertical directions along its bottom face. A steel plate is 
attached to the top slab; a perfect bond is assumed between the plate and concrete. The 
specimen is first vertically compressed through the steel plate. Consequently, while 
keeping the loading plate’s vertical displacement fixed, horizontal load is applied at its 
left edge. The load causes shearing of the specimen, which results in failure and slip 
along the concrete-concrete interface and cracking of the concrete slabs. 

1.4.2  Comments on FE model preparation 

1.4.2.1 Materials 

 Concrete of both slabs is modeled by the ‘SBETA’ material model, with 
parameters given in Table 1.4-1. Material of the steel plate is represented by the bilinear 
von Mises model (Table 1.4-2). In addition, we have to specify the concrete-concrete 
interface properties (2-d interface material model) – see Table 1.4-3. 

1.4.2.2 Topology 

 The model consists of three macroelements representing the two concrete slabs 
and the steel plate. A rigid connection is specified for the line between the steel plate 
and the upper concrete slab. The connection between the two concrete macroelements is 
specified as interface, gap type. The previously defined interface material model is 
assigned to it. 

1.4.2.3 Loads and supports and Run 

 The bottom face of the bottom concrete slab is fixed in both x and y directions 
(load case LC5 an LC6). Compression to the specimen is applied by prescribing the 
uniform vertical displacement of 0.07 mm at the top surface of the steel plate (LC2). 
The corresponding normal pressure is about 15.3 MPa and is almost uniform along the 
interface (Figure 1-10). In the consequent steps, the top surface is kept fixed in the 
vertical direction (LC3) while prescribing horizontal displacement to the left edge of the 
plate (LC4) - Figure 1-11. The horizontal loading is applied in 21 steps. 

1.4.3  Results 

 As seen in Figure 1-12 and Figure 1-13, the overall response of the specimen is 
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dominated by the slip that occurs at the concrete-concrete interface, although some 
cracking of the concrete blocks takes place, too. Figure 1-10 and Figure 1-11 indicate 
that interfacial stresses remain almost uniform throughout the experiment. Given the 
normal compression of 15.3 MPa, the interfacial shear strength should be: 
 

(MPa)   53.23.151.01max   nc  

 
Figure 1-11 shows that at the end of the experiment, the stress along the interface is 
approximately equal to this theoretical value. 
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Table 1.4-1 Material properties of concrete 

Material type  SBETA material  
    
Elastic modulus Ec 30.32 GPa 
Poisson’s ratio  0.0 - 
Compressive strength fc 25.5 MPa 
Tensile strength ft 2.317 MPa 
Type of tension softening  Exponential  
Fracture energy Gf 111.5 N/m 
Crack model  Fixed  

 

Table 1.4-2 Material properties of steel 

Material type  Bilinear steel von 
Mises 

 

    
Elastic modulus Ec 210 GPa 
Poisson’s ratio  0.3 - 
Yield strength  170 MPa 
Hardening modulus  0 MPa 

 

Table 1.4-3 Material properties of concrete-concrete interface 

Material type  2D interface  
    
Normal stiffness Knn 3x106 MN/m3 
Tangential stiffness Ktt 3x106 MN/m3 
Tensile strength ft 0 MPa 
Cohesion c 1 MPa 
Friction coefficient  0.1 - 
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Figure 1-10:  Dimensions of interface test specimen. Boundary conditions applied in the 

first load step and corresponding distribution of interfacial normal stress. 
 

 
 
Figure 1-11:  Boundary conditions applied in load steps 2 to 22. Distribution of 

interfacial shear stress after step 21. 
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Figure 1-12: Computed horizontal load vs. load-point displacement relation 
 
 
 
 
 
 
 
 

 
Figure 1-13: Cracking and deformed shape after load step 21 
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1.5 Interface failure test (NGAP) 3D 

Input files:  NGAP\NGAP.cc3 

The 3D analysis is based on a model with the same dimensions and properties as in 2D. 
However, there are some differences. The horizontal load is applied as a point force in 
the center of the steel plate in form of prescribed displacement (shearing action). Only 
symmetrical half of the body is considered to reduce the size of numerical model (and to 
keep the model well supported). Material in this case is CC3DnonLinCementitious2 its 
parameters correspond with the 2D model.  
 

 
Figure 1-14:  3D model. Finite element mesh. Contact between steel plate and top 

concrete plate is rigid. Contact between two concrete plates is sliding 
interface. Vertical displacement is prescribed on the top surface of the steel 
plate in the loads case 1. 

 

 
Figure 1-15: Mesh of the surface. Prescribed displacement in the top point of steel plate 

on the symmetry axes (represents midpoint of the whole specimen). 
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Figure 1-16: Deformed specimen. Shear displacement can be seen on the interface 

plane. Displacements magnified by factor 100. Principal compressive stress isoareas 
shown. 

 

 
Figure 1-17: Normal contact stress in interface. 

 

 
Figure 1-18: Shear contact stress in interface. 
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Figure 1-19: Load-displacement diagram. 

A deformed shape of the specimen at and of test is shown in Figure 1-16. It clearly 
shows sliding of the interface. This is also indicated by horizontal shape of the load-
displacement diagram in Figure 1-19. Maximum shear force to make interface sliding is 
about  0.17 MN (for symmetrical half of the specimen). The stress on the interface is 
not exactly uniform as can be seen from Figure 1-17 and Figure 1-18.The maximum 
normal stress is about –20 MPa (compression) and shear stress 3MPa. This agree with 
the material friction law of the interface   
 

max 1 0.1 20 3   (MPa)nc         

 
It can be observed, that for the prescribed vertical displacement –0,07mm the normal 
contact stress –20Mpa is much higher comparing to 2D analysis (-15.3Mpa). This is due 
to 3D action, where lateral displacements are constrained by support conditions and top 
steel plate. This leads to high total maximal load which is H=0.34 MN in 3D, compared 
to 0.26 MN in 2D. 
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2  STRUCTURAL ELEMENTS ANALYSES 

2.1  Beam on elastic foundation (SPRI) 
 
Keywords:  contact, nonlinear springs 
 
Input files: SPRI\SPRI.cc2 

2.1.1  Introduction 

 Two concrete beams are resting on a rigid foundation as shown in Figure 2-1. 
Each beam has a cross section of 300x200 mm. The top beam is supported by the 
bottom one. The bottom beam is supported on the bottom face by the rigid foundation. 
The top beam is loaded by a distributed force with a triangular distribution. The contact 
plane between the two beams is assumed to transmit only compression. In ATENA, the 
problem can be modeled in two ways.  

The first way is to substitute the bottom beam by an elastic foundation. This 
model is used in this example. The behavior of the bottom beam is simplified since its 
plane stress continuum is substituted by the uniaxial springs of the Winkler foundation 
type. However, if the main concern of the analysis is the top beam, the simplification 
can be acceptable.  

The second way, to model both beams as continuum and to define the contact 
plane as an interface, is not solved here. 

2.1.2  Comments on FE model preparation 

2.1.2.1 Materials 

 The material of the upper beam is represented using the SBETA concrete model 
with parameters listed in Table 2.1-1. In addition we have to define material properties 
of the springs representing the lower beam. To implement the assumption that the 
interface between the two beams may transfer only compression, we utilize the 
nonlinear spring material model. We define only the compressive branch of the spring 
stress-strain diagram by two points [-1 (–), -31720 (MPa)] and [0 (–), 0 (MPa)]. Outside 
the defined interval (i.e. in tension) the stress is considered to remain zero. Note, that 
the slope of the defined compressive branch corresponds to Young’s modulus of 
concrete. This data is automatically converted by ATENA into spring constant (force 
vs. displacement relation) using the spring length and width provided through Springs 
option in Topology – Line definition window (see the next paragraph). 

2.1.2.2 Topology 

 Springs representing the lower beam are defined through the Springs option for 
the bottom horizontal line. Here we input the direction, orientation (Global in negative 
Y), material and width and length of the springs. 
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2.1.2.3 Loads and supports and Run 

 The bottom side of the beam is supported by the springs. Hence no additional 
vertical supports are necessary. Symmetry of the problem is utilized, thus horizontal 
displacements are fixed along the vertical symmetry line. Loading on the top surface is 
applied as the Partial and quadrilateral type along the top line. The magnitude of the 
loading pattern is one tenth of the total load. Thus, load is applied in ten increments. 
The standard solution parameters are used. 

