

Durability assessment of reinforced concrete structures due to chloride ingress up and beyond induction period

Vít Šmilauer, Karolina Hájková

Czech Technical University in Prague

Libor Jendele, Jan Červenka Červenka Consulting, Ltd.

IABSE SYMPOSIUM

ENGINEERING THE FUTURE

Outline

- Corrosion of reinforcing steel due to Cl⁻
- Models for induction and propagation phases
- Chemo-mechanical linking
- Examples
 - Bridge strut
 - RC beam from Nougawa bridge

ENGINEERING THE FUTURE

Reinforcing steel corrosion in chloride environment

- Initiation (induction) phase ends when CI exceeds critical concentration
- Cracks accelerate penetration (0.3 mm crack decreases induction time approximately 5 times)
- Propagation phase forms expanding corrosion products

NCOUVER

2017

Model for propagation phase (1)

• 1D chloride concentration (Kwon et al., 2009)

$$C(x,t) = C_{S}\left[1 - erf\left(\frac{x}{2\sqrt{D_{m}(t)f(w)t}}\right)\right] \qquad f(w) = 31.61w^{2} + 4.73w + 1$$

• Corrosion current density (Liu and Weyers, 1998)

$$i_{corr} = 0.926 \cdot \exp\left[7.98 + 0.7771\ln(1.69C_t) - \frac{3006}{T} - 0.000116R_C + 2.24t^{-0.215}\right]$$

ENGINEERING THE FUTURE

- 1D model for corrosion depth ($R_{corr} \sim 3$ for pitting) $x_{corr}(t) = \int_{t}^{t} 0.0116i_{corr}(t)R_{corr} dt$
- Effective bar diameter

IABSE SYMPOSIUM

2017

$$d(t) = d_{ini} - \psi 2x_{corr}(t)$$

SEPTEMBER 21-23

Model for propagation phase (2)

Cracking of concrete cover (DuraCrete, 2000)

$$x_{corr,cr} = a_1 + a_2 \frac{cover}{d_{ini}} + a_3 f_{t,ch}$$

• Spalling of concrete cover (DuraCrete, 2000)

$$x_{corr,sp} = \frac{w^d - w_0}{b} + x_{corr,cr}$$

• Direct steel exposure

IABSE SYMPOSIUM

2017

Corrosivity zone (ISO 9223)		Typical environment	Corrosion rate for first year (µm/y)	
Category	Description		Mild steel	Zinc
C1	Very low	Dry indoors	≤1,3	≤0,1
C2	Low	Arid/Urban inland	>1,3 a ≤25	>0,1 a ≤0,7
C3	Medium	Coastal and industrial	>25 a ≤50	>0,7 a ≤2,1
C4	High	Calm sea-shore	>50 a ≤80	>2,1 a ≤4,2
C5	Very High	Surf sea-shore	>80 a ≤200	>4,2 a ≤8,4
CX	Extreme	Ocean/Off-shore	>200 a ≤700	>8,4 a ≤25

ENGINEERING THE FUTURE

Simulation workflow

2017

IABSE SYMPOSIUM ENGINEERING THE FUTURE

Example 1 – concrete strut

- Prestressed bridge in Prague, 14+36+14 m
- Built 1984, diagnostics 2016
- Struts C35/45 (CEM I 350 kg/m³)
- Bars ø32 mm with stirrups
- Bars' cover 35 mm

[Ing. Junek, Pontex]

Geometry (0.6 x 0.6 m) of the bridge strut and

chloride profile

IABSE SYMPOSIUM

2017

Chloride distribution in the depth of the bridge strut for the surface concentration of 1.7 % kg/kg, induction phase.

ENGINEERING THE FUTURE

Example 1 – concrete strut

2017

Chloride concentrations at the reinforcement depth, concrete cover = 35 mm for three scenarios of crack width.

Reduction of the reinforcement area during service life.

Example 2 – Nougawa bridge, Japan

- Built 1930 in coastal area, stirrup's concrete cover 47 mm
- Reinforced beams, 3x4 spans @ 10.8 m = 131 m
- Bars ø25.4 mm, stirrups ø9.5 mm
- Cover restored in 1960, $C_{crit}=0.4\%$
- Two beams tested in 2009

Validated specimen, (Tanaka et al.)

Example 2 – Nougawa bridge, Japan

Predicted reinforcement area of 64% agrees well with the measured value of 62.5%

Example 2 – Nougawa bridge, Japan

• ULS analysis, 4 point bending @ 3+2+3 m

Conclusions

- Simplified simulation of chloride ingress for reinforced concrete
 - Induction and propagation periods
 - CI acceleration by crack width
 - Effective reinforcing area
- Further linking with ULS analysis
- Possible linking with LCA

IABSE SYMPOSIUM

2017

We gratefully acknowledge the financial support from the Technology Agency of the Czech Republic TAČR under the project TA04031458 and SGS12/116/OHK1/2T/11 granted by the Czech Technical University in Prague.