2.1.3  Results 

 The maximum applied load does not cause any cracking or crushing of the 
concrete beam. However, as the load increases a portion of the beam is pressed down 
while another portion lifts up. Figure 2-2 shows the vertical displacements and the 
normal stress acting along the bottom line of the beam. The figure clearly indicates that 
the present model correctly represents the contact phenomena as no normal stresses are 
transferred where the interface opens up. 
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Table 2.1-1 Material properties of upper concrete beam 

Material type  SBETA material  
    
Elastic modulus Ec 31.72 GPa 
Poisson’s ratio  0.2 - 
Compressive strength fc 28.5 MPa 
Tensile strength ft 1.6 MPa 
Type of tension softening  Exponential  
Fracture energy Gf 111.5 N/m 
Crack model  Fixed  

 

Table 2.1-2 Solution parameters 

Solution method Newton-Raphson  
Stiffness/update Tangent/each iteration  
Number of iterations 20  
Error tolerance  0.010  
Line search on, with iterations  

 

Table 2.1-3 Finite element mesh 
Finite element type Quadrilateral (CCIsoQuad)  
Element shape smoothing on  
Optimization Sloan  
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Figure 2-1: Geometry and boundary conditions of two-layer beam (dimensions in mm, 
loading in 10-2 MN/m) 
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Figure 2-2: Vertical displacements and normal stress along the bottom of the beam 
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2.2  Simulation of tension stiffening experiment (TST) 
 
Keywords:  tension stiffening, concrete-reinforcement interaction, debonding, discrete 

reinforcement 
 
Input files: TST\TSTF.cc2  (fixed crack model) 

TST\TSTR.cc2  (rotated crack model) 

2.2.1  Introduction 

 In this example we use ATENA to reproduce the tension stiffening effect of 
reinforced concrete elements. This effect, which is a demonstration of post-cracking 
interaction of concrete and reinforcement, may be observed well when tension is 
applied to a single reinforcement bar embedded in a concrete prism (Figure 2-3). Prior 
to concrete cracking, both concrete and reinforcement bar fully contribute to the 
stiffness of the specimen (Figure 2-5, Figure 2-6). Once concrete starts to crack, its 
contribution decreases but the specimen stiffness is still higher than that of a bare 
reinforcement bar. This is due to concrete pieces between cracks constraining the bar 
elongation. In some programs for FE analysis of reinforced concrete, this phenomenon 
is included by introducing a separate material property. In ATENA, though, this is not 
necessary and the tension stiffening effect is reproduced by properly modeling discrete 
reinforcement and cracking in the surrounding concrete. To demonstrate the way 
ATENA treats tension stiffening, we reproduce an experiment by Hartl [1]. 
   

2.2.2  Comments on FE model preparation 

 The experimental setup is shown in Figure 2-3. For the analysis, we adopt a two-
dimensional plane stress idealization of the problem. We utilize symmetry, which 
allows us to model only one fourth of the specimen, while appropriately introducing 
displacement boundary conditions (Figure 2-4). 

2.2.2.1 Materials 

 The SBETA material model is employed for concrete. Material parameters are 
listed in Table 2.2-1. Analyses are carried out with both fixed and rotated crack models 
to compare performance of the two approaches. Reinforcement is modeled as elastic 
perfectly-plastic material (Table 2.2-2). 

2.2.2.2 Topology 

 In order to adequately capture concrete cracking, we use a relatively fine mesh 
with the element size of 5mm. The discrete reinforcement is modeled by a single 
segment line placed along x-axis. The bar cross-sectional area is set to one half of the 
real one to account for symmetry. The FE model is shown in Figure 2-4. 

2.2.2.3 Loads and supports and Run 

 The load case LC1 contains the fixed-displacement boundary conditions along 
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symmetry lines. Loading (LC2) is applied by prescribing horizontal force increments of 
2 or 4 kN in the joint placed on the right end of the rebar. Since we want to trace the 
load-displacement curve of the specimen even beyond the limit when it becomes 
perfectly plastic (i.e., applied force may no longer increase), we employ the arc length 
control method, with parameters listed in Table 2.2-3.  

2.2.3  Results 

 The computed load-displacement curves are shown in Figure 2-5 and Figure 2-6. 
It is seen that the analytical results obtained with both fixed and rotated crack models 
closely match the range of experimental results. The solution with the fixed crack model 
is closer to the upper bound of experimental data and the one with the rotated crack 
model is closer to the lower bound. 
 Figure 2-7 and Figure 2-8 show the computed crack patterns and the deformed 
specimen shapes. In both figures we can see formation of several large cracks, 
perpendicular to the tension direction. The main difference between results with the 
fixed and rotated crack models is in the number of these cracks (4 vs. 2). Also, the 
rotated crack model produced localized cracks in the concrete adjacent to the 
reinforcing bar. This can be interpreted as the separation of concrete and reinforcement 
or the bond failure. Quantitative results are compared in the following table: 
 
 Number of cracks per half 

length 
Average crack width (mm) 

Analysis – fixed crack 4 0.10 
Analysis – rotated crack 2 0.20 
Experiment 2 0.16 
 
 

2.2.4  References 

[1] Hartl, G., Die Arbeitslinie Eingebetteter Stähle bei Erst- und Kurzzeitbelastung, 
Dissertation, University of Innsbruck, 1977 
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Table 2.2-1 Material properties of concrete 

Material type  SBETA material  
    
Elastic modulus Ec 29 GPa 
Poisson’s ratio  0.2 - 
Compressive strength fc 22.95 MPa 
Tensile strength ft 3.1 MPa 
Type of tension softening  Exponential  
Fracture energy Gf 58 N/m 
Crack model  Fixed/rotated  

 

Table 2.2-2 Material properties of reinforcement rod 12 

Material type  Reinforcement   
  bilinear  
Elastic modulus E 210 GPa 
Yield strength y 460 MPa 
Hardening  perfectly plastic  

 

Table 2.2-3 Solution parameters 

Solution method Arc length  
Stiffness/update Tangent/each iteration  
Number of iterations 50  
Error tolerance  0.001  

Method Crisfield  
Adjustment method Variable conservative 1/4  

Arc length 

Load/disp. ratio 0.2 (constant)  
Line search on, with iterations  

 

Table 2.2-4 Finite element mesh 
Finite element type Quadrilateral (CCQ10SBeta)  
Element shape smoothing on  
Geometrical nonlinearity on  
Optimization Sloan  
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Figure 2-3: Arrangement of tension-stiffening experiment [1] 
 
 
 
 
 

 
Figure 2-4: Finite element model 
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Figure 2-5:  Load-displacement curves of tension-stiffening specimen (fixed crack 

model) 
 
 
 
 

 
 
Figure 2-6:  Load-displacement curves of tension-stiffening specimen (rotated crack 

model) 
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Figure 2-7: Computed crack pattern and deformed shape at displacement of 0.47 mm 

(fixed crack model). Only cracks wider than 1 m are plotted. 
 
 
 
 
 

Figure 2-8: Computed crack pattern and deformed shape at displacement of 0.47 mm 
(rotated crack model). Only cracks wider than 1 m are plotted. 
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2.3 Simulation of tension stiffening experiment (TST) 3D 
Input files: TST\TSTF.cc3         (fixed crack model in 3D) 

2.3.1  Introduction 

 In this example we use ATENA 3D environment to reproduce the tension 
stiffening effect of reinforced concrete elements. The geometry and material properties 
are the same as in 2D example. 

   

Figure 2-9:  3D model. Symmetrical section, finite element mesh. 

2.3.2   Comments on FE model preparation 

The experimental setup is shown in Figure 2-3. For the analysis, we use three-
dimensional stress analysis. We utilize symmetry, which allows us to model only 1/8 of 
the specimen, while appropriately introducing displacement boundary conditions on 
symmetry axes.  

2.3.2.1 Materials 

The ATENA material model 3D Nonlinear Cementitious 2 is employed for concrete. 
Material parameters are listed in Table 2.2-1. Analysis is carried out with fixed crack 
model. Reinforcement is modeled as elastic perfectly-plastic material (Table 2.2-2). 

2.3.2.2 Topology and mesh 

Prismatic geometry represents one quarter of the test specimen. The discrete 
reinforcement is modeled by a single segment line placed in the cross section corner  
(which is the center of full cross section). Bar direction is parallel with Y-axis. The bar 
cross-sectional area is set to 1/4 of the real one to account for symmetry. The element 
size is 10mm, which is twice the element size in 2D. Isoparametric brick elements with 
8 nodes, 3 DOFs in node, and 8 integration points are used. The FE model is shown in 
Figure 2-9.  

2.3.2.3 Loads, supports and solution parameters 

Two load cases are defined. The load case no.1 “Supports” contains displacement 
boundary conditions along symmetry planes. The loading is imposed as prescribed 
displacement at the bar end in the load case no.2 “Prescribed displacement”. The value 
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of displacement in the load case 1 is 0.00001 in Y direction. 

Load history consists of 51  load steps (analysis steps) each with load cases 1 and 2. 
Note that load steps in ATENA are incremental, which means that the load intensity in a 
current load step is added to the previously applied loads. Standard Newton-Raphson 
method is user. Equation solver is standard (direct elimination). 

Monitoring points are defined in order to simulate structural response:  

Monitor 1 – “Disp 1” is displacement Y at the specimen end on bar location.  

Monitor 2 – “Disp 2” is displacement Y located on concrete surface at distance 
250 mm from the specimen center. It corresponds to the gauge location in 
experiment. However, displacement over only half of the length is measured in 
analysis due to symmetry. Therefore, experimental displacements must be 
reduced by factor 0.5 for comparison. 

Monitor 3 – “Reaction” is the reaction force at the point of prescribed displacement. 
Note, that due to symmetry reduction of specimen size the reaction represents ¼ of  the 
force measured in actual test. 
 

2.3.2.4 Results 

The resulting load-displacement curve is shown in Figure 2-10. This curve was plotted 
in Excel using data from ATENA. The displacement is measured in monitor 2 and 
monitored force is multiplied by factor 4 in order to represent the total force. 

Resulting damage state is evaluated in the load step 51, which is near yielding point of 
steel bar and after completing the crack development. The stress and crack state at the 
load step is shown in Figure 2-11. For the crack picture we used the crack width filter 
with limit width 0.00001m. This means that fine cracks below given limit are not 
displayed. Two major open cracks can be observed. They pass throughput the entire 
cross section and are almost stress free. The crack width on the surface is displayed on a 
separate graphics in Figure 2-12, from which we can read the crack widths values 0,17 
and 0,09 mm for the 1st and 2nd cracks, respectively.  

Deformed mesh shows opening of cracks in Figure 2-11. Magnifying factor 100 is used 
to make the deformed form visible. This figure also shows iso-areas of tensile principal 
stress in concrete, which indicates how the tension stiffening effect works. The concrete 
between cracks is subjected to the tensile stress, which generates tension stiffening. This 
is also indicated by distribution of stress in bar,  Figure 2-14, where the highest stress in 
crack is 412 MPa and between cracks it reduces to 296 MPa. 
Display of cracks inside the concrete, Figure 2-13, shows that major cracks are almost 
planar. Additional cracks appear near the end, where the load is applied and along the 
bar near the end. The later indicate a bond deterioration of concrete and proves, that 
some bond behavior is presented by concrete damage providing that sufficiently small 
elements are used. 
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Figure 2-10:  Load-displacement diagram. 

In high load range the 3D analysis shows weaker response then bar itself. This can be 
explained by bond failure modeled by splitting cracks mentioned above. The bond slip 
of bar is also visible form a mesh distortion near the bar in Figure 2-11. 
 

 

Figure 2-11:  Damage state. Deformed mesh, crack pattern, tensile stress iso-areas. 
Load step 51, displacement (at Monitor2) 0,00054m, force (1/4) 0.0117 MN. 
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Figure 2-12:  Crack width iso-areas at load step 51. Undeformed mesh. 

 

Figure 2-13:  Cracks inside of concrete at load step 51. 

 

 

Figure 2-14: Stress (labeled distribution) and strains (isoareas) in bar at load step 51. 



 38 

 

2.4  Leonhardt’s shear beam (LSB) 
 
Keywords:  reinforced concrete, shear failure, discrete reinforcement, quadrilateral/ 

triangular elements 
 
Input files:  LSB\LSBI.cc2  (CCIsoQuad) 
  LSB\LSBQS.cc2  (CCQ10Sbeta) 

LSB\LSBT.cc2  (Triangular) 
 

2.4.1  Introduction 

 This example shows a simply supported reinforced concrete beam, which fails in 
shear. The beam had been earlier experimentally tested by Leonhardt and Walther [1]. 
The effect of the finite element type on the reproduction of the beam response is also 
investigated.  
 The geometry, reinforcement, and configuration of the tested beam are shown in 
Figure 2-15. Its dimensions are 2550320190 mm. There are two longitudinal 
reinforcement bars 26, with total cross-sectional area 1060 mm2 and cover 37 mm. 
The beam lacks any vertical reinforcement (hoops and ties). Loading is by two forces, 
symmetrically located. The loading forces and supports are applied through steel plates 
to avoid local crushing. 

2.4.2  Comments on FE model preparation 

2.4.2.1 Materials 

 Concrete is represented by the SBETA material model. Relevant material 
properties are listed in Table 2.4-1. Reinforcement is modeled as elastic perfectly-
plastic material (Table 2.4-2). The loading and support steel plates are assumed to 
remain elastic, with Young’s modulus 200 GPa and Poisson’s ratio 0.3. 

2.4.2.2 Topology 

 The model for computer analysis is taking advantage of symmetry. Only half of 
the beam is considered and the symmetry axis is simulated by boundary conditions with 
constrained horizontal displacements. As in the physical experiments, loads and vertical 
support constraints are applied through steel plates to avoid local concrete crushing. The 
plates are assumed perfectly bonded to concrete. 
 As we intend to compare results obtained with different element types, meshing 
is performed using either quadrilateral “CCIsoQuad”, “ CCQ10Sbeta” or triangular 
“Triangle” element types. It is recommended to use a fine uniform mesh (element size 
0.025 m for quadrilaterals and 0.03 m for triangles is prescribed throughout the beam) 
in order to minimize the effect of FE discretization on formation and propagation of 
cracks, namely the inclined shear ones. 
 Reinforcement is modeled by a single straight line in a discrete way (“bar 
reinforcement”). 
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2.4.2.3 Loads and supports and Run 

 Loading is applied by prescribing vertical displacement at the middle point on 
top of the loading plate in constant increments of 0.1 mm. The Newton-Raphson 
solution method with parameters listed in Table 2.4-3 is employed. 
 The overall response is recorded at two monitoring points – loading as the 
reaction at the top loading point and deflection at the bottom of the beam on the 
symmetry plane. 

2.4.3  Results 

 Global response of the beam under given two-point loading can be observed 
from the load-displacement diagram in Figure 2-16. This figure compares the analytical 
diagrams and the experimental one. The experimental curve represents the average of 
two tests. It follows from the comparison of responses that all the analyzed meshes give 
consistent results in deflections as well as in maximum loads. They also compare well 
with the experiments, although the analytically reproduced peak loads are somewhat 
higher. It should be noted, though, that the experimental results also show a big scatter, 
as it is evident in the following table. 
 
 Peak load (kN) Peak deflection (mm) 
Analysis, CCIsoQuad elem. 84.34 3.644 
Analysis, CCQ10Sbeta elem. 85.83 3.651 
Analysis , Triangular elem. 84.49 3.341 
Experiment 1 60 2.57 
Experiment 2 76.5 3.6*) 
*) extrapolated value 
 
 The computed and experimentally observed crack patterns are shown in Figure 
2-18, Figure 2-19, Figure 2-20, and Figure 2-17. All analytical crack patterns show a 
similar diagonal crack path, which compares well with the experimental one. The 
analytical failure mode was due to formation of a diagonal crack, which caused 
kinematic collapse of the beam. The reinforcement was not yielding and compressive 
strength of concrete was reached only in small areas near the loading plate. 
 The study illustrates the objectivity of the brittle mode of failure. The crack band 
method used in the program for crack modeling, which is based on fracture energy, 
gives results, which are not very sensitive to the finite element mesh. This conclusion is 
valid for deflections (stiffness of the structure), peak loads, as well for crack patterns. 
 

2.4.4  References 

[1] “Schubversuche an einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, 
Deutscher Ausschuss für Stahlbeton, Heft 151, Berlin 1962, Ernst&Sohn” 
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Table 2.4-1 Material properties of concrete 

Material type  SBETA material  
    
Elastic modulus Ec 31.72 GPa 
Poisson’s ratio  0.2 - 
Compressive strength fc 28.48 MPa 
Tensile strength ft 1.64 MPa 
Type of tension softening  Exponential  
Fracture energy Gf 100.0 N/m 
Crack model  Fixed  

 

Table 2.4-2 Material properties of reinforcement 

Material type  Reinforcement   
  bilinear  
Elastic modulus E 208 GPa 
Yield strength y 560 MPa 
Hardening  perfectly plastic  

 

Table 2.4-3 Solution parameters 

Solution method Newton-Raphson  
Stiffness/update Tangent/each iteration  
Number of iterations 40  
Error tolerance  0.010  
Line search on, with iterations  

 

Table 2.4-4 Finite element mesh 
Finite element type Quadrilateral (CCIsoQuad or 

CCQ10Sbeta) or Triangular 
 

Element shape smoothing on  
Optimization Sloan  
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Figure 2-15: Geometry of the Leonhardt’s beam no.5. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.001 0.002 0.003 0.004 0.005 0.006
Deflection (m)

CCIsoQuad
CCQ10Sbeta

Triangular
experiment

L
o

a
d

 (
M

N
)

 

Figure 2-16: Load-displacement curves of shear beam 

 

Figure 2-17: Crack pattern as observed in the experiment 
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Figure 2-18: Crack pattern around peak load obtained with quadrilateral 
mesh – CCIsoQuad (Step 34) 
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Y

Figure 2-19: Crack pattern around peak load obtained with quadrilateral 
mesh – CCQ10Sbeta (Step 35) 
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Y

Figure 2-20: Crack pattern around peak load obtained with triangular mesh 
(Step 33) 
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2.5   Leonhardt’s shear beam (LSB) 3D 
 
Geometry and reinforcement is taken from experiment described in 2D example above. 
Materila parameters are the same. For concrete material CC3DNonLinCementitious2 is 
used. Finite element model is shown in Figure 2-21.  Two cases are analyzed one with 
perfect bond other with CEB bond model. 
 

 

Figure 2-21:  Finite element model. 
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Figure 2-22:    Load-displacement diagram. 

The comparison of load-displacement diagrams for two 3D models (with and without 
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bond slip) and experiment by Kupfer (se reference in 2D example) is shown in Figure 
2-22. 

 

Figure 2-23: Stress and crack state at LS 11. 

 

Figure 2-24: Stress and crack state at LS 15, before peak load. 

Pictures of stress and cracks are showing only concrete. This is made with the use of 
“activity” in which only concrete macroelement is selected. In this way the stress range 
is not distorted by high stresses in loading plates.   

The picture show states under …before failure (load step 15) and after failure (load step 
17). Cracks are subjected to filter 
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Figure 2-25:  Stress and crack state at LS 17, after failure. 

 

Figure 2-26:  Failure cracks inside at LS 17. 

 

Figure 2-27: Stress (distribution) and strain (iso-areas) in reinforcement prior failure. 
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2.6  Prestressed concrete beam (INTB) 
 
Keywords:  reinforced concrete, discrete reinforcement, prestressing by internal cables, 

section plots 
Input files:  INTB\INTB.cc2 

 

2.6.1  Introduction 

 This example shows a concrete beam with T-shaped cross section, prestressed 
by internal cables. Prestressing by the pre-tensioning method is applied in an unloaded 
stage, then cables are fully bonded and loading is applied. Therefore, under loading the 
deformation of the cables is fully compatible with that of concrete.  

The geometry of the beam is shown in  
Figure 2-28. The cross section of the beam is shown on the right side of the 

figure. The loading points and support rollers are equipped with steel plates to avoid 
stress concentration and local failures. 
 A beam with the same geometry, but external cables, shall be solved in the next 
example. 

2.6.2  Comments on FE model preparation 

2.6.2.1 Materials 

 Concrete is represented by the SBETA material model with material parameters 
listed in Table 2.6-1. Reinforcement is modeled as elastic perfectly-plastic material 
(Table 2.6-2). The loading and support steel plates are perfectly bonded to concrete and 
are assumed to remain elastic, with Young’s modulus 210 GPa and Poisson’s ratio 0.3. 

2.6.2.2 Topology 

 The beam consists of several macroelements in order to allow prescribing 
different thickness of the beam wall and rim. Reinforcement is modeled as discrete one 
by three straight lines touching one another at their end-points. 

2.6.2.3 Loads and supports and Run 

 Bottom supports are prescribed as the load case LC1 in all steps of the analysis. 
The first loading step corresponds to prestressing. In this step, total prestressing force of 
0.2205 MN (corresponding to prestress of 450 MPa) is applied to all three 
reinforcement lines (LC3). Consequently, vertical loading is applied by prescribing 
vertical displacement at the upper loading plates in constant increments of 0.5 mm. The 
Newton-Raphson solution method with parameters listed in Table 2.6-3 is employed. 
 The overall response is recorded at two monitoring points – loading (as the 
reaction) at the right loading point and deflection at the same location. To facilitate 
plotting of internal forces, cross-sectional stress and strain distributions, and stress and 
strain distribution along the beam bottom edge, appropriate moment lines and cuts are 
specified. 
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2.6.3  Results 

 The computed load-displacement curve is shown in Figure 2-29. Deformed 
shapes and crack patterns at loading steps 12 (during hardening) and 100 (post-peak) are 
provided in Figure 2-30 and Figure 2-31, resp. In addition, Figure 2-32 shows 
distribution of xx-component of strain along predefined cut-lines at load step 100. 
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Table 2.6-1 Material properties of concrete 

Material type  SBETA material  
    
Elastic modulus Ec 33 GPa 
Poisson’s ratio  0.2 - 
Compressive strength fc 53.8 MPa 
Tensile strength ft 3.392 MPa 
Type of tension softening  Exponential  
Fracture energy Gf 183.3 N/m 
Crack model  Fixed  

 

Table 2.6-2 Material properties of prestressing cable 

Material type  Reinforcement   
  bilinear  
Elastic modulus E 200 GPa 
Yield strength y 1600 MPa 
Hardening  perfectly plastic  
Total cross-sectional area  4.9 10-4 m2 

 

Table 2.6-3 Solution parameters 

Solution method Newton-Raphson  
Stiffness/update Elastic/each step  
Number of iterations 30  
Error tolerance  0.010  
Line search on, with iterations  

 

Table 2.6-4 Finite element mesh 
Finite element type Quadrilateral (CCQ10Sbeta)  
Element shape smoothing on  
Optimization Sloan  

 



 49

 
Figure 2-28  Beam prestressed by internal cables 
 
 
 

 
 
Figure 2-29  Computed load-displacement curve of beam with internal cables 
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Figure 2-30  Computed crack pattern at load step 12 
 

 
Figure 2-31  Computed crack pattern at load step 100 
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Figure 2-32 Distribution of engineering strain (xx-component) along predefined cut 

lines at load step 100 
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2.7  Prestressed concrete beam (INTB) 3D 
Input file: INTB.cc3 
The same beam as considered in the previous case of 2D analysis is subjected to 3D 
analysis. Its model is shown in Figure 2-33.  

 
Figure 2-33  Finite element model. 

 

 
Figure 2-34 Stress and crack state. 

 

 

Figure 2-35  Stress distribution in reinforcing bars. 

Stress state of the structures illustrated on above figures is in the analysis step 51 under 
prescribed displacement 4.67mm and load 0.139 MN. 
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2.8  Beam with external cables (EXTC) 
 
Keywords:  reinforced concrete, discrete reinforcement, prestressing by external cables 
 
Input files:  EXTC\EXTC.cc2 

 

2.8.1  Introduction 

 A beam (shown in Figure 2-36) similar to that from the previous example is 
analyzed. The only difference is in the type of prestressing, which is this time applied 
by external cables. The cables lack any bond to concrete, except at their anchored ends. 
The left anchor is active, where the prestressing is applied. The right anchor is passive. 
The path of the cables is given by two deviators positioned under the load points.  
 

2.8.2  Comments on FE model preparation 

2.8.2.1 Materials 

 The material models are the same as those in example INTB. 

2.8.2.2 Topology 

 The prestressing cable is modeled as a single line consisting of three segments. 
In addition to the reinforcement topology, it is necessary to prescribe the properties of 
the deviators. In this analysis, we assume almost frictionless contact between the cables 
and deviators. The deviators’ radii are both identical 25 mm. 

2.8.2.3 Loads and supports and Run 

 As in the previous example, the prestress is applied in the first load step. A 
prestressing force of 0.2 MN is prescribed in the left cable anchor. The stress due to this 
force is 410 MPa, which is slightly less then in the previous case of internal cables. 
Consequently, vertical load is incrementally added by prescribing displacement at the 
load points. 

2.8.3  Results 

 Selected results are shown in Figure 2-37, Figure 2-38, Figure 2-39 and Figure 
2-40. Comparing Figure 2-31 and Figure 2-39 it is seen that the beams with internal and 
external cables exhibit different cracking behavior. In the former, there is a larger 
number of finer cracks distributed over the whole beam, while in the latter, cracking is 
concentrated in the mid-span. 
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Table 2.8-1 Material properties of concrete 

Material type  SBETA material  
    
Elastic modulus Ec 33 GPa 
Poisson’s ratio  0.2 - 
Compressive strength fc 53.8 MPa 
Tensile strength ft 3.392 MPa 
Type of tension softening  Exponential  
Fracture energy Gf 183.3 N/m 
Crack model  Fixed  

 

Table 2.8-2 Material properties of prestressing cable 

Material type  Reinforcement   
  bilinear  
Elastic modulus E 200 GPa 
Yield strength y 1600 MPa 
Hardening  perfectly plastic  
Total cross-sectional area  4.9 10-4 m2 

Frict. coeff.  0.001 - 
Cohesion  0 MN/m 

Deviator 

Radius  0.025 m 

 

Table 2.8-3 Solution parameters 

Solution method Newton-Raphson  
Stiffness/update Elastic/each step  
Number of iterations 30  
Error tolerance  0.010  
Line search on, with iterations  

 

Table 2.8-4 Finite element mesh 
Finite element type Quadrilateral (CCQ10Sbeta)  
Element shape smoothing on  
Optimization Sloan  
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Figure 2-36  Beam prestressed by external cables 
 
 
 

 
 
Figure 2-37  Computed load-displacement curve of beam with external cables  
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Figure 2-38  Computed crack pattern at load step 12 

 
Figure 2-39  Computed crack pattern at load step 82 
 
 

Figure 2-40  Distribution of engineering strain (xx-component) along predefined cut 
lines at load step 82 
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2.9   Beam with external cables (EXTC) 3D 
Input file: EXTC.cc3 
The same girder as in 2D analysis is considered. The difference is in deviators, whoch 
are in this case provided by additional concrete blocks as shown in Figure 2-41. Note, 
that location of bar points (anchors, deviators) need not to coincide with geometrical 
points (joints) or mesh nodes. 

 
Figure 2-41 Finite element model of beam with external cables. 

 

 
 

Figure 2-42 Picture of deformation, stress (principal stress min.) and crack state at the 
load step 41. 

 

 
Figure 2-43 Stress distribution in cables at load step 41.
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2.10  Shear wall with opening (SWO) 
 
Keywords:  reinforced concrete, shear failure, discrete reinforcement, smeared 

reinforcement 
Input files: SWO\SWOL.cc2  (loading from left) 

SWO\SWOR.cc2  (loading from right) 

2.10.1  Introduction 

 French institute CEBTP organized a blind test calculation in which a shear wall 
with opening was loaded by a lateral force [1]. The specimen of a rather complex shape 
consists of a reinforced concrete panel with an opening. The panel is provided with a 
top loading beam and a bottom supporting beam. The panel is reinforced by an 
orthogonal steel mesh in the middle part and by additional stiffening bars along the 
edges. See Error! Reference source not found.. 

2.10.2  Comments on FE model preparation 

2.10.2.1 General data 

 If a concrete member is reinforced by a steel mesh, as it is the case in the present 
example, it is convenient to represent the mesh as smeared reinforcement. In the 
ATENA program, smeared reinforcement is defined using layers, such that each layer 
contains only bars having the same direction. The number of these layers must be 
specified in the “General data” section. Since the panel is reinforced by an orthogonal 
mesh, the number of layers in this example is two. 

2.10.2.2 Materials 

 The SBETA material model is employed for concrete. Material parameters are 
listed in Table 2.10-1. Reinforcement is modeled as elastic-plastic material with linear 
hardening; see Table 2.10-2, Table 2.10-3, Table 2.10-4, and Table 2.10-5. The steel 
mesh (Error! Reference source not found.) is modeled as smeared reinforcement – 
horizontal and vertical bars separately. Furthermore, due to having different thickness, 
the panel and the beams have different reinforcement ratios. To reflect the difference, 
we define smeared reinforcements in each of the regions as a distinct material. The 
remaining rods are represented as discrete reinforcement (Error! Reference source not 
found.). 

2.10.2.3 Topology 

 Despite complexity of the problem geometry, solution is attempted with quite a 
coarse FE mesh. Element size 0.09 m is prescribed in the panel and bottom beam and 
0.0725 m in the upper beam. CCQ10Sbeta elements are used in the panel and the lower 
beam, while CCIsoQuad elements discretize the upper beam. Discrete reinforcement is 
modeled by segment lines. The FE model is shown in Error! Reference source not 
found.. 
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2.10.2.4 Loads and supports and Run 

 The bottom side of the lower beam is fixed in both horizontal and vertical 
directions. Loading is applied by prescribing horizontal displacement at the lower 
corner of the upper beam in constant increments of 0.1 mm. Analysis is performed 
separately with loading acting from the left side to the right (input file “SWOL.cc2”) 
and vice versa (input file “SWOR.cc2”). The Newton-Raphson solution method with 
parameters listed in Table 2.4-3 is employed. 
 The overall response (horizontal displacement and reaction force) is recorded 
using two monitoring points – both located in the vicinity of the loading point. 

2.10.3  Results 

 Post-processing of the analytical results revealed that extensive cracking, 
reinforcement yielding and concrete crushing was taking place in the specimen. Under 
the left-side loading numerous diagonal cracks formed. The cracking was most 
intensive near the joint between the lower beam and the panel at the right side. Such a 
cracking behavior was consistent with that reported in the experiment [1].  
 The right-side loading resulted in a different cracking pattern. The column on the 
left side of the opening failed in shear and a large crack propagated diagonally through 
the panel from the opening to the upper right corner. 
 The computed overall response of the panel is shown in Error! Reference 
source not found. for both left-side and right-side loading. The figure also compares 
the analytical results with the experimental measurements. The analysis predicts well 
the tendency of the experimental curves up to the peak. However, the analytical results 
appear to be more brittle after the peak. The real specimen had a more ductile behavior 
in compression caused probably by a confinement effect of transverse reinforcement. 
This effect was not considered in the analysis. 
 

2.10.4  References 

[1] Foure, B., Eléments finis appliqués au béton armé ou precontraint (comportement 
non-linéaire jusqu’á rupture), Test de logiciels de calcul, CEBTP (no. 9641006), Fevrier 
1998 
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Table 2.10-1 Material properties of concrete 

Material type  SBETA material  
    
Elastic modulus Ec 31.7 GPa 
Poisson’s ratio  0.2 - 
Compressive strength fc 27.6 MPa 
Tensile strength ft 2.6 MPa 
Type of tension softening  Exponential  
Fracture energy Gf 100.0 N/m 
Crack model  Fixed  

 

Table 2.10-2 Material properties of mesh reinforcement 6 

Material type  Smeared 
reinforcement  

 

  multilinear  
Elastic modulus E 200 GPa 
Yield strength y 570 MPa 
Hardening  linear  

 

Table 2.10-3 Material properties of reinforcement rod 12 

Material type  Reinforcement   
  multilinear  
Elastic modulus E 200 GPa 
Yield strength y 480 MPa 
Hardening  linear  

 

Table 2.10-4 Material properties of reinforcement rod 10 

Material type  Reinforcement   
  multilinear  
Elastic modulus E 200 GPa 
Yield strength y 470 MPa 
Hardening  linear  
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Table 2.10-5 Material properties of reinforcement rod 8 

Material type  Reinforcement   
  multilinear  
Elastic modulus E 200 GPa 
Yield strength y 620 MPa 
Hardening  linear  

 

Table 2.10-6 Solution parameters 

Solution method Newton-Raphson  
Stiffness/update Tangent/each iteration  
Number of iterations 30  
Error tolerance  0.010  
Line search on, with iterations  

 

Table 2.10-7 Finite element mesh 
Finite element type Quadrilateral (CCIsoQuad 

and CCQ10SBeta) 
 

Element shape smoothing on  
Optimization Sloan  
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Figure 2-44 Geometry and reinforcement of shear wall 
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Figure 2-45  FE model of shear wall 
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Figure 2-46 Analytical and experimental load-displacement curves of shear wall 
(A...loading from left, B...loading from right) 
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2.11  Punching failure of a slab (PUNC) 
 
Keywords:  axisymmetry, reinforced concrete, discrete reinforcement, shear failure 
 
Input files:  PUNC\PUNC1.cc2 

 

2.11.1  Introduction 

 In this example we analyze the punching failure of a reinforced concrete slab. 
The analysis reproduces one of the experiments carried out by Menétrey [1], in which 
an octagonal RC slab supported by hinges along its circumference was loaded through a 
short steel column – see Figure 2-47. The slab was very lightly reinforced by steel 
meshes along its top and bottom surfaces and by a single circumferential rod placed 
close to the bottom surface. In the experiment, this slab exhibited a typical punching 
failure, in which shear cracks formed a cone, interior of which was pushed out of the 
slab by the column. In addition, there were several radial bending cracks. As it is typical 
for a shear failure, the punching failure was very brittle, with a sharp drop in the load-
displacement curve following formation of the conical failure crack. 

2.11.2  Comments on FE model preparation 

2.11.2.1 General data 

 The problem is analyzed using the axial symmetry idealization. To this end, it is 
necessary to select ‘Problem type: Axial symmetry’ in the ‘General data’ window which 
pops up when creating a new data file. 

2.11.2.2 Materials 

 Concrete is modeled using the 3D Non Linear Cementitious material type with 
material parameters listed in Table 2.11-1. It should be noticed that for axial symmetry 
problems it is necessary to input the parameter called ‘Number of radial cracks’, which 
corresponds to the assumed number of radial cracks that may form in r-z planes. In the 
present analysis, this number is estimated as 10 from the experimental result. 
 The circumferential reinforcement is modeled as a discrete ring. Since no 
cracking is expected near the top surface and the reinforcement ratio of the upper wire 
mesh is very low, only the lower mesh is modeled. It is approximated by discrete 
circumferential rods with cross-sectional area corresponding to that of the original mesh 
rods in one direction. This is a very rough approximation, which should be refined if a 
more precise analysis is to be carried out. The material of the bars is modeled as elastic 
perfectly-plastic, with parameters listed in Table 2.11-2 and Table 2.11-3. The loading 
column is assumed to remain elastic and perfectly bonded to the concrete slab. 

2.11.2.3 Topology 

 Since we solve the problem in axial symmetry, it is necessary to specify 
topology of the symmetric section only. In order to accurately capture shear cracking, a 
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relatively fine regular mesh with element size of 1.5 cm is used for the slab. The 
geometry of the circumferential reinforcement is described by appropriately located 
points. 

2.11.2.4 Loads and supports and Run 

 The hinge support along the outer circumference, together with the horizontal 
constraint along the symmetry axis, are prescribed as load case LC1 in all load steps. 
Loading is applied by prescribing incremental vertical displacement along the symmetry 
axis at the top of the loading column (LC2). The increment is 0.1 mm for the first 20 
load steps and 0.2 mm for the remaining steps. 

2.11.3  Results 

 The computed load-displacement curve is shown in Figure 2-48. Figure 2-49 
shows the deformed shape and crack distribution after the load step 20, which just 
follows the first load drop. The figure reveals a cone formed by inclined shear cracks as 
well as the radial cracks (denoted by circles). 

2.11.4  References 

[1] Menétrey, P., Relations between Flexural and Punching Failure, ACI Structural 
Journal, V.95, No.4, 1998 
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Table 2.11-1 Material properties of concrete 

Material type  3D Non Linear 
Cementitious 

 

    
Elastic modulus Ec 36.95 GPa 
Poisson’s ratio  0.2 - 
Compressive strength fc 42.5 MPa 
Tensile strength ft 3.257 MPa 
Fracture energy Gf 81.43 N/m 
Number of radial cracks  10 - 

 

Table 2.11-2 Material properties of mesh reinforcement 

Material type  Reinforcement   
  bilinear  
Elastic modulus E 210 GPa 
Yield strength y 640 MPa 
Hardening  perfectly plastic  

 

Table 2.11-3 Material properties of circumferential reinforcement 

Material type  Reinforcement   
  bilinear  
Elastic modulus E 210 GPa 
Yield strength y 621 MPa 
Hardening  perfectly plastic  

 

Table 2.11-4 Solution parameters 

Solution method Newton-Raphson  
Stiffness/update Elastic/each step  
Number of iterations 20  
Error tolerance  0.01/0.02/0.05/0.01  
Line search on, with iterations  

 

Table 2.11-5 Finite element mesh 
Finite element type Quadrilateral  
Element shape smoothing on  
Optimization Sloan  

 



 66 

 

 
Figure 2-47  Arrangement of the slab punching experiment and the slab geometry and 

reinforcement 
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Figure 2-48  Computed load-displacement curve of the axisymmetric slab 
 

 
 
Figure 2-49  Computed deformed shape and crack distribution after load step 20 
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2.12  Bond failure (BOND) 
 
Keywords:  reinforced concrete, discrete reinforcement, bond failure 
 
Input files:  BOND\BOND_BIGAJ.cc2, BOND_CYCLIC.cc2 

2.12.1  Introduction 

 This example demonstrates the bond behavior of anchoring bars in the wall-plate 
joint. The anchoring length of the bars under observation is deliberately short so that a 
bond slip can be induced. Other reinforcement is strong enough to prevent other modes 
of failure. The purpose of this example is to show the features of two bond models: 
Bond model by Bigaj under a monotonic loading and the plastic bond law under a cyclic 
loading. The example should not be considered as properly designed under normal 
circumstances. 

2.12.2  Comments on FE model preparation 

General data 

 The problem is modeled using the plane stress idealization. Thus after starting 
ATENA 2D environment it is necessary to select the menu item File | New | Problem 
type: 2D . 

Materials 

Concrete is modeled using the Sbeta Material, (damage-based concrete constitutive 
model for plane stress). The vertical part (-wall) is made of concrete 40 and the base 
slab of concrete 30. Reinforcement bars are using the bi-linear, elastic-plastic stress 
strain law.  

We consider two types of bond properties: poor bond by Bigaj [1] and user defined 
perfectly-plastic bond slip. The bond slip laws are shown in Figure 2-51. 

The bond properties can be defined in the menu Materials | New material | 
Reinforcement Bond. In this menu the bond law according to Bigaj is a pre-defined 
option and can be simply selected. The perfectly plastic bond law we define by using  
user option available in this menu. Here we enter the law by specifying the maximal 
bond stress 4.9 MPa for the starting point (slip 0.0) and the end point (slip 0.0049 m).  

Interface line between the wall and the base plate represents a joint with no tensile 
strength. It is modeled by the interface material with no tensile strength but some 
cohesion in shear.  

We solve two cases with different shapes of bond law and the same maximal bond 
stress. Other properties of both cases are identical. 

Material properties used in this example are listed in Table 2.12-1, Table 2.12-2, Table 
2.12-3. 
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Topology and loading 

The structure is a detail of a wall-base plate corner. The model represents a symmetrical 
half of a U-shaped structure, with the vertical line of symmetry on the right edge of the 
base plate. The horizontal loading is applied 0.1 m bellow the wall top edge in form of 
prescribed displacement. Horizontal reaction force is then calculated as a response to 
the applied displacement.  

Only discrete bars are used for the reinforcement. The bar reinforcement no.2 consisting 
of 2 bars of profile 12mm are connecting the wall with the base plate. The transmission 
of tensile forces from the wall to the base plate is assured only by bond between steel 
bars and concrete. The anchoring length of the vertical bars (reinforcement no.2) in the 
base plate was made deliberately short (0.2 m) in order to demonstrate the bond failure.  

The geometry and material properties of the bars can be entered first. Then only for the 
bars, which should include a bond slip option, an appropriate bond model (previously 
defined in materials) can be assigned. This is done in the dialog box for input of 
reinforcement bars Edit reinforcement bars | Properties | Reinforcement Bond | 
Connection to the material | Bond model . (Of course the same can be done when 
creating the Reinforcement bar prototype, or New reinforcement bars.) In this 
dialog window we must first enter the perimeter of  reinforcement. This is in our case 
(see topology below) a total perimeter of 2 bars no.12, which is 0.0754 m. Then we can 
select one of the pre-defined bond materials. 

Only the bars in the reinforcement no.2 will be modeled with bond. Other reinforcement 
is without bond model (option perfect connection). 
      
Load cases 
Two load cases are defined: (1) Supports, (2) Prescribed displacements. 
 
In the load case 1 horizontal support is prescribed on the line of the symmetry in the 
base plate (right vertical edge). Vertical support in the joint 6 is needed to complete a 
stable support condition (structure does not slide vertically). 
Load case 2 prescribes a horizontal displacement -0.0001m in the joint 10. 
 
Monitoring points, solution method 
Monitoring points are chosen in order to describe a load-displacement response. 
Compact Reaction is monitored at joint 10 (point of load application). Horizontal 
displacement is monitored at the same location. Note that multipliers –1000 have been 
used for monitoring in order to get the response in a convenient format (positive 
numbers, mm, kN). 
 
Solution method 
Solution method is chosen as slight modification of the Standard Solution Method. In 
this method the number of iterations was increased to 100. The reason for this is 
expected slower convergence of the bond element. The method is stored under the name 
“NR 100”. The convergence limit for residual forces was chosen 0.001 for the case 
BOND_BIGAJ and 0.01 for the case BOND_CYCLIC.  
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Analysis steps 
Bond by Bigaj: 
Load steps include: load cases 1 and 2, solution method NR100. Load history is 
composed of the 20 load steps with the coefficient 1.0 followed by 25 load steps with 
the coefficient 5.0. 

Bond cyclic: 
In this case a cyclic loading induced by imposed displacement is applied as follows: 
 Loading in 10 steps up to the displacement 1.0 mm. 
 Unloading in 4 steps down to the displacement 0.6 mm. 
 Reloading in 7 steps up to the displacement 1.3 mm. 
 Unloading in 4 steps down to the displacement 0.9 mm. 
 Reloading in 7 steps up to the displacement 1.6 mm. 
  
Run 
Analysis can be started by pressing the button Run finite element analysis. Response 
can be observed during the solution by activating the monitoring points (displacement 
on X, reaction on Y) and by choosing some option of the analysis progress monitoring 
(after load step, etc.). In this way we can run both cases for two different bond models. 

2.12.3  Results 

Behavior of the structure is strongly affected by anchoring of the vertical bar. The 
horizontal force induces a moment in the wall base, which is resisted by two forces, 
compression in the contact of wall an base and tension in the bar crossing the contact 
joint. The joint opens immediately after the loading and no tension the interface exists. 
The tension in the bar is transferred to the base by the bond stresses only. 

The computed load-displacement curve can be displayed using the Graph option. It can 
be also shown using Excel graphic. (The data can be transported to Excel using the Text 
printout option. Select Results | Monitoring points after load steps and Generate. 
After this a text file with a list of monitored values will be created. This list can be 
transferred to the Excel sheet by the copy/paste method.) The load-displacement 
diagram reflects closely the bond-slip law. Distribution of bond stresses and opening of 
the interface contact in various load stages is shown in enclosed figures. Variety of 
other results can be presented graphically: Bond slip, stress in the bar, etc. 

The cyclic response is shown in Figure 2-56. The changes of the bond stress distribution 
under load reversal can be seen in enclosed figures. 
 
Comment on bond model by Bigaj 
The brittle behavior of the Bigaj’s model is attributed to he splitting mode of bond 
behavior and is more realistic then the plastic behavior. The present bond model in 
ATENA is not directly dependent on confinement caused by the normal stresses acting 
on planes parallel with the reinforcement direction. However, this effect can be to a 
certain extend furnished by user, when choosing appropriate bond law. For this reason 
the bond law by Bigaj has three forms according to the confinement: poor, good, very 
good.   

Note that the load-displacement curve does not go to the zero at the end. This is caused 
by the other vertical reinforcement located near the compression corner (left). This 
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reinforcement is activated in the late load stage and provides some residual resisting 
capacity. 
In this example no cracks occur in most of he loading history. This is due to low 
stresses in concrete. However, a bond behavior in a cracked concrete functions in a 
similar way. It should be realized, that in most practical cases the bond is not a 
significant effect because the bond strength is only seldom reached. 
 
Comment on the plastic model 
The plastic bond model is simple, but can serve as a good approximation. The example 
shows that it can capture the plastic bond slip also for a cyclic loading.  
 
Convergence limits 
Note that two convergence limits has been used in these examples and both give 
satisfactory results. The limit 0.01 converges in about 10 iterations, while the limit 
0.001 in about 20 iterations. The higher limit gives more precise results, but the 
difference is not significant.  
 

2.12.4  References 

[1] Bigaj, A.J. – Structural Dependence of Rotation Capacity of Plastic Hinges in RC 
Beams and Slabs. PhD Thesis, Delft University  of Technology, 1999. ISBN 90-40-
1926-8. 
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Table 2.12-1  Material properties of concrete 

Material type  Sbeta C30 Base Sbeta C40 Wall 
   
Elastic modulus             GPa Ec 30.32 34.03 
Poisson’s ratio -  0.2 0.2 
Compressive strength    MPa fc 25.5 34.0 
Tensile strength             MPa ft 2.32 2.8 
Fracture energy             N/m Gf 58 70 
Compressive plast. def.  m wd -0,05 -0,05 

 

Table 2.12-2 Material properties of reinforcement 

Material type  Reinforcement   
  bilinear  
Elastic modulus E 210 GPa 
Yield strength y 700 MPa 
Hardening  perfectly plastic  

 

Table 2.12-3 Material properties of bond  

Material type  User Poor bond by 
Bigaj 

Function   constant multi-linear 
with softening 

Max. bond stress  [MPa] b,max  4.9 4.9 

 

Table 2.12-4 Material properties of interface 

Material type  2D Interface 
Normal stiffness Knn  MN/m3 200 000 
Tangential stiffness Ktt MN/m3 200 000 
Normal stiffness minimal Knn

MIN  MN/m3 200 
Tangential stiffness minimal Ktt

MIN MN/m3 200 
Tensile strength  ft  MPa 0.0 
Cohesion C MPa 2.0 
Friction coefficient φ  - 0.2 

 
Table 2.12-5 Finite element mesh 
Finite element type CCIsoQuad – Quadrilateral, 

isoparametric 
 

Element shape smoothing on  
Optimization Sloan  
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Table 2.12-6 Solution parameters   

Solution method Newton-Raphson  
Stiffness/update Tangent/each iteration  
Number of iterations 100  
Error tolerance   Bond by Bigaj 
                                      Cyclic 

0.01/0.001/0.01/0.01 
0.01/  0.01/0.01/0.01 

 

Line search on, with iterations  

 

 

 

Figure 2-50  Geometry of bond test. 
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Figure 2-51 Bond-slip laws. 
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Figure 2-52  Load-displacement diagram of Bond by Bigaj. Horizontal displacement 
and load  applied at the top of wall, see Figure 2-50. 

 
 Step 1, Bond by Bigaj
 Reinforcements: Bond Stress, Stress(m), <-2.489E+00;2.489E+00>[MPa]

  3.766E-02

  1.311E-02

  2.489E+00

 -2.489E+00

 -7.618E-03
 -7.674E-03

 -6.142E-03
 -6.146E-03

 -5.578E-03

 -1.060E-02

  6.391E-03
 -8.203E-03

  1.606E-03
 -1.553E-04

 

Figure 2-53  Bond stress in the vertical bar at d=0.1mm, LS 1. 
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 Step 16, Bond by Bigaj
 Reinforcements: Bond Stress, Stress(m), <-3.213E+00;4.787E+00>[MPa]

  4.618E+00

  4.787E+00

 -3.213E+00

 -2.245E+00

 -2.473E+00

 -2.639E-02

 -4.559E-02
  1.059E-02

 -1.358E-02

  6.660E-03
 -7.440E-04

 

Figure 2-54  Bond stress in the vertical bar at d=1.6mm, LS 16. Displacements enlarged 
by factor 10. 

 
 Step 40, Bond by Bigaj
 Reinforcements: Bond Stress, Stress(m), <-2.521E+00;2.906E+00>[MPa]

 -7.950E-01

  2.906E+00

 -2.521E+00

 -7.857E-03

 -1.639E-02 -7.247E-03
 -2.647E-01

  2.204E-01

 -1.226E-02
  6.194E-03

 

Figure 2-55  Bond stress in the vertical bar at d=4 mm, LS 40. 
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Figure 2-56  Load-displacement diagram of the plastic bon under the cyclic load 
history. Horizontal displacement and load  applied at the top of wall, see Figure 2-50. 

 
 Step 10, Bond Cyclic
 Reinforcements: Bond Stress, Stress(m), <-4.899E+00;4.900E+00>[MPa]

  4.900E+00

  4.900E+00

 -4.899E+00

 -4.721E+00

 -4.899E+00

  3.820E-01

 -2.707E-02

 -2.458E-02

 -4.616E-02

  2.013E-02
 -2.487E-02

  6.934E-03
 -7.334E-04

 
Figure 2-57  Bond stress in the vertical bar at d=1.mm, LS 10, loading. Displacements 
enlarged by factor 30. 



 77

 Step 14, Bond Cyclic
 Reinforcements: Bond Stress, Stress(m), <-4.901E+00;4.901E+00>[MPa]

  4.752E+00

  4.851E+00

 -4.901E+00

  4.901E+00

 -4.865E+00

  4.086E-01

 -3.108E-03

 -2.332E-03

 -3.916E-03
 -1.338E-03

 -1.111E-02  7.984E-03

 -6.071E-04

  5.173E-04
 -1.465E-04

 
Figure 2-58  Bond stress in the vertical bar at d=0.6 mm, LS 14, unloading. 
Displacements enlarged by factor 30. 
 

 Step 21, Bond Cyclic
 Reinforcements: Bond Stress, Stress(m), <-4.917E+00;5.085E+00>[MPa]

  5.085E+00
  5.085E+00

 -4.917E+00

 -4.900E+00
 -4.900E+00

  3.756E-01

 -2.742E-02

 -2.519E-02

 -4.754E-02
  1.707E-02

 -2.041E-02

  7.112E-03
 -7.694E-04

 
 
Figure 2-59  Bond stress in the vertical bar at d=1.3mm, LS 21 reloading.  
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2.13   Construction process of two-layer plate, 3D 
Input files:  

Slab_brick.cc3  - Two plates, brick elements. 
Slab_shell.cc3  - Two plates, shell elements. 

 

2.13.1 Model description 

The leyered plate structure is constructed and loaded in two phases. The analysis take 
into account the construction process in which the geometry and loading may change 
during analysis. The dimensions of plate is shown in .  
Construction cases: 

(1) The bottom plate, span 2m, width 1m and thickness 0,2 m is reinforced by 
10Ø20mm near the bottom face. It is simply supported and loaded on the top 
surface by uniform loading 0,06 MN/m2. The loading represent the pressure of 
concrete cast on the top surface, while the bottom plate serve as a form to the top 
plate. Construction case 1 is applied in four load steps. 

(2) The top plate of the same plane dimensions is cast on top of the bottom plate. Its 
thickness is 0,3m. After hardening of the top plate it is loaded on the top surface 
by uniformly distributed load 0,15 MN/ m2. Construction case 2 is applied in 
three load steps. 

 

Figure 2-60  Dimensions of layered plate structure. 

 

Figure 2-61  Construction case 1. 
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Figure 2-62  Construction case 2. 

Hints for FE model:  

(1) First we define materials and construction cases 1 and 2.  

(2) Both plate layers are generated using “Macroelement | Add” tools in a standard 
way. Bottom plate is provided by discrete reinforcing bars. One bar can be 
generated by numerical input of end coordinates. Then, remaining bars can be 
quickly generated by “Copy”command. The construction process is taken into 
account by assigning the objects to appropriate construction cases: Bottom plate 
and reinforcing is in the construction cases 1 and 2. Top plate in construction 
case 2 only. 

(3) Loading is applied. It is associated with geometrical object and automatically 
assigned to construction cases chosen for objects. It is important that the surface 
loading is applied to appropriate objects. This must be carefully selected at the 
top surface of the bottom plate. This location is a contact plane between two 
macroelements and there are two surfaces on the same location. It is important, 
that the top surface of the bottom plate (surface 6 of macroelement 1) is loaded.  
(Not the bottom surface of top plate, surface 5 of macroelement 2).  

Materials: For concrete is used material 3D Nonlinear Cementitious 2 with cube 
fcu=30Mpa. In case of shell element tension parameters modified by setting crack 
spacing 0.05m and tension stiffening 0.4. Reinforcement is bilinear.  

2.13.2 Results – brick model 

 

Figure 2-63  Finite element model – brick elements. 
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In this case plates are modeled as 3D solids by brick isoparametric finite elements, 
Figure 2-63.  Stress iso-areas, cracks and deformations are shown for two 
construction cases in Figure 2-64 and Figure 2-65. It is interesting to note the 
technique of connection between old and new object (between construction cases 1 
and 2). The mesh of new object – top plate, is on the contact plane adjusted to 
deformed mesh of existing macrolements. On the contact plane only, the geometry 
of the added object is adjusted to the deformed shape of the existing object. This can 
be seen in Figure 2-65. This method corresponds to a casting of added objects on 
deformed shape of existing objects.  

 

Figure 2-64  Stress, cracks and deformation after construction case 1 – load step 4. 

 
Figure 2-65  Stress, cracks and deformation after construction case 2 – load step 7. 

2.13.3 Results - shell model 

Alternatively, the same model can be performed using shell elements, which are very 
efficient for bending-type of behavior. In this case each layer is modeled as a shell 
object and relatively large elements are chosen, with element size of  0.5m.  
 
The comparison of two types of models and different element sizes is shown in the table 
below. The results show, that the coarse shell model (element size 0,5m) gives useful 
result, with an over-estimation of stress and deflection. This is of course on safe side. 
The elapsed times of calculation show that shell elements are much more time effective.  
The above pictures show only the results of cases with coarse mesh. Analyses with 
alternative meshes can be done by modifying “global element size” in the menu “FE 
mesh | Generation”.  
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Summary of results and computer time for construction process analysis. 
model element 

size [m] 
no. of finite 

elements 
deflection at 

midspan 
[mm] 

stress in top 
at midspan 

[Mpa] 

crack width 
[mm] 

computer 
time[min] 

bricks 0.10 1000 1.04 -2.45 0.04 11.4 
bricks 0.05 8000 1.14 -2.81 0.06 149.0 
shell 0,50 16 0.99 -2.9 0,015 0.9 
shell 0.25 64 0.987 -2.7 0,08 2.6 

 
 
 

 
 

Figure 2-66  Shell model. Stress, cracks and deformation after construction case 1 – 
load step 4. 

 

Figure 2-67  Shell model. Stress, cracks and deformation after construction case 2 – 
load step 7. 
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3 MESH STUDY 

3.1 Comparison of 2D, shell and 3D beam elements 

3.1.1 Model description 

Cantilever beam with known engineering solution ( Bernoulli hypothesis) is the subject 
of this study. The beam is modeled by different types of elements and meshes. 
 
Following ATENA elements are considered in this study:  

 Plane stress 2D isoparametric 8 node low order element (CCIsoQuad), 
 Shell Ahmad high order layered element (Shell/Plate), 
 Beam 3D high order fiber element (3D Beam). 

Mesh of 2D beam and shell elements are shown in Fig. The 3D beam element mesh is 
identical with the shell, whereas the only difference is in the system of integration by 
layers in shell and fibers in 3D beam. 
    
Structure: cantilever fixed at one end, length L=1m, width b=1m, thickness h=0.1m. 
Loading by distributed forces on the top surface  p=0.1MN/m2 
Material elastic:  E=30000 MN/m2, =0.2 
 
Solution according to Bernoulli hypothesis: 
              M= L2 0.5 p = 0.05 MNm 
              W= b h2/6=0.00166667 m3 
                J= b h3 /12 = 0.833333x10-5 m4 

Stress at the fixed end, top surface         
0.05

30
0.001666

M
MPa

W
     

Tip deflection   
3

5 5

0.1
0.005 5

8 8 0.3 10 0.833333 10

QL
y m mm

EJ    
   

 

 

3.1.2 Results 

Results are summarized in the following tables. 
 
Plane stress, isoparametric low order rectangular element  

Elements 
through the 
thickness 

Element size 
m 

Tip deflection 
mm 

Stress at fixed end,  
top edge 

MPa 
10 0.01 5.024 29.59 
5 0.02 4.954 25.90 
2 0.05 4.522 17.39 
1 0.1 3.47 6.47 
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Shell element 

Layers 
through  

thickness 

Element size 
m 

Tip deflection 
mm 

Stress at fixed end,  
top edge 

MPa 
10 0.2 4.970 31.63 
10 0.5 4.960 31.00 
4 0.2 5.253 33.40 
2 0.2 6.490 41.57 
2 0.1 6.497 41.71 

 
Beam element 
Fibers through 
the thickness 

Fibers through 
the width 

Element size  
m 

Tip deflection 
mm 

Stress at fixed 
end, top  

MPa 
10 10 0.2 4.893 28.77 
10 10 0.5 4.638 21.44 
     

 
Summary of FE models 
Model Number of elements Number of DOF 
2D size 0.01m 1000 2222 
2D size 0.05m 40 126 
Shell size 0.2m 25 496 
Shell size 0.5m 4 97 
3D beam size 0.2m 5 60 
3D beam size 0.5m 2 24 
 
 
Following figures illustrate the mesh models and results. 

 
 

Figure 3-1   2D plane stress elements. Coarse mesh with 2 elements through thickness, 
element size 0.05 m. Distributed load shown on the top surface. 
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Figure 3-2   2D plane stress elements. Fine mesh with 10 elements through thickness, 
element size 0.01 m. 

 

 

 Figure 3-3  2D plane stress elements. Fine mesh with 10 elements through thickness, 
element size 0.01 m. Deformed form. 

 

Figure 3-4  2D plane stress elements. Fine mesh with 10 elements through thickness, 
element size 0.01 m. Iso-areas of axial stress (horizontal). 
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Figure 3-5   Layered shell elements. Mesh model with element size 0.2m. 

Figure 3-6   Shell elements. Mesh model with element size 0.2m, 10 layers. Deformed 
form. 
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Figure 3-7   Shell elements. Mesh model with element size 0.2m, 10 layers. Iso-areas of 
axial stress (horizontal). 

 

3.1.3 Conclusions  

(1) With sufficiently fine mesh all models give acceptable solution and agree well 
with the solution according to the Bernoulli beam hypothesis based on the 
assumption of plane section. 

(2) 2D plane stress element needs at least 4 elements through the thickness. One 
element through the thickness gives certainly wrong model. Although not shown 
in this study element aspect ratio (relation of width to height) is also important 
and should not be greater then 2. 

(3) Shell and 3D beam elements are far more efficient then 2D plane stress element 
in case of bending type of structure. The most important parameter is number of 
layers in shell, or fibers in beam. This is a similar feature as the number of 
integration points in solid elements. A recommended minimum number of layers 
is 4.   

(4) The study covers the range of elastic structure with mainly bending behavior, 
such as a cantilever beam. However, it gives a general information about 
efficiency of different elements. In case of nonlinear effects, such as plasticity 
and fracture, the mesh size effect may have different characteristics. The 
minimum number of elements holds also for nonlinear analysis. 
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